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@ Background




Maxwell’'s Equations:

%+J:V><H
oB
E:—VXE
V-D=p
V-B=0
Constitutive Relations:
D=c¢c+P
B=uH+M
J=0cE+Js

Boundary Conditions:
Exn=0, on(0,T) x 9D,

Initial Conditions:
E(0,x) =0, H(0,x) =0, in D.

=] F = E £ DA



We employ the physical assumption that electrons behave as damped harmonic oscillators

mx + 2mvx + mw%x = Fdrfving~
The polarization is then defined as electron dipole moment density:
P4 2uP + P = 6()ng

where wy is the resonant frequency, v is a damping coefficient, and wy, is referred to as a plasma
frequency defined by w2 = (€s — € )wg

Taking a Fourier transform and inserting the polarization differential equation into constitutive
equation, we get D(w) = epe(w)E(w) where

(@) = et 2
w) = .
¢ coo wg —w? — 2vw

For multiple Lorentz poles, the permittivity merely includes a summation:

=S w? .
_ pi
W=t D
=




Lorentz model:

P+2wP + wgP = egwlz,E

We define random polarization where 7 is a random variable. We now express the random
W2

e(w) = €0 + — P
w
the expected value of the random polarization,

w? — i2uw’
Three parameters potentially random: v, wg, and wf, The macroscopic polarization is identified as

b
P(t, 7) :/ P(t, z:m) dF ().
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Figure 1: Solutions for Unforced Differential Equation
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w2
€ = €co T+

Separate complex permittivity into real and imaginary parts (e = ¢, + i¢;):
P

(w% —w?)
(w2 — w?)? + 4202
2w§uw

€
Analytic integration is possible for uniform distribution:

- (wg — w?)? + 41202
1
Ele] =

b 2
—7/ e,dwgzeoo-i-
b—al/,

_ Y
2(b—a)

1 b

7/ eidws =

—al,

w2

E[e]] =

(In((w%)2 — 262uw? + Wt 4P 2)
P
numerical integration.

w? — wg b
arctan | ——
(b—a) ( )

2uw

b
w
a
a
For the general Jacobi polynomials and Beta distribution, one must use Monte Carlo sampling or
[m] = =
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Figure 4: Fits for single-pole, saltwater data [Querry et. al., 1972]
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In a polydisperse Lorentz material, we have

oP
eoewE—Vx H_E
OH

1

— =——VxE

ot Ho
75+2V75+w(2)73 = eowf,E

with

(5¢)
b
P(t,x):/ P(t,x: w2 F(R) deok.



Random Lorentz

Theorem (Stability of Maxwell-Random Lorentz)

Let D C R? and suppose that E € C(0, T; Ho(curl, D)) N C(0, T; (L?(D))?),

Pe Y0, T; (LA ® LZ(D))Z), and H(t) € C1(0, T; L3(D)) are solutions of the
weak formulation for the Maxwell-Random Lorentz system along with PEC
boundary conditions. Then the system exhibits energy decay

£(t) <£(0) vt =0,

where the energy E(t) is defined as

0= (|lvim Heo[, + |vases @]+ | 2= Peol +

Wpy/€0 "Jp\l/a j(t)Hi>
(6)

where ||u||2 = E[||ul|3] and T := ¢

Proof involves showing that

20 - 2l <
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£€[-1,1]. Let wi = m+¢r.

We wish to expand the random polarization with Legendre polynomials of the random variable

P& t) = ai(t)i(§) = P+ 2P + wiP = ewlE
i=0

Utilizing Triple Recurrence Relation for orthogonal polynomials:
the differential equation becomes

Edn(€) = andnt1(€) + bndn(€) + cnn—-1(8).
> i) + 2vai(t) + mai(t)] 6i(€)
i=0

i=0

+ryai(t) [ais1(€) + bigi(€) + cidi-1(8)] = eowpEdo(€)-
=} = = E = DA
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Apply Galerkin Projection onto the space of polynomials of degree at most p

&4 2vi+AG=F

bo a 0 0
agp by o)
A=rM+ml, M= 0 0
ap—2 bp—1 p
0 0 ap—1 bp

Or we can write as a first order system:

g

&=
B=—Ad—2wIf+F

where f = & ewp? E with wp meaning expected value




The polynomial chaos system coupled with 1D Maxwell’s equations become

&
B=—Ad—2wIf+F
Initial Conditions:

E(0,z) = H(0,z) = &(0,2) = 3(0,z) =0
Boundary Conditions:

E(t,0) = E;(t) and E(t,z) =0
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Figure 5: Yee Scheme




We stagger three discrete meshes in the x and y directions and two discrete
meshes in time:

= { ()0 e<i-10< <}

T = {(x@,)/J+)|OSESL,0§j§J—1}
= { () lo<e<i-10<j<u-1}
= {(t")|0 < n< N}

= {(e ) o<n<n-1}



Let U be one of the field variables: H, Ex, E,, dx, dy, Ex, Ey. Let (x,-,yj) be a node on any
discrete spatial mesh, and v be either n or n + % with v < N.
We define the grid functions or the numerical approximations

U.'L. ~ U(xi,yj, t7).

1

We define the centered temporal difference operator and a discrete time averaging operation as

Yl ol
v YUyt Ut

607 = =, (14)
Uit Ly

[0 e Y (15)
i 2 ’

and the centered spatial difference operators in the x and y direction, respectively as

Vi Y,

e R (16)
y Zj+% N in,jf%

b U= —— (17)



OcHy s 1+

The Yee Scheme applied to the Maxwell-PC Lorentz yields

1
= (O - ) 18a
#o(y e+ i+l Yerd s} (18a)
1 +1
+2 _ n+2 =ht3
éocoodt Ex Xe+ s H e+l BOqu' (18b)
+1 1 L1
n+5 =t
c0ecodtE) 2 = —6xH 2 18¢
0€000t yg’j+2 ! BO”V@J+% (18¢)
1
n+ S nt+s5
61&0( 21 = .
Z+E’J Lt5.0
1
+ f.n+§
5t0( 2 =
very =P
1
n+i —n+i —n+x
5tﬁ 2,——Aax 21 -2
e+
ntt
5 3
tﬂy@,+1

(18d)
(18e)
x“z% ;e eowifijé g (18f)
1 = —AE;ZJ%% — 2,/3;:]%-% + é1eowf,§;:j%+% . (18g)
o = = = z
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Next, we define the L2 normed spaces

Vg = {F Th" X 'r:_

R? | F=(Fy,,

with the following discrete norms and inner products

V= {Uirf R U= (U ) ||U||H<oo}

)T IFl < o |

(19)
(20)
L-1J-1
IFI2 = axay 33" (1R, P +1F,, , 2) Y Fe Ve (21)
£=0 j=0 o2
L-1J-1
(F, G)E_AxAy;%;( w3 Ga s F Gy ) Y FGEVE
=
L-1J-1
Ul = axAy > > U, iy uevy
£=0 j=0
L-1J-1

(U =BxBy Y D Uy Vi 1Y UV EVR.

(23)
(24)
£=0 j=0
o ) - = =
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We define a space and inner product for the random polarization in vector
notation, since @ and 3 are now 2 X p + 1 matrices:

Vo = {62 : fo X Tfy — R? x RPFL ‘ a=ag,...,op, 00 € Vg, [|d]|o < oo}

where the discrete L2 grid norm and inner product are defined as

P
&2 =" ez, Vaev,
k=0
p

(@B = (ak,ﬁk)y vV é,BevV,.

k=0

We choose both spatial steps to be uniform and equal (Ax = Ay = h), and
require that the usual CFL condition for two dimensions holds:

V2co At < h. (25)



FDTD

Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the stability condition (25) is satisfied, then the Yee scheme for the 2D TE mode
Maxwell-PC Lorentz system given in (18) satisfies the discrete identity

2
n+i -1 U =3
0k " = 1 I 2P (26)
5h 0 P A
for all n where
2 2\ 1/2
n nt1 n—1 n2 OJ(2) —n 1 an
gh: ,U/O(H 27H 2)H+HQ/€OGWE ||E+ 7204 + 26
Eowp Eowp
ey @
(27)

defines a discrete energy.

In the above ||&|% := (Ad, &), given A positive definite, which is true iff r < m.
Note that ||@||2 ~ ||E[P]||3 + ||StdDev(P)||3 = E[||P||3] = ||P||? so that this is a
natural extension of the Maxwell-Random Debye energy (6).
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@ Current/Future Work



Current Work:

o Analyze the dispersion error of the model
Future Work:

o Explore the Jacobi polynomials and beta distributions
o Analyze multiple poles in time domain
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