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Maxwell’s Equations Description

Maxwell’s Equations

Maxwell’s Equations were

formulated circa 1870.

They represent a fundamental

unification of electric and

magnetic fields predicting

electromagnetic wave

phenomenon.
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Maxwell’s Equations Description

Maxwell’s Equations

∂D

∂t
+ J = ∇×H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric displacement

B = Magnetic flux density

J = Current density

Note: Need initial conditions and boundary conditions.
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Maxwell’s Equations Description

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Maxwell’s Equations Simplifications

Linear, Isotropic, Non-dispersive and Non-conductive media

Assume no material dispersion, i.e., speed of propagation is not frequency
dependent.

D = εE

B = µH

ε = ε0εr

µ = µ0µr

εr = Relative Permittivity

µr = Relative Permeability

c = 1/
√

εµ
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Maxwell’s Equations Simplifications

Maxwell’s Equations in One Space Dimension

The time evolution of the fields is thus completely specified by the
curl equations

ε
∂E

∂t
= ∇×H

µ
∂H

∂t
= −∇× E

Assuming that the electric field is polarized to oscillate only in the y
direction, propagate in the x direction, and there is uniformity in the
z direction:

Equations involving Ey and Hz .
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Maxwell’s Equations Sample Signal Propagation
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Snapshots of a windowed electromagnetic pulse with f =10GHz for the
interrogation problem.
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Polarization Description

Dispersive Dielectrics

Recall
D = εE + P

where P is the dielectric polarization.

We can generally define P in terms of a convolution

P(t, x) = g ? E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is a general dielectric response function (DRF), and q is
some parameter set.

Debye model
g(t, x) = ε0(εs − ε∞)/τ e−t/τ

or equivalently,
τ Ṗ + P = ε0(εs − ε∞)E

where q = {ε∞, εs , τ} and, in particular, τ is called the relaxation
time.
Prof. Gibson (OSU) Inverse Problems for Distributions JMM 2011 10 / 35



Polarization Description

Frequency Domain

Converting to frequency domain via Fourier transforms

D = εE + P

becomes
D̂ = ε(ω)Ê

where ε(ω) is called the complex permittivity.

Debye model gives

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ

Cole-Cole model (heuristic generalization)

ε(ω) = ε∞ +
εs − ε∞

1 + (iωτ)1−α

Unfortunately, the Cole-Cole model corresponds to a fractional order
differential equation in the time domain, and simulation is not
straight-forward.
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Polarization Dry Skin Data
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Figure: Real part of ε(ω), ε, or the permittivity.
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Polarization Dry Skin Data
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Figure: Imaginary part of ε(ω), σ, or the conductivity.
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Polarization Motivation

Motivation

Broadband wave propogation suggests time-domain simulation.

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate.

Debye is efficient to simulate, but does not represent permittivity well.

Better fits to data are obtained by taking linear combinations of
Debye models (multi-pole Debye), idea comes from the known
existence of multiple physical mechanisms.

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times.

Empirical measurements suggest a log-normal distribution.
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Polarization Distributions

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider

h(t, x;F ) =

∫
Q

g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x) =

∫ t

0
h(t − s, x;F )E(s, x)ds.
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Polarization Fit to Dry Skin Data
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Figure: Real part of ε(ω), called simply ε, or the permittivity. Model A refers to
the Debye model with a uniform distribution on τ .
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Polarization Random Polarization

Random Polarization

We define the random polarization P(x , t; τ) to be the solution to

τ Ṗ + P = ε0(εs − ε∞)E

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (x , t)

P(x , t;F ) =

∫ τb

τa

P(x , t; τ)f (τ)dτ.
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Polarization Random Polarization

Well-Posedness of Forward Problem

Existence and uniqueness of solutions to weak formulation of the
forward problem follows as a special case of work in [BBL00]

Continuous dependence of (E , Ė ) on F in the Prohorov metric shown
in [BG05]
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Inverse Problem for Distributions

Time-domain Inverse Problem

Given data {Ê}j we seek to determine a probability measure F ∗, such
that

F ∗ = min
F∈P(Q)

J (F ),

where, for example,

J (F ) =
∑

j

(
E (tj ;F )− Êj

)2
.

Continuity of F → (E , Ė ) =⇒ continuity of F → J (F )

Compactness of Q =⇒ compactness of P(Q) with respect to the
Prohorov metric

Therefore, a minimum of J (F ) over P(Q) exists [BG05]
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Inverse Problem for Distributions

Numerical Approximation of Random Polarization

To solve the inverse problem for the distribution of relaxation times, we
need a method of accurately and efficiently simulating P(x , t;F ).

Could apply a quadrature rule to the integral in the expected value.
Results in a linear combination of individual Debye solves.

Alternatively, we can use a method which separates the time
derivative from the randomness and applies a truncated expansion in
random space, called Polynomial Chaos. Results in a linear system.
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Forward Simulation Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear ODE

ẏ = −ky , k = k(ξ) = ξ, ξ ∼ N (0, 1).

We apply a Polynomial Chaos expansion in terms of orthogonal Hermite
polynomials Hj to the solution y :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ)

then the ODE becomes

∞∑
j=0

α̇j(t)φj(ξ) = −
∞∑
j=0

αj(t)ξφj(ξ),
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Forward Simulation Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) = −
∞∑
j=0

αj(t)ξφj(ξ),

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj + αj(t)(jφj−1 + φj+1) = 0.
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Forward Simulation Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

Taking the weighted inner product with each basis gives

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

i = 0, . . . , p.

Where

〈f (ξ), g(ξ)〉W =

∫
f (ξ)g(ξ)W (ξ)dξ.

Using orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p,
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Forward Simulation Polynomial Chaos

Deterministic ODE system

Letting ~α represent the vector containing α0(t), . . . , αp(t) (and assuming
αp+1(t), etc. are identically zero) the system of ODEs can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The mean value of y(t, ξ) is α0(t).
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Forward Simulation Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap

cp−1 bp


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Forward Simulation Polynomial Chaos

Generalizations

Consider the non-homogeneous ODE

ẏ + ky = g(t), k = k(ξ) = σξ + µ, ξ ∼ N (0, 1).

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system

~̇α + (σM + µI )~α = g(t)~e1.
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Forward Simulation Polynomial Chaos

Exponential convergence

Any set of orthogonal polynomials can be used in the truncated
expansion, but there may be an optimal choice.

If the polynomials are orthogonal with respect to weighting function
f (ξ), and k has PDF f (k), then it is known that the PC solution
converges exponentially in terms of p.

In practice, approximately 4 are generally sufficient.
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Forward Simulation Polynomial Chaos

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)
beta Jacobi [a, b]

uniform Legendre [a, b]
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Forward Simulation Polynomial Chaos
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Figure: Shape of Beta distribution can mimic log-normal, but with finite support.
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Forward Simulation Random Polarization

Random Polarization

We can apply Polynomial Chaos method to our random polarization

τ Ṗ + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + m

with, e.g., ξ ∼ Beta(a, b), resulting in

(rM + mI )~̇α + ~α = ε0(εs − ε∞)E ~e1 =: ~g

or
A~̇α + ~α = ~g .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).
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Inverse Problem Numerical Results
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Comparison of simulations to data.
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Inverse Problem Numerical Results
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Inverse Problem Numerical Results
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Inverse Problem Numerical Results
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Conclusions

Comments on Time-domain Inverse Problems for Distributions

Previous work showed that estimation methods worked well for
discrete distributions and continuous uniform distribution and
Gaussian distributions (using quadrature)

We are able to accurately determine the mean in the Beta
distributions with confidence in spite of noise

Variance information is highly sensitive to noise and may be unreliable
in practice with current data

Need to test with very broad bandwith signal

Next step is to combine multiple polarization poles (mixtures of
distributions)

Goal is to distinguish dry skin from wet skin and possibly determine
moisture content from reflection data using broad band (THz-range)
pulse modelled as a log-normal distribution of frequencies
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