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Preliminaries Computation

Scientific Computing

The scientific community now recognizes simulation (computational
modeling) as the essential “third leg” of research alongside theory and
experimentation.

Some experiments are too expensive, time consuming, dangerous,
impossible

Numerical computation allows for “artificial experiments”
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Preliminaries Numerical Analysis

Numerical Analysis

Numerical methods are algorithms for approximating solutions to
equations, including

Matrix equations
Differential equations
Integral equations

Numerical analysis seeks to understand the error in the
approximation, usually as a function of the work required

It is the mathematical branch of scientific computing and involves

Analytical solutions
Linear algebra
Functional analysis
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Preliminaries PDEs

A General First Order Linear PDE System

∂u

∂t
−Au = f

where u is called a state variable, A is a linear operator depending on a set
of parameters q, and f is a source term.

Examples

A = c ∂
∂x yields a one-way wave equation.

u = [H,E ]T and

A =

[
0 1

µ
∂
∂x

1
ε

∂
∂x 0

]
yields 1D Maxwell’s equations in a dielectric, equivalent to the wave
equation with speed c =

√
(1/εµ).

u = [H,E]T

A =

[
0 1

µ∇×
1
ε∇×

σ
ε

]
yields 3D Maxwell curl equations in a conductive dielectric.
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Preliminaries PDEs

Electromagnetic Applications

Computers

Cell Phones

Aging Aircraft

Biomedical

Astronomy

Resources Exploration

GPS

Gas Milage
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Dispersive Media Maxwell’s Equations

Maxwell’s Equations

∂D

∂t
+ J = ∇×H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric flux density

B = Magnetic flux density

J = Current density

With appropriate initial conditions and boundary conditions.
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Dispersive Media Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Dispersive Media Polarization Models

Complex permittivity

We can define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x;q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = ε0ε(ω)Ê, where ε(ω) is called the
complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.
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Dispersive Media Polarization Models

Dry skin data
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Figure: Real part of ε(ω), ε, or the permittivity [GLG96].
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Dispersive Media Polarization Models

Dry skin data
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Figure: Imaginary part of ε(ω), σ, or the conductivity.
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Dispersive Media Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x;q)E(s, x)ds,

Debye model [1929] q = [εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞.

Cole-Cole model [1936] (heuristic generalization)
q = [εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)1−α

The DRF for the Cole-Cole is

g(t, x) =
1

2πi

∫ ζ+i∞

ζ−i∞

ε0(εs − ε∞)

1 + (sτ)1−α
estds.
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Dispersive Media Polarization Models

Dispersive Dielectrics

Debye Material

Input is five cycles (periods) of a sine curve.
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Dispersive Media Polarization Models

Dispersive Media
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Figure: Debye model simulations.

Prof. Gibson (OSU) CEM GSS 2011 17 / 69



Dispersive Media Distribution of Relaxation Times

Motivation

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

Debye is efficient to simulate, but does not represent permittivity well

Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the known
existence of multiple physical mechanisms: multi-pole debye (like
stair-step approximation)

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]

Empirical measurements suggest a log-normal distribution
[Wagner1913], but uniform is easier

Using Mellin transforms, can show Cole-Cole corresponds to a
distribution
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Dispersive Media Fit to dry skin data with uniform distribution

10
2

10
4

10
6

10
8

10
10

10
2

10
3

f (Hz)

ε

 

 

True Data
Debye (27.79)
Cole−Cole (10.4)
Uniform (13.60)

Figure: Real part of ε(ω), ε, or the permittivity [REU2008].
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Dispersive Media Fit to dry skin data with uniform distribution
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].
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Dispersive Media Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider

h(t, x;F ) =

∫
Q

g(t, x;q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x) =

∫ t

0
h(t − s, x;F )E(s, x)ds.
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Dispersive Media Distribution of Parameters

Alternatively we can define the random polarization P(t, x; τ) to be the
solution to

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Inverse Problems Forward Problems

Forward Problem

We say the “forward problem” is to find the solution to the system for
some given value of the parameter set q (and everything else is known).

For all but a simple class of PDEs, this involves numerical approximations
to discrete solutions

u(xi , tj) ≈ Ui ,j .

An example of a numerical method is to replace ∂u
∂x at (tj , xi ) with

Ui ,j − Ui−1,j

∆x
or

Ui+1,j − Ui−1,j

2∆x

for some fixed ∆x = xi − xi−1. These are called finite differences. Errors
are O(∆x) and O(∆x2), respectively.
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Inverse Problems Inverse Problems

Inverse Problems

Definition

An inverse problem estimates quantities indirectly by using measurements
of other quantities.

For example, a parameter estimation inverse problem attempts to
determine values of a parameter set q given (discrete) observations of
(some) state variables.
Examples:

distance of an object using echo-location (easily invertible)

amount of oil/water/cave in the ground using RADAR backscatter

geometry or composition of a defect using measurements of EM fields
(CT, MRI, etc.)
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Inverse Problems Inverse Problems

Parameter Estimation

In the context of Maxwell’s equations:

Estimate q (µ, ε, σ, τ) using E (q) (not easily invertible)

Given real-life data Ê , use several trial values of q to compute
(simulate) several E (q) values
The value of q that results in an E (q) which is a “best match” to Ê
is likely close to the real-life value of q.
Mathematically, find

min
q∈Qad

∥∥∥error (E (q), Ê
)∥∥∥ .

For example, with data measured at fixed x and discrete times tj

min
q∈Qad

1

N

N∑
j=1

(
E (tj ; q)− Êj

)2

is called the nonlinear least squares method.
Need to develop a fast and accurate method for simulating E .
Consider improvements to models and numerical methods.
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Inverse Problems Model Improvements

Random Polarization

Apply Polynomial Chaos method to approximate the random polarization

τ Ṗ + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + m

resulting in
(rM + mI )~̇α + ~α = ε0(εs − ε∞)E ~e1

or
A~̇α + ~α = ~g .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).
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Inverse Problems Inverse Problems for Distributions

Inverse Problem for F

Given data {Ê}j we seek to determine a probability distribution F ∗,
such that

F ∗ = min
F∈P(Q)

J (F ),

where, for example,

J (F ) =
∑

j

(
E (tj ;F )− Êj

)2
.

Given a trial distribution Fk we compute E (tj ;Fk) and test J (Fk),
then update Fk+1 as necessary to find a minimum.

Need either a parametrization or a discretization of Fk to have a finite
dimensional problem.

Need a fast and accurate method for simulating E (x , t;F ).
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Inverse Problems Inverse Problems for Distributions

Stability (Well-Posedness) of Inverse Problem

Existence and uniqueness of solutions to weak formulation of the
forward problem follows as a special case of work in [BBL00]

Continuous dependence of (E , Ė ) on F in the Prohorov metric shown
in [BG05]

Continuity of F → (E , Ė ) =⇒ continuity of F → J (F ), for a
continuous objective function J

Compactness of Q =⇒ compactness of P(Q) with respect to the
Prohorov metric

Therefore, a minimum of J (F ) over P(Q) exists [BG05]
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Numerical Methods The Yee Scheme

Finite Difference Methods

The Yee Scheme

In 1966 Kane Yee originated a set of finite-difference equations for the
time dependent Maxwell’s curl equations.

The finite difference time domain (FDTD) or Yee algorithm solves for
both the electric and magnetic fields in time and space using the
coupled Maxwell’s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.
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Numerical Methods The Yee Scheme

Yee Scheme in One Space Dimension

Staggered Grids: First order derivatives are much more accurately
evaluated on staggered grids, such that if a variable is located on the
integer grid, its first derivative is best evaluated on the half-grid and
vice-versa.

Staggered Grids of R with space step size ∆z = h

Primary Grid Gp = {z` = `h | ` ∈ Z},

Dual Grid Gd =

{
z`+ 1

2
=

(
` +

1

2

)
h | ` ∈ Z

}
.

-

-�h

z� � � � � �v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2

. . .
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Numerical Methods The Yee Scheme

Yee Scheme in One Space Dimension

Staggered Grids: The electric field/flux is evaluated on the primary
grid in both space and time and the magnetic field/flux is evaluated
on the dual grid in space and time.

The Yee scheme is

H|n+ 1
2

`+ 1
2

− H|n−
1
2

`+ 1
2

∆t
= − 1

µ

E |n`+1 − E |n`
∆z

E |n+1
` − E |n`

∆t
= −1

ε

H|n+ 1
2

`+ 1
2

− H|n+ 1
2

`− 1
2

∆z

-�h

tn+ 1
2

tn+1

� � � � � �

v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2
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Numerical Methods The Yee Scheme

Yee Scheme in One Space Dimension

This gives an explicit second order accurate scheme in both time and
space.

It is conditionally stable with the CFL condition

ν =
c∆t

∆z
≤ 1

where ν is called the Courant number and c = 1/
√

εµ.
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Numerical Methods The Yee Scheme

Numerical Stability: A Square Wave

Case c∆t = ∆z
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x
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t=0 t=100 ∆ t t=200 ∆ t

Case c∆t > ∆z
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Numerical Methods The Yee Scheme

Numerical Dispersion: A Square Wave

Case c∆t = ∆z
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Numerical Methods The Yee Scheme

The Need for Higher Order

The Yee scheme can exhibit numerical dispersion

Dispersion error can be reduced more cheaply by requiring higher
order accuracy than by simply reducing mesh sizes

In 3D a large mesh size is desireable, yet one cannot sacrifice accuracy.

We will consider here (2, 2M) order accurate methods, with second
order accuracy in time and 2M,M ∈ N order accuracy in space.

The Yee scheme is second order accurate, i.e., a (2, 2) scheme.
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Numerical Methods 2M Order Approximations in Space

Discrete Approximations of Order 2M to ∂/∂z on Staggered Grids

Staggered Grids of R with space step size h

Primary Grid Gp = {z` = `h | ` ∈ Z},

Dual Grid Gd =

{
z`+ 1

2
=

(
` +

1

2

)
h | ` ∈ Z

}
.

-

-�h

z� � � � � �v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2
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Numerical Methods 2M Order Approximations in Space

Discrete Approximations of order 2M to ∂/∂z on Staggered Grids

Staggered `2 Normed Spaces
For any function v , v` = v(`h), v`+ 1

2
= v((` + 1

2)h).

V 1
0 = {(v`), ` ∈ Z| ||v ||20 = h

∑
`∈Z

|v`|2 ≤ ∞}

V 1
1
2

= {(v`+ 1
2
), ` ∈ Z| ||v ||21

2
= h

∑
`∈Z

|v`+ 1
2
|2 ≤ ∞}

-

-�h

z� � � � � �v v v v v. . . v− 5
2 v−2

v− 3
2 v−1

v− 1
2 v0 v1

v 1
2 v2
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2
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Numerical Methods 2M Order Approximations in Space

Discrete Approximations of order 2M to ∂/∂z on Staggered Grids

Finite difference approximations of order 2M of the first derivative
operator ∂/∂z will be denoted as

• D(2M)
1,h : V 1

0 → V 1
1
2

on primary grid, and

• D̃(2M)
1,h : V 1

1
2

→ V 1
0 on dual grid.

These operators can be considered from two different points of view:

(V1) As linear combinations of second order approximations to ∂/∂z
computed with different space steps, and

(V2) As a result of the truncation of an appropriate series expansion of the
symbol of the operator ∂/∂z .
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Numerical Methods 2M Order Approximations in Space

First Point of View: Discrete Second Order Accurate Operators

Define Discrete Operators

• D(2)
p,h : V 1

0 → V 1
1
2

defined by
(
D(2)

p,hu
)

`+ 1
2

=
u`+p − u`−p+1

(2p − 1)h

• D̃(2)
p,h : V 1

1
2

→ V 1
0 defined by

(
D̃(2)

p,hu
)

`
=

u`+p− 1
2
− ul−p+ 1

2

(2p − 1)h

If u ∈ C 2M+1(R), with M ∈ N, and m ≥ 1, using the Taylor
expansions at z`

(
D̃(2)

p,hu
)

`
= ∂zu` +

M−1∑
i=1

(
(2p − 1)h

2

)2i 1

(2i + 1)

∂2i+1u`

∂z2i+1
+O

(
h2M

)
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Numerical Methods 2M Order Approximations in Space

First Point of View: Discrete Second Order Accurate Operators

Consider the linear combination

D̃(2M)
1,h =

M∑
p=1

λ2M
2p−1D̃

(2)
p,h

To approximate ∂u`/∂z with error O(h2M) leads to the Vandermonde
system

10 30 50 . . . (2M − 1)0

12 32 52 . . . (2M − 1)2

14 34 54 . . . (2M − 1)4

...
12M−2 32M−2 52M−2 . . . (2M − 1)2M−2




λ2M

1

λ2M
3

λ2M
5
...

λ2M
2M−1

 =


1
0
0
...
0

 .
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Numerical Methods 2M Order Approximations in Space

First Point of View: Discrete Second Order Accurate Operators

Theorem

For any M ∈ N, the coefficients λ2M
2p−1 are given by the explicit formula

λ2M
2p−1 =

2(−1)p−1[(2M − 1)!!]2

(2M + 2p − 2)!!(2M − 2p)!!(2p − 1)
,

where 1 ≤ p ≤ M,∀p.

and the double factorial is defined as

n!! :=


n · (n − 2) · (n − 4) . . . 5 · 3 · 1 n > 0, odd

n · (n − 2) · (n − 4) . . . 6 · 4 · 2 n > 0, even

1, n = −1, 0
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Numerical Methods 2M Order Approximations in Space

Table of Coefficients: (V1)

Table: Coefficients λ2M
2p−1

2M λ1 λ3 λ5 λ7

2 1

4 9
8

−1
8

6 75
64

−25
128

3
128

8 1225
1024

−245
1024

49
1024

−5
1024
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential and Discrete
Operators

If v(z) = eikz then
∂v

∂z
= ikv(z), and

the Symbol of
∂

∂z
is defined to be

F (∂/∂z) := ik,

We can show that the Symbol of D̃(2M)
1,h is

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
p=1

λ2M
2p−1

2p − 1
sin(kh(2p − 1)/2)
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential and Discrete
Operators

Theorem (Bokil-Gibson2011)

The symbol of the operator D̃(2M)
1,h can be rewritten in the form

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
p=1

γ2p−1 sin2p−1(kh/2),

where the coefficients γ2p−1 are strictly positive, independent of M, and
are given by the explicit formula

γ2p−1 =
[(2p − 3)!!]2

(2p − 1)!
.
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Numerical Methods 2M Order Approximations in Space

Table of Coefficients: (V2)

Table: Coefficients γ2p−1

γ1 γ3 γ5 γ7

1 1
6

3
40

5
112

M = 1; F
(
D̃(2)

1,h

)
=

2i

h
sin(K )

M = 2; F
(
D̃(4)

1,h

)
=

2i

h

(
sin(K ) +

1

6
sin3(K )

)
M = 3; F

(
D̃(6)

1,h

)
=

2i

h

(
sin(K ) +

1

6
sin3(K ) +

3

40
sin5(K )

)
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Theorem

∀M ∈ N, M finite we have

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
p=1

λ2M
2p−1

2p − 1
sin ((2p − 1)K ) =

2i

h

M∑
p=1

γ2p−1 sin2p−1 (K ),

where K = kh/2.
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Proof.

Let K := kh/2.

1 Since D̃(2M)
1,h is of order 2M the difference in the symbols of ∂/∂z and

the symbol of D̃(2M)
1,h must be of O

(
K 2M+1

)
for small K .

2 Thus, we have

F (∂z) = ik =
2iK

h
=

2i

h

 M∑
p=1

γ2p−1 sin2p−1 K

+O
(
K 2M+1

)
.

This implies that the γ2p−1 are the first M coefficients of a series
expansion of K in terms of sin K .
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Set x = sinK for |K | < π/2. Then, K = sin−1 x , x ∈ (−1, 1) with

sin−1 x =
M∑

p=1

γ2p−1x
2p−1 +O

(
x2M+1

)
.

Requiring this to be true ∀M ∈ N implies that if a solution exists for
{γ2p−1}Mp=1, then it is unique. We note that the function Y (x) = sin−1 x
obeys the differential equation

(1− x2)Y ′′ − xY ′ = 0, x ∈ (−1, 1)

with the conditions
Y (0) = 0, Y ′(0) = 1.
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Substituting, formally, the series expansion Y (x) =
∑∞

p=1 γ2p−1x
2p−1

into the ODE we obtain the equation

(6γ3 − γ1) +
∞∑

p=2

β2p−1x
2p−1 = 0

where
β2p−1 = (2p + 1)(2p)γ2p+1 − (2p − 1)2γ2p−1.

This implies that γ3 =
1

6
γ1, and

γ2p+1 =
(2p − 1)2

(2p)(2p + 1)
γ2p−1,

which gives us the formula γ2p−1 =
[(2p − 3)!!]2

(2p − 1)!
γ1.

From the initial conditions we see that γ1 = 1.
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

To show direct equivalence, for integers 1 ≤ j ≤ M,

sin ((2j − 1)K ) = (−1)j−1T2j−1 (sin (K )) ,

T2j−1 (Chebyshev polynomials of degree 2j − 1) :

sin ((2j − 1)K ) =

j∑
p=1

αj
p sin2p−1 (K ),

for 1 ≤ p ≤ j ,

αj
p = (−1)2j−p−1

(
2j − 1

j + p − 1

)(
(j + p − 1)!

(j − p)!

)
22p−2

(2p − 1)!
.
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Rearranging terms,

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
j=1

λ2M
2j−1

2j − 1
sin ((2j − 1)K )

=
2i

h

M∑
j=1

λ2M
2j−1

2j − 1

j∑
p=1

αj
p sin2p−1 (K ).

This gives

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
p=1

 M∑
j=p

λ2M
2j−1

2j − 1
αj

p

 sin2p−1 (K ).
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Numerical Methods 2M Order Approximations in Space

Second Point of View: Symbols of Differential Operators

Putting things together,

M∑
j=p

λ2M
2j−1

2j − 1
αj

p =
M∑

j=p

(−1)3j−p−2(j + p − 2)![(2M − 1)!!]222p−1

(2p − 1)!(j − p)!(2j − 1)(2M − 2j)!!(2M + 2j − 2)!!
.

Then a miracle occurs!

M∑
j=p

λ2M
2j−1

2j − 1
αj

p =
[(2M − 1)!!]222p

22M(2p − 1)!

[
Γ(p − 1

2)
]2

4
[
Γ(M + 1

2)
]2

=
[(2p − 3)!!]2

(2p − 1)!
= γ2p−1.
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Numerical Methods 2M Order Approximations in Space

Series Convergence

Lemma

The series
∑∞

p=1 γ2p−1 is convergent and its sum is π/2.

Proof.

The values γ2p−1 are simply the Taylor coefficients of sin−1(x).
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Numerical Methods (2, 2M) Order Methods for Debye Polarization Models

Maxwell’s Equations in a Debye Media

Maxwell’s equations in a Debye medium can be written using the electric
flux density D = ε∞E + P

∂B

∂t
=

∂E

∂z
,

∂D

∂t
=

1

µ0

∂B

∂z
,

∂D

∂t
+

1

τ
D = ε∞

∂E

∂t
+

εs
τ

E
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Numerical Methods (2, 2M) Order Methods for Debye Polarization Models

2− 2M Order Methods for Debye Media

Second order in time and 2Mth order in space schemes that are
staggered in both space and time. (Here h = ∆z)

B
n+ 1

2

j+ 1
2

− B
n− 1

2

j+ 1
2

∆t
=

M∑
p=1

λ2M
2p−1

(2p − 1)∆z

(
En

j+p − En
j−p+1

)
,

Dn+1
j − Dn

j

∆t
=

1

µ0

M∑
p=1

λ2M
2p−1

(2p − 1)∆z

(
B

n+ 1
2

j+p−1/2 − B
n+ 1

2

j−p+1/2

)
,

Dn+1
j − Dn

j

∆t
+

1

τ

Dn+1
j + Dn

j

2
= ε∞

En+1
j − En

j

∆t
+

εs
τ

(
En+1

j + En
j

2

)
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Numerical Methods von Neumann Stability Analysis

Stability Analysis: von Neumann Analysis

1 Linear models.

2 Analyze the models in the frequency domain.

3 Look for plane wave solution numerically evaluated at the discrete
space-time point (tn, zj), or (tn+1/2, zj+1/2).

4 Assume a spatial dependence of the form

B
n+ 1

2

j+ 1
2

= B̂n+ 1
2 (k)e

ikz
j+ 1

2 ,

En
j = Ên(k)eikzj ,

Dn
j = D̂n(k)eikzj ,

k: wavenumber
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Numerical Methods von Neumann Stability Analysis

Stability Analysis

1 Define the vector Un = [B̂n− 1
2 , Ên, 1

ε0ε∞
D̂n]T .

2 We obtain the system Un+1 = AUn, where the amplification matrix
A is

A =


1 −σ 0(

2 + hτ

2 + hτηs

)
σ∗

(
2(1− q)− hτ (ηs + q)

2 + hτηs

) (
2hτ

2 + hτηs

)
σ∗ −q 1

 ,

3

σ := −η∞∆zF
(
D̃(2M)

1,h

)
= −2iν∞

M∑
p=1

γ2p−1 sin2p−1

(
k∆z

2

)
,

q := σσ∗ = |σ|2.
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Numerical Methods von Neumann Stability Analysis

2− 2M Order Methods for Debye Media

The parameters c∞, ν∞, hτ and ηs are defined as

c2
∞ := 1/(ε0µ0ε∞) = c2

0/ε∞,

ν∞ := (c∞∆t)/∆z ,

hτ := ∆t/τ,

ηs := εs/ε∞,

c0: Speed of light in vacuum

c∞: speed of light in the Debye medium.

ν∞: Courant (stability) number.

εs > ε∞ and τ > 0.
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Numerical Methods von Neumann Stability Analysis

Stability Conditions

1 A scheme is stable ⇐⇒ the sequence (Un)n∈N is bounded.

2 Since A does not depend on time, then Un = AnU0, and stability is
also the boundedness of (An)n∈N.

3 If the eigenvalues of A, i.e., the roots of the Characteristic
Polynomial PD

(2,2M), lie outside the unit circle, then An grows
exponentially and the scheme is unstable

4 If the eigenvalues of A, lie inside the unit circle, then limn→∞An = 0
and the sequence is bounded.

5 The intermediate case may lead to different situations.
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Numerical Methods von Neumann Stability Analysis

Characteristic Polynomial

The characteristic polynomial of the system Un+1 = AUn is

PD
(2,2M)(X ) =X 3 +

(
qε∞(2 + hτ )− (6ε∞ + hτ εs)

2ε∞ + hτ εs

)
X 2

+

(
qε∞(hτ − 2) + (6ε∞ − hτ εs)

2ε∞ + hτ εs

)
X

−
(

2ε∞ − hτ εs
2ε∞ + hτ εs

)
.
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Numerical Methods von Neumann Stability Analysis

Stability Conditions

Theorem (Bokil-Gibson2011)

A necessary and sufficient stability condition for the (2, 2M) scheme for
Debye is that q ∈ (0, 4), for all wavenumbers, k, i.e.,

4ν2
∞

 M∑
p=1

γ2p−1 sin2p−1

(
k∆z

2

)2

< 4, ∀k,

which implies that

ν∞

 M∑
p=1

γ2p−1

 < 1 ⇐⇒ ν∞

 M∑
p=1

[(2p − 3)!!]2

(2p − 1)!

 < 1.
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Numerical Methods von Neumann Stability Analysis

Stability Bounds

For different values of M we obtain the following stability conditions

M = 1, ν∞ < 1 ⇐⇒ ∆t <
∆z

c∞
,

M = 2, ν∞

(
1 +

1

6

)
< 1 ⇐⇒ ∆t <

6∆z

7c∞
,

M = 3, ν∞

(
1 +

1

6
+

3

40

)
< 1 ⇐⇒ ∆t <

120∆z

149c∞
,

...

M = M, ν∞

 M∑
p=1

γ2p−1

 < 1 ⇐⇒ ∆t <
∆z(∑M

p=1

[(2p − 3)!!]2

(2p − 1)!

)
c∞

.
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Numerical Methods von Neumann Stability Analysis

Stability Bounds

1 In the limiting case (as M →∞), we may evaluate the infinite series
using the convergence Lemma

2 Therefore,

M = ∞, ν∞

(π

2

)
< 1 ⇐⇒ ∆t <

2∆z

π c∞
.

3 The positivity of the coefficients γ2p−1 gives that the constraint on
∆t is a lower bound on all constraints for any M. Therefore this
constraint guarantees stability for all orders.
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Numerical Methods von Neumann Stability Analysis

Other Details

1 This type of stability analysis can be applied to different polarization
models written as ODEs augmented to the Maxwell system, e.g.,
Lorentz, Drude, multipole Debye, Lorentz media.

2 The second point of view also helps in obtaining closed from
numerical dispersion relations for all (2, 2M) order schemes. See
[Bokil-Gibson2011].

Prof. Gibson (OSU) CEM GSS 2011 66 / 69



Numerical Methods Numerical Dissipation

We plot the maximum complex-time eigenvalue for the schemes. For the
continuous model, this value should be one, thus the any difference is due
to numerical dissipation error.

Physical parameters:

ε∞ = 1

εs = 78.2

τ = 8.1× 10−12 sec.

These are appropriate constants for modeling water and are representative
of a large class of Debye type materials.
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Numerical Methods Numerical Dissipation
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Numerical Methods Numerical Dissipation
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