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Maxwell’'s Equations:

%+J:V><H
oB
E:—VXE
V-D=p
V-B=0
Constitutive Relations:
D=c¢c+P
B=uH+M
J=0cE+Js

Boundary Conditions:
Exn=0, on(0,T) x 9D,

Initial Conditions:
E(0,x) =0, H(0,x) =0, in D.

=] F = E £ DA



We employ the physical assumption that electrons behave as damped harmonic oscillators,
mx + 2mvx + mng = Fdriving -

The polarization is then defined as electron dipole moment density:

P+ovP+ UJSP = eong
frequency defined by wg = (€s — €0 )wS.

where wy is the resonant frequency, v is a damping coefficient, and wp is referred to as a plasma




model in for P, we get D(w) = ege(w)E(w) where

e(w) = €0 +

2
wp

W2

Taking a Fourier transform of D = ¢E + P and inserting the convolution form of the polarization

2w’
For multiple Lorentz poles, the complex permittivity includes a (weighted) sum of mechanisms
W2
e((_u)—eoo—%zwm_w2

2vjw




The multi-pole Lorentz model motivates a model with a continuum of Lorentz mechanisms, i.e., a

distribution of dielectric parameters. We define a random polarization to be a function of a
dielectric parameter treated as a random variable.

The random Lorentz model is B )
P+2vP + wS’P = eong

with parameter wg treated as a random variable with probability distribution F on the interval
(a, b). The macroscopic polarization is taken to be the expected value of the random polarization,

b
P(t,z):/a P(t, 2 w2) dF ().
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Figure 1: wi ~ U(0.75w3,1.25w3)




Separate complex permittivity into real and imaginary parts (e = ¢, + i¢;):

wg(wg —w?)

€ = €co + —(wg — 22 + 422

2
2wp1/w

€EE = —
! (wg — w?)? + 41202

Analytic integration is possible for uniform distribution:

w? b
TZa) (In(w)? — 2wdw? + w* + 4°0?) .

1 b w2 2 _ 2
Ele;] :bi/ eidw? = b P__arctan (w)
—al,

1 b
Ele/] :E/a e,dwg = €00 + 5

b

2uw

_a)

a
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Figure 2: Fits for single-pole, saltwater data
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In a polydisperse Lorentz material, we have

oP
eoewE—Vx H_E
OH

1

— =——VxE

ot Ho
75+2V75+w(2)73 = eowf,E

with

(5¢)
b
P(t,x):/ P(t,x: w2 F(R) deok.



[VELEEELCR VS ICEN  Random Lorentz

Theorem (Stability of Maxwell-Random Lorentz)

Let D C R? and suppose that E € C(0, T; Ho(curl, D)) N C(0, T; (L?(D))?),

Pe Y0, T; (LA ® LZ(D))Z), and H(t) € C1(0, T; L3(D)) are solutions of the
weak formulation for the Maxwell-Random Lorentz system along with PEC
boundary conditions. Then the system exhibits energy decay

£(t) <£(0) vt =0,

where the energy E(t) is defined as

0= (|lvim Heo[, + |vases @]+ | 2= Peol +

Wpy/€0 "Jp\l/a j(t)Hi>
(6)

where ||u||2 = E[||ul|3] and T := ¢

Proof involves showing that

20 - 2l <
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spatial dependence, we have

We wish to approximate the random polarization with orthogonal polynomials of the standard
random variable £. Let wg =r€+ m and £ € [—1,1]. Suppressing the dimension of P and the

(oo}
PlEt) =D ai(t)gi(€) = P + 2P + wiP = euE.
i=0
Utilizing the Triple Recursion Relation for orthogonal polynomials:

the differential equation becomes

£Pn(€) = andn+1(€) + badn(§) + cndn—1(€)-
D L6i(t) + 2ve(t) + mai(t)] ¢i(€)
i=0

i=0

+ rzai(f) [aidis1(E) + bidi(€) + cidi—1(£)] = eowi Eho ().
s - = e
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We apply a Galerkin Projection onto the space of polynomials of degree at most p:

G4 2wd+Ad=Ff

bo a 0 0
ag by [e)

A=rM+ml, M= 0 0

ap—2 by—1 p

0 0 ap—1 by

Or we can write as a first order system:
a=0
B=—Ad—2vIf +f,

where f = é‘leong with @, meaning expected value.




The polynomial chaos system coupled with 1D Maxwell’s equations becomes

Initial Conditions:

Boundary Conditions:

F=—Ad—2wIf+F

E(0,z) = H(0,z) = @(0,z) = 8(0,z) =0

E(t,0) = E;(t) and E(t,zg) =0
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Figure 3: Yee Scheme




We stagger three discrete meshes in the x and y directions and two discrete
meshes in time:

P (P L)

= {(Xg,)fj+)|0§€§L,0§j§J—l}
= { () lo<e<t-10<j<u-1}
Tt ={(t")0<n<N}

= {(e ) o<n<n-1}



Let U be one of the field variables: H, Ex, E,, dx, dy, Ex, Ey. Let (x,-,yj) be a node on any
discrete spatial mesh, and v be either n or n + % with v < N.

We define the grid functions or the numerical approximations

U.'L. ~ U(xi,yj, t7).

1

We define the centered temporal difference operator and a discrete time averaging operation as

1 Yol
v _ Uyt
6tUi,j .— T’ (9)
Uit Ly
T i + Ui 10
ij f’ ( )

and the centered spatial difference operators in the x and y direction, respectively as

Vi Y,

e R (11)
-y Ui’Tj+% B in,jf%

b U= —— (12)



OcHy s 1+

The Yee Scheme applied to the Maxwell-PC Lorentz yields

1
= (O - ) 13a
#o(y e+ i+l Yerd s} (13a)
1 +1
+2 _ n+2 =ht3
éocoodt Ex Xe+ s H e+l BOqu' (13b)
+1 1 L1
n+5 =t
c0ecodtE) 2 = —6xH 2 13¢
0€000t yg’j+2 ! BO”V@J+% (13¢)
1
n+ S nt+s5
61&0( 21 = .
Z+E’J Lt5.0
1
+ f.n+§
5t0( 2 =
very =P
1
n+i —n+i —n+x
5tﬁ 2,——Aax 21 -2
e+
ntt
5 3
tﬂy@,+1

(13d)
(13e)
x“z% ;e eowifijé g (13f)
1 = —AE;ZJ%% — 2,/3;:]%-% + é1eowf,§;:j%+% . (13g)
o = = = z
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Next, we define the L2 normed spaces

Vg = {F Th" X 'r:_

R? | F=(Fy,,

with the following discrete norms and inner products

V= {Uirf R U= (U ) ||U||H<oo}

)T IFl < o |

(14)
(15)
L-1J-1
IFI2 = axay 33" (1R, P +1F,, , 2) Y Fe Ve (16)
£=0 j=0 o2
L-1J-1
(F, G)E_AxAy;%;( w3 Ga s F Gy ) Y FGEVE
=
L-1J-1
Ul = axAy > > U, iy uevy
£=0 j=0
L-1J-1

(U =BxBy Y D Uy Vi 1Y UV EVR.

(18)
(19)
£=0 j=0
o ) - = =
BN 2 AMS Western2018  April14,2018 22 /36
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We define a space and inner product for the random polarization in vector
notation, since @ and 3 are now 2 X p + 1 matrices:

Vo = {62 : fo X Tfy — R? x RPFL ‘ a=ag,...,op, 00 € Vg, [|d]|o < oo}

where the discrete L2 grid norm and inner product are defined as

P
&2 =" ez, Vaev,
k=0
p

(@B = (ak,ﬁk)y vV é,BevV,.

k=0

We choose both spatial steps to be uniform and equal (Ax = Ay = h), and
require that the usual CFL condition for two dimensions holds:

V2co At < h. (20)



Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the stability condition (20) is satisfied, then the Yee scheme for the 2D TE mode
Maxwell-PC Lorentz system given in (13) satisfies the discrete identity

2
nt+1i -1 2u =3
0k " = 1 I 2P (21)
5h 0 P A
for all n where
2 2\ 1/2
n nt1 n—1 n2 OJ(2) —n 1 an
gh: ,U/O(H 27H 2)H+HQ/€OGWE ||E+ 7204 + 26
Eowp Eowp
ey @
(22)

defines a discrete energy.

In the above ||&|% := (Ad, &), given A positive definite, which is true iff r < m.
Note that ||@||2 ~ ||E[P]||3 + ||StdDev(P)||3 = E[||P||3] = ||P|| so that this is a
natural extension of the Maxwell-Random Lorentz energy (6).
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@ Dispersion Analysis



The dispersion relation for the Maxwell-Random Lorentz system is given by
2
& 2
—€(w) = (k||
G
where the expected complex permittivity is given by

e(w) = € + (s — €0 )E 2

2
20
5 — w? — 2vw
Where k is the wave vector and ¢ = 1/,/10¢€g is the speed of light.
the amount of dispersion error.

The exact dispersion relation can be compared with a discrete dispersion relation to determine




We define the phase error ® for a scheme applied to a model to be
¢ =

kex — ka
kex |
dispersion relation and kgx is the exact wave number for the given model.

where the numerical wave number kpa is implicitly determined by the corresponding discrete

(23)



We define the phase error ® for a scheme applied to a model to be
¢ =

kex — ka

kex |
dispersion relation and kgx is the exact wave number for the given model.

where the numerical wave number kpa is implicitly determined by the corresponding discrete

(23)

o We wish to examine the phase error as a function of w in the range around wy. At is

v = 2.8 x 10" 1/sec,

Wo = 4 x 10% rad/sec.
[m] = =
B NCY 2 AMS Western2018  April14,2018 27 /36

determined by h := woAt/(27), while Ax = Ay are determined by the CFL condition.
€oo = 1,

@ We assume a uniform distribution and the following parameters Lorentz material:
€s = 2.25,
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Figure 4: Plots of phase error at § = 0.
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Figure 5: Plots of phase error at § = 0.
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Figure 6: Plots of phase error at § = 0.
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Figure 7: Plots of phase error at 6 = 0.
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Figure 8: Plots of phase error at § = 0.
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Figure 9: Plots of phase error at § = 0.



© Current/Future Work



Current Work:
o Analyze the dispersion error of the Random Lorentz model
Future Work:

o Extend to nonlinear polarization models
o Allow €5, €5 to be uncertain.
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