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Introduction Motivation

Big 10 Columbia River System
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Introduction Motivation

Reservoir Operations

The broad context of the problem of interest is a PDE-constrained optimal
control problem with uncertainty. In particular, one must

meet electrical demand with hydro-power production

mitigate flooding

preserve ecological conditions

possibly maximize revenue

etc.

all without perfect knowledge of the system, the inflows, the demand, or
prices.

Additionally, decisions made upstream (eventually) affect conditions
downstream.
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Introduction River system and modeling equations

Simulation of Unsteady Flows

Most free surface flows are unsteady and nonuniform.

Unsteady flows in river systems are most efficiently simulated in 1D.

Saint-Venant equations: PDEs representing conservation of mass and
momentum:

B
∂y

∂t
+
∂Q

∂x
= 0, (1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂y

∂x
+ Sf − S0

)
= 0, (2)

where x is a distance along the channel in the longitudinal direction, t is time,
y is a water depth, Q is a flow discharge,
B is a width of the channel, g is an acceleration due to gravity,
A is a cross-sectional area of the flow, Sf is a friction slope, S0 is a river bed slope.

Suitable initial and boundary conditions are required to close the system.
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Introduction Ingredients

Objectives

There exist multiple objectives in reservoir operations.

Here we focus on “flexible hydro” which means surplus power generation
capacity after obligations have been met.

In this case we can reduce our objectives to simply

f1: minimizing deviation from fore-bay (FB) target elevation at the
end time

f2: maximize revenue (minimize cost)

As the objectives are inherently conflicting, an optimal trade-off of
solutions (Pareto optimal) must be found.
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Introduction Ingredients

Constraints

While there are numerous constraints on the actual operation of a
reservoir system, including bound and ramping constraints on the control
and the states, we focus here on

bound and ramping constraints on control

maximum allowable deviation from fore-bay (FB) target elevation at
the end time
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Introduction Ingredients

Uncertainty

There are many sources of uncertainty for the forward model,
including price, inflow, and power demand.

We explicitly account for inflow uncertainty in terms of random
variables, determined by statistical analysis.

We formulate a risk-adverse (mean-variance) version of each objective
in terms of the probability distribution of the random inflows, as well
as probabilistic (chance) constraints.
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Introduction Ingredients

Parametrization of the Stream Inflow

Li (tj) = ln Ii (tj) is the value of the logarithm of the ith inflow at tj .

Expectation of the log stream inflow L̄ and its covariance C (tj , tk),

L̄(tj) =
1

M

M∑
i=1

Li (tj), j = 1, . . . , n,

C (tj , tk) =
1

M − 1

M∑
i=1

(L(tj)− L̄(tj))(L(tk)− L̄(tk)).

I can be represented as

I (tj , ~ζ) = exp

(
L̄(tj) +

M∑
k=1

√
λkψk(tj)ζk

)
.

(λk , ψk) solves: λψ = Cψ.

{ζ}Mk=1 is a sequence of standard normal random variables.
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Introduction Ingredients

Risk-adverse Formulation

The deterministic constrained optimization problem can be formulated as

find min
q

C (q), (3)

subject to y(x , t; q) ≤ ycrit(x), (4)

where C is cost, q is a control, and y is a state.

We assume the inflows are random and reformulate our problem as follows

find min
q

(
E [C (q)] + rVar[C (q)]

)
, (5)

subject to P[y(x , t; q) > ycrit(x)] ≤ α, (6)

where r is a risk tolerance coefficient, α is a reliability level the decision maker
wishes to achieve.
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Flexibility

Flexibility

Given the above multi-objective, constrained optimization under
uncertainty problem, we now consider the potential implications of
additional uncertainties which are so far accounted for, or even
impossible to account for.

In this context, an operator would want sufficient flexibility in decision
making as to be able to adjust the control in order to accommodate
an unforeseen realized event.

We model a range of options using random variables, and then
maximize the variance of the distributions in order to provide the
largest flexibility possible.

The amount of flexibility becomes an additional objective, and
constraints become probabilistic with respect to the randomness due
to the flexibility.
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Flexibility

Flexibilty Formulation Example

Consider

max
x∈X

f1(x) and f2(x) (7)

subject to a(t) ≤ x(t) ≤ b(t), ∀t ∈ [0,T ] (8)

where X is a suitable space of functions, a and b are lower and upper
bounds, respectively, for x , and f1 and f2 are competing objectives.
In order to incorporate flexibility in decision making, we model x as a
range of options, i.e., a stochastic process ξ(t, ω), with ω ∈ Ω.
The problem becomes

max
F∈F

EF [f1(ξ(ω))] and EF [f2(ξ(ω))] and ‖σ‖ (9)

where F represents all probability distributions with support wholly within
the feasible set. Here ‖σ‖ is a measure of the standard deviation of ξ.
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Flexibility Deterministic

Deterministic Problem Statement (one dam)

Neglecting inflow uncertainty, we seek ~Q = [Qn]Nt
n=1, in order to

Minimize f1(~Q,~I ) :=
∣∣∣FBend(~Q,~I )− FBtarget

∣∣∣ , and (10)

Minimize f2(~Q) := −

(
Nt∑
n=1

(PGn(~Q)− PLn) ∗ Prn

)
(11)

subject to Qmin ≤ Qn ≤ Qmax for all n, (12)

subject to |Qn − Qn+1| ≤ Qramp for all n, (13)

subject to f1(~Q,~I ) ≤ δFB (14)

where ~Q is the set of turbine outflows from the reservoir for Nt time-steps,
and ~I are the (deterministic) inflows.
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Flexibility Deterministic

Deterministic-Flexible Problem Statement (one dam)

Neglecting inflow uncertainty, we seek F , which is parameterized by means
and standard deviations, ~µ and ~σ, and where ~ξ = [ξn]Nt

n=1 ∈ F , in order to

Minimize EF [f1(~ξ,~I )], and (15)

Minimize EF [f2(~ξ)], and (16)

Maximize f3(F ) := ‖~σ‖, (17)

subject to PF [Qmin ≤ ξn ≤ Qmax ] = 1 for all n, (18)

subject to∗ PF [|ξn − ξn+1| ≤ Qramp] = 1 for all n, (19)

subject to PF [f1(~ξ,~I ) ≥ δFB] < α. (20)
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Flexibility Deterministic
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Flexibility Deterministic
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Flexibility Deterministic

Dimension Reduction

Solving for decision variables on each time step is computationally
impractical.

We construct a reduced dimension random space within which to
determine optimal flexible decisions.

We use the deterministic Pareto solutions to inform our random space.

Specifically, we apply a Karhunen-Loeve (KL) expansion (or PCA) to
the deterministic solutions

Q(tj , ~ξ) = Q̄(tj) +
M∑
k=1

√
λkψk(tj)ξk .

However we do not require that the random coefficients have mean 0
and variance 1. In fact, the joint distribution of these coefficients is
the flexible probability distribution F to be optimized.
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Flexibility Deterministic
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Figure : (A) Eigenvalues (Semilogarithmic scale) and (B) eigenfunctions of the
original (deterministic) decision variables
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Flexibility Deterministic
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Flexibility Deterministic

N. L. Gibson (OSU) Risk Averse-Flexible Optimization SIAM-OPT 2017 23 / 31



Flexibility Stochastic

Inflow Uncertainty
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Flexibility Stochastic

Risk Adverse-Flexible Optimization

Let ~ξ ∈ F and ~ζ ∈ G , where G is given by inflow data. Find F in order to

Minimize (1− w)EF×G [f1(~ξ, ~ζ)] + wσf1 , and (21)

Minimize (1− w)EF [f2(~ξ)] + wσf2 , and (22)

Maximize f3(F ) := ‖Λ~σF‖, (23)

subject to PF [Qmin ≤ ξn ≤ Qmax ] = 1 for all n, (24)

subject to∗ PF [|ξn − ξn+1| ≤ Qramp] = 1 for all n, (25)

subject to PF×G [f1(~ξ, ~ζ) ≥ δFB] < α (26)
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Flexibility Stochastic
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Flexibility Stochastic
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Flexibility Stochastic
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Conclusions & Future Work

Conclusions and Future Work

Conclusions

The methodology can find a flexible range of options for each decision
variable.

By using KL expansion the dimension of decision space can be
decreased.

The methodology can be extended to handle inflow uncertainties.

Future Work

Extend to multiple dams (to really see effect of dynamics)

Employ hydraulic routing (instead of hydrologic routing)
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