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Abstract

This paper considers the revenue maximization problem for a hydropower company.
The company can generate excess electricity by releasing water from a reservoir and
then sell it to the energy market. On the other hand, the company has an obligation to
keep the reservoir level above a pre-determined level, which may require the company
to purchase electricity in order to fulfill the customers’ power demand. The electricity
price and reservoir level are both represented by diffusion processes. Two models for
the stochastic control problem are considered, including one which assumes drifted
Brownian motion for noise. For the first model, it turns out that the optimal timing
and quantity of electricity generation or purchase can be determined using a simple
strategy. In the second model, we refer to a one-factor diffusion model for electricity
price, which is known to fit the data well. The existence and uniqueness of the value
function is verified through techniques of viscosity solutions.
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1 Introduction

Due to a high consumption rate of limited energy sources, the question of properly and
efficiently utilizing hydroelectric power, in conjunction with other renewable energy sources,
is an important and complex problem. Due to differing objectives and priorities, various
proposed strategies have been considered. Additionally, many mathematical questions have
been raised by the study of these approaches.
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Since water in reservoirs can either be released to generate hydropower in the current
period, or withheld to generate hydropower in the future, one fascinating research question is
about the best control strategy to maximize the profit from selling excess hydropower in the
electricity market. However these actions should also mitigate the environmental impacts
and avoid violation of legal and administrative regulations.

This paper is motivated by considerations of the Bonneville Power Administration (BPA)
that operates in Pacific Northwest and markets electrical power from dams located in the
Columbia River Basin. Significant uncertainties preclude deterministic optimization meth-
ods ([6, 10]). Under this consideration, several papers have made contributions through
different approaches. The first attempt to model and assess the operational flexibility of
the hydropower is due to [14], in which the model of flexibility is assessed for the system
efficiency. The work [20] uses a different type of quantification and evaluates this flexibility
by the method of option pricing. They believe that the flexibilities of the water storage and
the inflow could be sold like options in the market. A direct optimization, a bi-level robust
optimization approach, for the flexibility allocation problem was presented in [5].

This paper introduces a novel stochastic optimal control model which has been extensively
studied in insurance ([1, 11, 13, 15, 17]). The reason that the stochastic control model fits
this scenario is that we have a general assumption on the relation between demand and
hydropower generating potential due to a continuous inflow. That is to say the contracts’ or
customers’ demand should not exceed the supply ability in general except possibly during
the peak electricity demand. Therefore, the reservoir will have excessive water in storage
normally and the company should find a way to utilize this additional energy source properly.
This is important for the future development of the renewable energy market. As market
uncertainty tends to increase due to the increasing share of the wind and solar energy, the
trading of energy flexibility will become more critical.

On the other hand, as mentioned above, the demand peak occurs randomly and it may
cause a shortage of the reservoir storage for electricty generation. While meeting the regular
demand from its customers, the company also needs to avoid the violation of a minimal
reservoir level set by law (e.g., for wildlife considerations). Then the company needs to cease
releasing the reservoir water, and instead purchase the electricity from other power suppliers
in the energy market. This mechanism indeed matches that of the model with reflecting
barrier ([21]) and optimal dividend problem with capital injection ([15]). These models do
not apply here directly, but their extensions considered in [7,8,11] will help us to reveal the
adaptability of this stochastic control here, where the energy commodity is traded with a
stochastic electricty price.

The outline of this paper is as follows. In Section 2, we provide a classical stochastic
model for this system. We model both the electricity price and reservoir level as a drifted
Brownian motion. Although there is significant evidence that the model assumption on
electricity price is not reasonable ([2]), we are interested in this model since here we can
determine an analytical solution with an explicit simple strategy to implement. This model
formulation has been considered in [7], but there it is mainly for the purpose of including
some random interest rate into the stochastic control system. Here we take a different point
of view and try to explore the applicability of this model in the energy market. In Section 2,
after the problem formulation, we establish the associated Hamilton-Jacobi-Bellman (HJB)
equation and point out that the value function will be the solution of this system. It needs
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to be mentioned that there are several constraints forced by the legitimate policies for the
reservoir system, so the model here is somewhat different from that in [7]. We will solve this
system and obtain an analytical solution. As mentioned above, this baseline model lacks the
ability to resemble the realistic data specifically on price data.

A more convincing model from data analysis, the well-known one-factor diffusion model
for electricity price, is described in [18]. In Section 4, we study the case when the electricity
price follows this one-factor diffusion model which incorporates the seasonal change and mean
reverting property of the data. Based on that, we give the objective value function and derive
HJB equation (see p.539 of [3]). The corresponding numerical solution to this system is not
known. In this paper, we address the issues regarding existence and uniqueness of solutions
to the HJB equation for this problem via the method of viscosity solutions. With some
standard techniques, we verify that the solution of an HJB equation is the value function
and then prove that the value function is the viscosity solution of the HJB equation. This
result implies that the numerical solution from the applicable method would generate the
optimal executive “trigger price” strategy to control the dams.

2 General model

First we lay out our assumptions on the quantities of interest, and then we represent each
with appropriate models. There should be sufficient electricity in the market to purchase
at anytime. In particular, we assume that the electricity market is complete, which is most
frequently assumed for stock prices in finance. The reservoir level is mainly influenced by
the inflow and usage of the water by power company (we assume no spilling of water or
evaporation). The inflow will add water into the reservoir which will raise the reservoir
level, but the usage of water to produce the electricity will cause the reservoir level to go
down. Considering that there is randomness inside these processes, we assume them to be
stochastic processes. Here we make the following assumptions on the electricity price and
the reservoir level. The price is denoted by Pt and described by the following stochastic
differential equation (SDE)

dPt = θ(t, Pt)dt+ η(t, Pt)dWt, (2.1)

where Wt is Brownian motion. The underlying natural reservoir level is modeled by,

dXt = a(t,Xt)dt+ σ(t,Xt)dBt, (2.2)

where Bt is Brownian motion and it is used here to account for the overall aggregate ran-
domness in inflow, usage of water for electricity and other environmental consumption. The
function a(t,Xt) is the drift term and it can estimate the pattern that the reservoir level
should behave like in the future.

There are two controls in our approach. One control is to use some portion of the water
to generate the electricity to sell. The other one is to buy the electricity from market to
meet any unmet needs of consumers, and/or government regulations, at the same time. We
allow for the controls to depend on the states of the reservoir level, thus these two controls
will be denoted by two stochastic processes: S(t,Xt) and Z(t,Xt). The quantity S(t,Xt)
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represents the amount of water to be used to generate electricity to sell on the market. The
quantity Z(t,Xt) is the amount of electricity purchased from the market, converted to an
equivalent amount of water. Both will be determined by the choice of a particular strategy,
which we will denote with index τ . The resulting controlled reservoir level is indicated by

Xτ = X − Sτ + Zτ . (2.3)

Any control strategy must ensure that the reservoir level stays above the minimum level m
to avoid violating legal constraints.

The ultimate goal for the power company is to maximize the total expected discounted
net profit, namely the quantity defined below. Suppose that at time tc, X

τ
tc = x, Ptc = p,

then

V τ (tc; p, x) = Ep,x

{∫ ∞
tc

e−δsPs(dS
τ
s − φdZτ

s )

}
where p and x are the current market electricity price and reservoir level respectively. The
interest rate, δ > 0, is assumed to be constant. The purchase cost Z(t,Xt)Pt is penalized by
the factor φ > 1. The optimization problem is to find the optimal strategy τ ∗, in the set A
of all admissible strategies for τ (e.g., such that Xτ > m, [7]), that maximizes V τ (p, x). We
call

V (tc; p, x) = sup
τ∈A

Ep,x

{∫ ∞
tc

e−δsPs(dS
τ
s − φdZτ

s )

}
the value function of this problem.

In the following, we will consider the problem of the optimization of the total expected
discounted net profit, under two different assumptions for the form of the SDE representing
the price.

3 Homogeneous model

In this section, we assume the simple scenario that the reservoir storage process satisfies
a(t,Xt) = a and σ(t,Xt) = σ, from (2.2), plus the effects due to the controls, thus

dXτ
t = a dt+ σ dBt − dSτt + dZτ

t . (3.1)

The market electricity price satisfies Pt = exp(rt) where drt = b dt+ η dWt. In other words,
Pt is represented with Geometric Brownian motion. Then the value function can be rewritten
as

V (r, x) = sup
τ∈A

Er,x[

∫ ∞
0

e−δs+rs(dSτs − φdZτ
s )].

Through the process of applying the dynamic programming principle, assuming indepen-
dence between Xt and rt (this is condition is relaxed in Section 3.3 below), we can derive
the following HJB equation:

bVr +
η2

2
Vrr + aVx +

σ2

2
Vxx − δV + sup

τ
{(er − Vx)gτ − (φer − Vx)lτ} = 0 (3.2)
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where gτ and lτ are the time derivatives of Sτt and Zτ
t at the differentiable points. Note that

Sτt and Zτ
t are differentiable almost everywhere. In the following, we will provide the way to

find the analytical solution to this HJB equation. Note that we need not explicitly construct
gτ or lτ in order to determine the optimal strategy τ ∗ and the corresponding value function.

3.1 Analytical solutions

We solve (3.2) by the separation V (r, x) = erF (x). Then it can be reduced to:

aFx +
σ2

2
Fxx + (b− δ +

η2

2
)F + sup

τ
{(1− Fx)gτ − (φ− Fx)lτ} = 0. (3.3)

Suppose that 0 6 lτ 6 L and 0 6 gτ 6 G. Then we have the following lemma.

Lemma 3.1. The function F (x) satisfies the following properties when both G and L are
unbounded:

(a) F ′(m) = φ, F ′(x) 6 φ, where m is the minimal reservoir level.

(b) There exists a point x0 such that F ′(x0) = 1.

(c) F(x) is continuously differentiable.

(d) F(x) is positive, increasing, and concave.

(e) F(x) is bounded above if G is finite.

The proof of this Lemma is given in Appendix A. We then divide the real line {x > 0}
into two sets S1 = {x : 1 6 Fx 6 φ} and S2 = {x : 0 6 Fx < 1} which we consider separately.

(1) Let Fx < 1. Suppose G and L are unbounded, then (3.3) becomes

(a−G)Fx +
σ2

2
Fxx + (b− δ +

η2

2
)F +G = 0.

Dividing both sides by G and letting G→∞, we have

Fx − 1 = 0,

and therefore

F (x) = x+ C, x ∈ S2. (3.4)

For clarity, let F2(x) = x+ C.

(2) Let 1 6 Fx 6 φ. Then, 3.3 becomes

aFx +
σ2

2
Fxx + (b− δ +

η2

2
)F = 0

and therefore

F (x) = Aeαx +Beβx, x ∈ S1 (3.5)

where α =
−a−

√
a2−2σ2(b−δ+ η2

2
)

σ2 and β =
−a+

√
a2−2σ2(b−δ+ η2

2
)

σ2 .
For clarity, let F1(x) = Aeαx +Beβx.
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We may now solve for the solution F (x) by applying the properties in Lemma 3.1. Re-
garding (e), as it is unrealistic to allow the reservoir to fill to any arbitrary level, we assume
that the release level G is unbounded so that the reservoir level can stop ascending if sufficient
water is released. We now have the following:

F1(x) = Aeαx +Beβx

F2(x) = x+ C

F ′1(m) = φ

F ′1(x0) = 1

F1(x0) = F2(x0)

F ′′1 (x0) = 0

By some manipulations of these equations, we get the simplifications:

Aαeαm +Bβeβm = φ,

Aαeαx0 +Bβeβx0 = 1,

Aeαx0 +Beβx0 = x0 + C,

Aα2eαx0 +Bβ2eβx0 = 0.

After some algebraic operations, we derive the following implicit equation that defines
x0,

(α− β)φe(α+β)x0 = αeαx0+βm − βeβx0+αm. (3.6)

Once we obtain the answer of x0, we can solve for A,B,C.

A = − β

(α− β)αeαx0
,

B =
α

(α− β)βeβx0
,

C =
α + β

αβ
− x0.

Therefore the value function is

V (x, r) =

{
erF1(x) if m 6 x 6 x0

erF2(x) if x > x0.

A similar argument can be made if G is bounded. In either case, it is the value of x0

that determines the strategy, i.e., the barrier strategy for this simple example, which says to
sell if the reservoir level exceeds x0 (as well as buy if the level falls below m, which itself is
often given).
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3.2 Optimal strategies

We emphasize that the stochastic process for the reservoir level, namely Xt satisfying SDE:
dXt = adt+σdBt, is the real reservoir level with electricity power generation to meet demand.
The controlled reservoir level is indicated by Xτ = X −Sτ +Zτ . In the previous section, we
show that the optimal timing to generate the extra electricity to sell or purchase electricity
from the market depends on two constants: m and x0. The quantity m is the level that
should be calibrated with caution. It should be higher than the minimal level required by
the law, but it should not be too high to be useless either. Here we assume that m has been
pre-determined. Therefore, whenever the reservoir level Xτ

t falls down to the level m, the
company will stop generating electricity from the water. Instead, they will buy as much as
needed to meet demand. In any case, Xτ

t is not allowed to go down below m, because the
company will then risk severe penalty. In fact, this will be avoided after they stop using
water, since the continuous inflow will replenish the reservoir.

However when Xτ
t keeps climbing and is about to cross the level x0, the company should

make use of any water that is above x0 to generate electricity. In reality, it is possible to
implement since the inflow usually does not include too much variation (relative to price
or demand variation). The picture in Figure 1 depicts the basic procedure for this type of
barrier strategy as an example.
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Figure 1: Simulation of an example of the optimal barrier strategy. The selling level is x0.

3.3 Model with dependence

We make a slight but important improvement to the model in the previous section. It is
unrealistic to assume independence between the electricity price and the power generation,
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since in economic theory, the supply and demand are closely related to each other. For
example, if significant quantities of excess power are sold on to the market, the price will
fall. Therefore it is reasonable to impose the dependence assumption on the model. Evidence
shows that the price and generated power are negatively correlated. One way to measure
the dependence is the covariance function.

Suppose that X and Y are two stochastic processes. The covariance between these two
processes are defined as follows:

cov(Xt, Yt) = E[(Xt − E[Xt])(Yt − E[Yt])].

From this, the correlation between X and Y is defined using covariance:

corr(Xt, Yt) =
cov(Xt, Yt)

σXtσYt
,

where σXt , σYt are standard variances. Here we assume that the correlation between Brownian
motions Bt and Wt, which are introduced in (2.1) and (2.2), is a constant k < 0. It is negative
since electricity price and generated power have negative correlation.

The quadratic variation between the differentials drt and dXt, is then given as:

< drt, dXt >= kdt.

Suppose f ∈ C2,2. Two-dimensional Itô’s formula for continuous Markov processes can be
given by:

Lemma 3.2 (Itô Lemma).

df(Xt, Yt) = fxdXt + fydYt + fxy < dXt, dYt > +
1

2
fxx < dXt, dXt > +

1

2
fyy < dYt, dYt > .

Applying this to the problem formulation we have,

dV (rt, Xt) = Vrdrt + VxdXt + Vrx < drt, dXt > +
1

2
Vrr < drt, drt > +

1

2
Vxx < dXt, dXt > .

The value function for this problem is still the same as above:

V (r, x) = sup
τ∈A

Er,x[

∫ ∞
0

e−δt+rt(dSτt − φdZτ
t )].

The HJB equation becomes:

bVr +
η2

2
Vrr + kησVrx + aVx +

σ2

2
Vxx − δV + sup

τ
{(er − Vx)gτ − (φer − Vx)lτ} = 0. (3.7)

As before, we may use the separation V (r, x) = erF (x). Then (3.7) can be reduced to the
following equation:

(a+ kησ)Fx +
σ2

2
Fxx + (b− δ +

η2

2
)F + sup

τ
{(1− Fx)gτ − (φ− Fx)lτ} = 0.

According to Lemma 3.1, we can solve this equation by exactly the same way that is applied
in the previous section. The process will not be repeated here.
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3.4 Example

For simplicity, suppose that the price and power produced are independent from each other.
Also, consider the case when G is unbounded. Suppose that parameters are given as: a =
6, b = 0.5, η = 1.2, σ = 3, δ = 1.3, φ = 1.8 and m = 3. Solving the equation (3.6) numerically,
we obtain that the selling level should be approximately x0 = 6.32.

The optimal operation can be interpreted in the following way:

(1) When the reservoir level reaches the purchase level m=3, the company immediately
stops using the water to generate the power for its customers because of the high risk
in low level. Instead, it purchases the electricity from the market to meet the needs.

(2) When the reservoir level stays between the purchase level m=3 and the selling level
x0 = 6.32, the company only uses the amount of water that could generate the necessary
electricity for its customers.

(3) When the reservoir level runs above the selling level x0 = 6.32, the company will use
the portion of water that is above x0 to generate the electricity and then sell it in the
market.

Figure 2 illustrates this strategy, which depends on the reservoir level. Figure 3 gives the
computed value function for this system and the optimal “curve strategy”. We call the
optimal strategy here a “curve strategy” because the control is exerted whenever the state
of this two-dimensional system hits the boundaries of some specific region.
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Figure 2: The optimal operation based on the reservoir level for parameters in the example.
The plot shows F (x), the solution to (3.3), e.g., F1(x) until x0, and then switching to F2(x).
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Figure 3: The value function and curve strategy in terms of electricity price and reservoir
level for parameters in the example. The plot shows V (r, x), the solution to (3.2).

4 One-factor diffusion model

4.1 Model assumption

In actual data of electricity price, there are features like mean-reversion and spike prices.
However, the model proposed above for the price cannot capture these important features.
To account for this, papers ([2, 18]) investigate a sophisticated model to incorporate these
features. It is called the one-factor diffusion model and has the assumptions that:

drt = (f ′(t) + λ(b− rt))dt+ ηdWt

Pt = exp(rt)

where the function f(t) will have a seasonal effects on the price and the stochastic process
R = (rt)t>0 has the mean-reverting property.

In [21], the optimal control of a diffusion model for the reservoir has been considered.
This is known as the storage problem in general. The model we describe in Section 2 is in
this classification. It is worth mentioning that we can consider the general diffusion model
for the reservior as suggested by [21]. However, here we keep the simplified model of drifted
Brownian motion for the underlying reservoir system, plus the effects of the controls, (3.1).

There is not much difference compared with the system we introduced previously except
the assumption on electricity price. Therefore we have the following formulation for the
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value function: suppose that at time tc, X
τ
tc = x, rtc = r,

V (tc;x, r) = sup
τ
Ex,r[

∫ ∞
tc

e−δ(s−tc)Ps(g
τ
s − φlτs )ds]. (4.1)

After Bellman Dynamic Programming (c.f., [7, 19]), we arrive with the following Hamilton-
Jacobi-Bellman equation:

Vt− δV + (f ′(tc) +λ(b− r))Vr +
η2

2
Vrr +aVx +

σ2

2
Vxx + sup

τ
{(er − Vx)gτ − (φer − Vr)lτ} = 0.

(4.2)
However, there is no analytical solution, at least known to us, so here we emphasize the
analysis for this model and its solution.

4.2 Verification theorem

First, we want to show that the solution of HJB (4.2) indeed is the value function (4.1)
we are looking for. We answer this with the following verification theorem and its proof is
quite standard, as suggested by other numerous research work (c.f., [7,9]). Before the proof,
we introduce the bi-variate extended generator for the two-dimensional stochastic process
(X,R):

Definition 4.1. Suppose that S(x, r) ∈ C1,2(R+,R). The bi-variate extended generator for
two-dimensional stochastic process (X,R) is:

GS(x, r) = lim
t→0+

Ex,r[S(Xt, rt)]− S(x, r)

dt
.

In particular, if X = (Xτ
t ), R = (rτt ) and the current state is (Xτ

tc , r
τ
tc) = (x, r), then

GτS(x, r) = (f ′(tc) + λ(b− r))Sr +
η2

2
Srr + aSx +

σ2

2
Sxx − gτSx + lτSx.

If X = (Xt), R = (rt), then the bivariate extended generator for (X,R) is:

AS(x, r) = (f ′(tc) + λ(b− r))Sr +
η2

2
Srr + aSx +

σ2

2
Sxx.

Below we will give the estimation of Vx(tc;x, r) for any r ∈ R.

Lemma 4.1. For any r ∈ R and time tc > 0, er 6 Vx(tc;x, r) 6 φer for x > 0.

Proof. In the proof, we denote the left derivative by V − and right derivative by V +. It can
be divided into two steps here:

(A) Denote a stopping time τh = inf {s > tc|Xs = x,Xtc = x+ h}. Let h be small enough
and x > 0. Then

V (tc;x+ h, r) = sup
τ
Ex+h,r

[∫ ∞
0

e−δ(s−tc)+rs(gτs − φlτs )ds
]

= sup
τ
E

[∫ τh

0

e−δ(s−tc)+rs(gτs − φlτs )ds+

∫ ∞
τh

e−δ(s−tc)+rs(gτs − φlτs )ds
]

6 sup
τ
E

[∫ τh

0

e−δ(s−tc)+rs(gτs − φlτs )ds
]

+ e−δ(τh−tc)Er [V (τh;x, rτh)] .
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Note that when h→ 0, the inequality above becomes equality. On the other hand,

V (tc;x+ h, r)−e−δ(τh−tc)Er [V (τh;x, rτh)] = (V (tc;x+ h, r)− V (τh;x+ h, r)) + (V (τh;x+ h, r)− ...
− e−δ(τh−tc)V (x+ h, r)) + (e−δ(τh−tc)V (x+ h, r)− e−δ(τh−tc)Er [V (x+ h, rτh))] + ...

+ (e−δ(τh−tc)Er [V (x+ h, rτh)]− e−δ(τh−tc)Er [V (x, rτh))]

Here we claim that limh→0
τh−tc
h

= 0 as the consequence of Law of the Iterated Log-
arithm (P 143 of [4]). With this and the above decomposition of V (tc;x + h, r) −
e−δ(τh−tc)V (th;x, rτh), we have

V (tc;x+ h, r)− e−δ(τh−tc)Er [V (τh;x, rτh)]

h
≈ τh − tc

h
(V − Vt) + Vr

E[r − rτh ]

h
+ Vx.

The first term will vanish as h → 0 because limh→0
τh−tc
h

= 0. For the second term,
notice that

E [r − rτh ]

h
≈ −f ′(tc)

τh − tc
h

− λ(b− r)τh − tc
h

− E [ηdWτh ]

h
→ 0 as h→ 0

since τh−tc
h
→ 0. Then

V (tc;x+h,r)−e−δ(τh−tc)Er[V (τh;x,rτh )]
h

= Vx(tc;x, r) when h is small
enough.
Suppose h > 0. In this problem formulation, {gτs} is the amount that can be taken out
of process X but here X only changes from x + h to x and that means

∫ τh
tc
gτsds > h

in this case. Then

sup
τ
E

[∫ τh

tc

e−δ(s−tc)+rs(gτs − φlτs )ds
]
> E

[∫ τh

tc

e−δ(s−tc)+rshds

]
≈ erh.

Combining all the results in (1), when h→ 0,

V (tc;x+ h, r)− e−δ(τh−tc)Er [V (τh;x, rτh)] = sup
τ
E

[∫ τh

tc

e−δ(s−tc)+rs(gτs − φlτs )ds
]
> erh,

V (tc;x+ h, r)− e−δ(τh−tc)Er [V (τh;x, rτh)]

h
> er,

V +
x (x, r) > er.

Suppose on the other hand that h < 0. Then we have the estimation that
∫ τh
tc
lsds >

−h. So −
∫ τh
tc
φlsds 6 −φh. Thus

V (tc;x+ h, r)− e−δ(τh−tc)Er [V (τh;x, rτh)] = sup
τ
E[

∫ τh

tc

e−δ(s−tc)+rs(gτs − φlτs )ds] > φerh,

V (tc;x+ h, r)− e−δ(τh−tc)Er [V (τh;x, rτh)]

h
6 φer,

V −x (x, r) 6 φer.

(B) Denote τh = inf {s > tc|Xs = x+ h,Xtc = x}. Notice that

V (tc;x, r) = sup
τ
Ex,r

[∫ ∞
tc

e−δ(s−tc)+rs(gτs − φlτs )ds
]

≈ sup
τ
E

[∫ τh

tc

e−δ(s−tc)+rs(gτs − φlτs )ds
]

+ e−δ(τh−tc)Er [V (τh;x, rτh)] .

12



Suppose that h > 0. Similarly to the arguments above, here X moves upwards from x
to x+ h so we have bound

∫ τh
tc
lτsds > h, thus

V (tc;x, r)− e−δ(τh−tc)Er [V (τh;x+ h, rτh)] > −φ h
τh
erτhτh = −φherτh .

Dividing both sides by h and letting h→ 0, with limh→0
τh−tc
h

= 0, then

−V +
x (tc;x, r) > −φer ⇒ V +

x (tc;x, r) 6 φer.

Now suppose that h < 0. Then we have the estimation
∫ τh
tc
gsds > −h, and

V (tc;x, r)− e−δ(τh−tc)Er [V (τh;x+ h, rτh)] > − h

τh − tc
erτh (τh − tc) = −herτh ,

V −x (tc;x, r) > er.

Both (A) and (B) show that er 6 Vx(tc;x, r) 6 φer for r ∈ R, x > 0 and any time tc > 0.

Theorem 4.1 (Verification theorem). Suppose that the function V (x, r) solves HJB equation
(4.2). Then we have

V (tc;x, r) = sup
τ
Ex,r

[∫ ∞
tc

e−δ(s−tc)+rs(gτs − φlτs )ds
]
.

Proof.

lim
t→0

e−δ(t+s−tc)EXs,rs [V (tc;Xt+s, rt+s)]− e−δ(s−tc)V (tc;Xs, rs)

dt
= e−δs(−δV +AV (tc;Xs, rs)(l

τ
s − gτs )Vx),

= e−δ(s−tc)(−δV +AV (tc;Xs, rs) + gτs (ers − Vx) + lτs (Vx − ersφ))− e−δ(s−tc)+rs [gτs − lτsφ].

Then we take the expectation and integration from tc to T on both sides,

e−δ(T−tc)V (T ;XT , rT )− V (tc;x, r) = Ex,r[

∫ T

tc

e−δ(s−tc)(−δV +AV (tc;Xs, rs) + gτs (ers − Vx) + ...

lτs (Vx − φers))ds]− Ex,r

[∫ T

tc

e−δ(s−tc)+rs(gτs − lτsφ)ds

]
.

Next, notice that after we take the supremum over all admissible strategies for τ , the first
expectation vanishes to zero since its integrand is then identical to the left-hand side of
system (4.2). Now we have,

e−δ(T−tc)V (T ;XT , rT )− V (tc;x, r) = − sup
τ
Ex,r

[∫ T

tc

e−δ(s−tc)+rs(gτs − lτsφ)ds

]
.

In the end, we take the limit T → ∞. Here we need the following estimation and it is
justified afterwards:

lim
T→∞

e−δ(T−tc)V (T ;XT , rT ) = lim
T→∞

V (T ;xT , rT )

eδ(T−tc)
= 0.

13



Since we have proved that Vx(tc;x, r) is bounded above by φer and bounded below by er in
Lemma 4.1,

erTXT

eδ(T−tc)
6
V (T ;xT , rT )

eδ(T−tc)
6
φerTXT

eδ(T−tc)
.

By Itô’s Lemma,

XT = x+

∫ T

tc

ads+

∫ T

tc

σdBs

erT = er +

∫ T

tc

ers(f ′(s) + λ(b− rs)) +
η2

2
ersds+

∫ T

tc

ersη2dWs.

It is obvious that φerTXT
eδ(T−tc) → 0 and erT xT

eδ(T−tc) → 0 as T →∞, which then imply that V (T ;XT ,rT )

eδ(T−tc) →
0 when T →∞. Then everything is simplified to the following:

V (tc;x, r) = sup
τ
Ex,r

[∫ ∞
tc

e−δ(s−tc)+rs(gτs − lτsφ)ds

]
.

Theorem 4.1 verifies that the solution of HJB equation (4.2), if it exists, will be the value
function of the formulated problem at the beginning of this section. Hence, we need to show
the existence and uniqueness of solution of (4.2).

4.3 Viscosity solutions

In the following, we will address this issue with a technical argument: viscosity solution.
This problem is one of singular stochastic control problems and the approach of viscosity
solution has been well explored in literature. The book [9] has a complete exposition on this
direction. We will use the idea from this reference to justify that the solution of (4.2) is the
viscosity solution. It needs to be mentioned that paper [7] has proved the viscosity solution
in a very similar model and some of the proof below is close to that. We will begin with the
definition of viscosity solution.

Definition 4.2. We say that a function V (t;x, r) ∈ C(R+;R+,R) is the viscosity su-
persolution of (4.2) if for any point (t̄, x̄, r̄) where there exists a function w(t;x, r) ∈
C1,1,2(R+;R+,R) such that V (t; x̄, r̄) = w(t̄; x̄, r̄) and V (t;x, r)− w(t;x, r) has a local mini-
mum at (t̄, x̄, r̄), we have

wt− δw+ (f ′(t̄) +λ(b− r))wr +
η2

2
wrr + awx +

σ2

2
wxx + sup

τ
(gτ (er−wx)− lτ (φer−wx)) 6 0.

We say that a function V (t;x, r) ∈ C(R+;R+,R) is the viscosity subsolution of (4.2) if
for any point (t̄, x̄, r̄) where there exists a function w(t;x, r) ∈ C1,1,2(R+;R+,R) such that
V (t̄; x̄, r̄) = w(t̄; x̄, r̄) and V (t;x, r)− w(t;x, r) has a local maximum at (t̄, x̄, r̄), we have

wt− δw+ (f ′(t̄) +λ(b− r))wr +
η2

2
wrr + awx +

σ2

2
wxx + sup

τ
(gτ (er−wx)− lτ (φer−wx)) > 0.

The function V (t;x, r) is a viscosity solution of problem (4.2) if it is both a viscosity
subsolution and a viscosity supersolution of (4.2).
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Theorem 4.2 (Viscosity solution). The objective function V (t;x, r) defined in (4.1) is the
viscosity solution of HJB equation (4.2).

Proof. Here we will prove the viscosity subsolution for V (t;x, r). The approach for viscosity
supersolution could be referred to (Chapt 8 of [9]). Suppose that at the point (t̄, x̄, r̄), which
is in the domain, we have a function w ∈ C1,1,2(R+;R+,R) such that V (t;x, r) − w(t;x, r)
has a local maximum at (t̄; x̄, r̄) and V (t̄; x̄, r̄) = w(t̄; x̄, r̄). Then,

w(t̄; x̄, r̄) = V (t̄; x̄, r̄) = sup
τ

(
Ex̄,r̄

[∫ ∞
t̄

e−δ(s−t̄)+rs(gτs − φlτs )ds

])
= sup

τ

(
Ex̄,r̄

[∫ h

t̄
e−δ(s−t̄)+rs(gτs − φlτs )ds

]
+ Ex̄,r̄

[∫ ∞
h

e−δ(s−t̄)+rs(gτs − φlτs )ds

])
= sup

τ

(
Ex̄,r̄

[∫ h

t̄
e−δ(s−t̄)+rs(gτs − φlτs )ds

]
+ e−δ(h−t̄)Ex̄,r̄ [V (h;Xh, rh)]

)
6 sup

τ

(
Ex̄,r̄

[∫ h

t̄
e−δ(s−t̄)+rs(gτs − φlτs )ds

]
+ e−δ(h−t̄)Ex̄,r̄ [w(h;Xh, rh)]

)
.

Then, subtracting w on both sides

w(t̄; x̄, r̄) 6 sup
τ

(
Ex̄,r̄

[∫ h

t̄

e−δ(s−t̄)+rs(gτs − φlτs )ds
]

+ e−δ(h−t̄)Ex̄,r̄ [w(h;Xh, rh)]

)
0 6 sup

τ

(
Ex̄,r̄

[∫ h

t̄

e−δ(s−t̄)+rs(gτs − φlτs )ds
]

+ e−δ(h−t̄)Ex̄,r̄ [w(h;Xh, rh)]− w(t̄; x̄, r̄)

)

0 6
supτ

(
Ex̄,r̄

[∫ h
t̄
e−δ(s−t̄)+rs(gτs − φlτs )ds

])
h− t̄

+
e−δ(h−t̄)Ex̄,r̄ [w(h;Xh, rh)]− w(t̄; x̄, r̄)

h− t̄
.

(4.3)

Letting h→ t̄, the second term of (4.3) will be wt−δw+Gw(t̄; x̄, r̄) and the first term becomes
er(gτ − φlτ ). Here the extended generator G is defined for stochastic process (Xτ , Rτ ).
Therefore,

er(gτ − φlτ ) + wt − δw +Gw(t̄; x̄, r̄) > 0,

wt − δw + (f ′(t̄) + λ(b− r))wr +
η2

2
wrr + awx +

σ2

2
wxx + sup

τ
(gτ (er − wx)− lτ (φer − wx)) > 0.

So V (t;x, r) is the viscosity subsolution to (4.2). Similarly, we can show that it is the
viscosity supersolution to (4.2) and therefore it is the viscosity solution.

5 Conclusion

In this paper, we show that the management of flexibility in hydropower can be formulated
into a stochastic control problem. The novelty of this model is that the flexibility of hy-
dropower is realized through purchases and sales on electricity market, which itself possesses
randomness. Initially we present an intuitive model for which the noise on reservoir level and
electricity price are represented using drifted Brownian motions. With that, we could pro-
pose a simple strategy to decide the amount and moment to generate or purchase electricity.
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However it is unsatisfactory in the sense that it does not use a reasonable representation of
realistic data. Based on that, we consider an advanced model, one-factor diffusion, for which
the seasonal effects and mean-reversion features are explained. The corresponding numerical
solution to this system is not known. A Markov chain approximation has been suggested
([16]) as an efficient method to find the numerical solution, but numerical experiments on
this two-variable HJB equation are not available to our best knowledge. On the other hand,
[12] proposes a classical numerical methodology, best known as the semi-smooth projected-
Newton method, which may be applicable given boundary data. Development of numerical
methods for this problem is part of our future work. Here we provide a standard analysis of
HJB equation system associated with this optimization problem. Specifically, we show that
the value function is the viscosity solution of HJB equation for this problem, which justifies
the uniqueness and existence of the optimal strategy.
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A Appendix

Proof of Lemma 3.1.

Proof. Consider X moves from m to m+ h for small h > 0. Denote

τh = inf {t > 0|Xt = m+ h,X0 = m} .

Then

V (r,m) = sup
τ

{
Er,m

[∫ τh

0

dSs − φdZs
]

+ erτhV (rτh ,m+ h)

}
.

Subtracting V (r,m) on both sides and dividing both sides by h,

V (r,m+ h)− V (r,m)

h
= −

supτ
{∫ τh

0
dSs − φdZs

}
h

.

Notice that the supremum can be only achieved when the integral is equal to erh as the
consequence of the Law of Iterated Logarithm. Letting h→ 0,

∂V

∂m
(r,m) = erφ.

Since V (r,m) = erF (m), then F ′(m) = φ.
On the other hand, suppose x > y > m. For X0 = x, we can choose a non-optimal strategy
for which we release amount x−y of water immediately and then follow the optimal strategy
when X0 = y. We will have,

V (r, x) = sup
τ

{
Er,x

[∫ ∞
0

dSs − φdZs
]}

> x− y + V (r, y) > V (r, y).

Then V is increasing in x.
Lastly, we need to show that V is concave in x. Let z = αx+(1−α)y, where x > z > y > m
and 0 < α < 1. Then,

V (r, z) = V (r, αx+ (1− α)y) = sup
τ
Er,z

[∫ ∞
0

dSs − φdZs
]

> sup
τ
αEr,x

[∫ ∞
0

dS1
s − φdZ1

s

]
+ sup

τ
(1− α)Er,y

[∫ ∞
0

dS2
s − φdZ2

s

]
= αV (r, x) + (1− α)V (r, y)

Therefore V is concave in x.
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