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Background

Background

Maxwell’s Equations:

∂D

∂t
+ J = ∇×H

∂B

∂t
= −∇× E

∇ ·D = ρ

∇ · B = 0

Constitutive Relations:

D = εE + P

B = µH + M

J = σE + Js

Boundary Conditions:
E× n = 0, on (0,T )× ∂D,

Initial Conditions:
E(0, x) = 0, H(0, x) = 0, in D.
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Background

Lorentz Model

We employ the physical assumption that electrons behave as damped harmonic oscillators,

mẍ + 2mνẋ + mω2
0x = Fdriving .

The polarization is then defined as electron dipole moment density:

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE

where ω0 is the resonant frequency, ν is a damping coefficient, and ωp is referred to as a plasma
frequency defined by ω2

p = (εs − ε∞)ω2
0 .
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Background

Complex Permittivity

Taking a Fourier transform of D = εE + P and inserting the convolution form of the polarization
model in for P, we get D̂(ω) = ε0ε(ω)Ê(ω) where

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − i2νω

.

For multiple Lorentz poles, the complex permittivity includes a (weighted) sum of mechanisms:

ε(ω) = ε∞ +

Np∑
i=1

ω2
p,i

ω2
0,i − ω2 − i2νiω

.
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Background

Random Polarization

The multi-pole Lorentz model motivates a model with a continuum of Lorentz mechanisms, i.e., a
distribution of dielectric parameters. We define a random polarization to be a function of a
dielectric parameter treated as a random variable.

The random Lorentz model is
P̈ + 2νṖ + ω2

0P = ε0ω
2
pE

with parameter ω2
0 treated as a random variable with probability distribution F on the interval

(a, b). The macroscopic polarization is taken to be the expected value of the random polarization,

P(t, z) =

∫ b

a
P(t, z;ω2

0) dF (ω2
0).
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Background

Random Polarization

Figure 1: ω2
0 ∼ U(0.75ω2

0,1.25ω2
0)
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Background

Complex Permittivity with random ω2
0

Separate complex permittivity into real and imaginary parts (ε = εr + iεi ):

εr = ε∞ +
ω2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 + 4ν2ω2

εi =
2ω2

pνω

(ω2
0 − ω2)2 + 4ν2ω2

.

Analytic integration is possible for uniform distribution:

E[εr ] =
1

b − a

∫ b

a
εrdω

2
0 = ε∞ +

ω2
p

2(b − a)

(
ln(ω2

0)2 − 2ω2
0ω

2 + ω4 + 4ν2ω2
) ∣∣∣b

a

E[εi ] =
1

b − a

∫ b

a
εidω

2
0 =

ω2
p

(b − a)
arctan

(
ω2 − ω2

0

2νω

) ∣∣∣b
a
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Background

Saltwater Data

Figure 2: Fits for single-pole, saltwater data
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Models and Methods Random Lorentz

Maxwell-Random Lorentz system

In a polydisperse Lorentz material, we have

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
(5a)

∂H

∂t
= − 1

µ0
∇× E (5b)

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE (5c)

with

P(t, x) =

∫ b

a

P(t, x;ω2
0)f (ω2

0)dω2
0 .
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Models and Methods Random Lorentz

Theorem (Stability of Maxwell-Random Lorentz)

Let D ⊂ R2 and suppose that E ∈ C (0,T ;H0(curl,D)) ∩ C 1(0,T ; (L2(D))2),

P ∈ C 1(0,T ;
(
L2(Ω)⊗ L2(D)

)2
), and H(t) ∈ C 1(0,T ; L2(D)) are solutions of the

weak formulation for the Maxwell-Random Lorentz system along with PEC
boundary conditions. Then the system exhibits energy decay

E(t) ≤ E(0) ∀t ≥ 0,

where the energy E(t) is defined as

E(t) =

(∥∥∥√µ0 H(t)
∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2
+
∥∥∥ ω0

ωp
√
ε0
P(t)

∥∥∥2

F
+
∥∥∥ 1

ωp
√
ε0
J (t)

∥∥∥2

F

) 1
2

(6)

where ‖u‖2
F = E[‖u‖2

2] and J := ∂P
∂t .

Proof involves showing that

dE(t)

dt
=
−1

E(t)

∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F
≤ 0.
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Models and Methods Polynomial Chaos

Polynomial Chaos

We wish to approximate the random polarization with orthogonal polynomials of the standard
random variable ξ. Let ω2

0 = rξ + m and ξ ∈ [−1, 1]. Suppressing the dimension of P and the
spatial dependence, we have

P(ξ, t) =
∞∑
i=0

αi (t)φi (ξ)→ P̈ + 2νṖ + ω2
0P = ε0ω

2
pE .

Utilizing the Triple Recursion Relation for orthogonal polynomials:

ξφn(ξ) = anφn+1(ξ) + bnφn(ξ) + cnφn−1(ξ).

the differential equation becomes

∞∑
i=0

[α̈i (t) + 2να̇i (t) + mαi (t)]φi (ξ)

+ r
∞∑
i=0

αi (t) [aiφi+1(ξ) + biφi (ξ) + ciφi−1(ξ)] = ε0ω
2
pEφ0(ξ).
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Models and Methods Polynomial Chaos

Galerkin Projection

We apply a Galerkin Projection onto the space of polynomials of degree at most p:

~̈α+ 2ν~̇α+ A~α = ~f

A = rM + mI , M =



b0 c1 0 · · · 0

a0 b1 c2

...

0
. . .

. . .
. . . 0

... ap−2 bb−1 cp
0 · · · 0 ap−1 bp


.

Or we can write as a first order system:

~̇α = ~β

~̇β = −A~α− 2νI ~β + ~f ,

where ~f = ê1ε0ω
2
pE with ωp meaning expected value.
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Models and Methods Polynomial Chaos

Maxwell-PC Lorentz

The polynomial chaos system coupled with 1D Maxwell’s equations becomes

ε∞ε0
∂E

∂t
= −

∂H

∂z
− β0

∂H

∂t
= −

1

µ0

∂E

∂z

~̇α = ~β

~̇β = −A~α− 2νI ~β + ~f

Initial Conditions:
E(0, z) = H(0, z) = ~α(0, z) = ~β(0, z) = 0

Boundary Conditions:
E(t, 0) = EL(t) and E(t, zR) = 0
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Models and Methods FDTD

FDTD Discretization
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Figure 3: Yee Scheme
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Models and Methods FDTD

We stagger three discrete meshes in the x and y directions and two discrete
meshes in time:

τEx

h :=
{(

x`+ 1
2
, yj
)
|0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J

}
τ
Ey

h :=
{(

x`, yj+ 1
2

)
|0 ≤ ` ≤ L, 0 ≤ j ≤ J − 1

}
τHh :=

{(
x`+ 1

2
, yj+ 1

2

)
|0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J − 1

}
τEt := {(tn) |0 ≤ n ≤ N}

τHt :=
{(

tn+ 1
2

)
|0 ≤ n ≤ N − 1

}
.
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Models and Methods FDTD

Let U be one of the field variables: H, Ex , Ey , ~αx , ~αy , ~βx , ~βy . Let (xi , yj ) be a node on any

discrete spatial mesh, and γ be either n or n + 1
2

with γ ≤ N.
We define the grid functions or the numerical approximations

Uγi,j ≈ U(xi , yj , t
γ).

We define the centered temporal difference operator and a discrete time averaging operation as

δtU
γ
i,j :=

U
γ+ 1

2
i,j − U

γ− 1
2

i,j

∆t
, (9)

U
γ
i,j :=

U
γ+ 1

2
i,j + U

γ− 1
2

i,j

2
, (10)

and the centered spatial difference operators in the x and y direction, respectively as

δxU
γ
i,j :=

Uγ
i+ 1

2
,j
− Uγ

i− 1
2
,j

∆x
, (11)

δyU
γ
i,j :=

Uγ
i,j+ 1

2

− Uγ
i,j− 1

2

∆y
. (12)
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Models and Methods FDTD

Maxwell-PC Lorentz-FDTD

The Yee Scheme applied to the Maxwell-PC Lorentz yields

δtH
n
`+ 1

2
,j+ 1

2

=
1

µ0

(
δyE

n
x
`+ 1

2
,j+ 1

2

− δxEn
y
`+ 1

2
,j+ 1

2

)
(13a)

ε0ε∞δtE
n+ 1

2
x
`+ 1

2
,j

= δyH
n+ 1

2

`+ 1
2
,j
− ~β

n+ 1
2

0,x
`+ 1

2
,j

(13b)

ε0ε∞δtE
n+ 1

2
y
`,j+ 1

2

= −δxH
n+ 1

2

`,j+ 1
2

− ~β
n+ 1

2

0,y
`,j+ 1

2

(13c)

δt~α
n+ 1

2
x
`+ 1

2
,j

= ~β
n+ 1

2

x
`+ 1

2
,j

(13d)

δt~α
n+ 1

2
y
`,j+ 1

2

= ~β
n+ 1

2

y
`,j+ 1

2

(13e)

δt ~β
n+ 1

2
x
`+ 1

2
,j

= −A~αn+ 1
2

x
`+ 1

2
,j
− 2ν~β

n+ 1
2

x
`+ 1

2
,j

+ ê1ε0ω
2
pE

n+ 1
2

x
`+ 1

2
,j

(13f)

δt ~β
n+ 1

2
y
`,j+ 1

2

= −A~αn+ 1
2

y
`,j+ 1

2

− 2ν~β
n+ 1

2

y
`,j+ 1

2

+ ê1ε0ω
2
pE

n+ 1
2

y
`,j+ 1

2

. (13g)
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Stability

Staggered L2 normed spaces

Next, we define the L2 normed spaces

VE :=

{
F : τExh × τ

Ey
h −→ R2 | F = (Fx

l+ 1
2
,j
,Fy

l,j+ 1
2

)T , ‖F‖E <∞
}

(14)

VH :=
{
U : τHh −→ R | U = (Ul+ 1

2
,j+ 1

2
), ‖U‖H <∞

}
(15)

with the following discrete norms and inner products

‖F‖2
E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Fx

`+ 1
2
,j
|2 + |Fy

`,j+ 1
2

|2
)
, ∀ F ∈ VE (16)

(F,G)E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
Fx

`+ 1
2
,j
Gx

`+ 1
2
,j

+ Fy
`,j+ 1

2

Gy
`,j+ 1

2

)
, ∀ F,G ∈ VE (17)

‖U‖2
H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2
,j+ 1

2
|2, ∀ U ∈ VH (18)

(U,V )H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

U`+ 1
2
,j+ 1

2
V`+ 1

2
,j+ 1

2
, ∀ U,V ∈ VH . (19)
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Stability

We define a space and inner product for the random polarization in vector

notation, since ~α and ~β are now 2× p + 1 matrices:

Vα :=
{
~α : τEx

h × τ
Ey

h −→ R2 × Rp+1
∣∣∣ ~α = [α0, . . . ,αp],αk ∈ VE , ‖~α‖α <∞

}
where the discrete L2 grid norm and inner product are defined as

‖~α‖2
α =

p∑
k=0

‖αk‖2
E , ∀ ~α ∈ Vα

(~α, ~β)α =

p∑
k=0

(
αk ,βk

)
E
, ∀ ~α, ~β ∈ Vα.

We choose both spatial steps to be uniform and equal (∆x = ∆y = h), and
require that the usual CFL condition for two dimensions holds:

√
2c∞∆t ≤ h. (20)
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Stability

Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the stability condition (20) is satisfied, then the Yee scheme for the 2D TE mode
Maxwell-PC Lorentz system given in (13) satisfies the discrete identity

δtE
n+ 1

2

h =
−1

En+ 1
2

h

∥∥∥∥∥
√

2ν

ε0ω2
p

~β
n+ 1

2

h

∥∥∥∥∥
2

A

(21)

for all n where

Enh =

µ0(Hn+ 1
2 ,Hn− 1

2 )H + ‖
√
ε0ε∞ En‖2

E +

∥∥∥∥∥
√

ω2
0

ε0ω2
p

~αn

∥∥∥∥∥
2

α

+

∥∥∥∥∥
√

1

ε0ω2
p

~βn

∥∥∥∥∥
2

α

1/2

(22)
defines a discrete energy.

In the above ‖~α‖2
A := (A~α, ~α)α given A positive definite, which is true iff r < m.

Note that ‖~α‖2
α ≈ ‖E[P]‖2

2 + ‖StdDev(P)‖2
2 = E[‖P‖2

2] = ‖P‖2
F so that this is a

natural extension of the Maxwell-Random Lorentz energy (6).
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Dispersion Analysis Random Lorentz Dispersion Relation

Theorem

The dispersion relation for the Maxwell-Random Lorentz system is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + (εs − ε∞)E
[

ω2
0

ω2
0 − ω2 − i2νω

]
.

Where k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

The exact dispersion relation can be compared with a discrete dispersion relation to determine
the amount of dispersion error.
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (23)

where the numerical wave number k∆ is implicitly determined by the corresponding discrete
dispersion relation and kEX is the exact wave number for the given model.

We wish to examine the phase error as a function of ω in the range around ω0. ∆t is
determined by h := ω0∆t/(2π), while ∆x = ∆y are determined by the CFL condition.

We assume a uniform distribution and the following parameters Lorentz material:

ε∞ = 1, εs = 2.25, ν = 2.8× 1015 1/sec, ω0 = 4× 1016 rad/sec.
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (23)

where the numerical wave number k∆ is implicitly determined by the corresponding discrete
dispersion relation and kEX is the exact wave number for the given model.

We wish to examine the phase error as a function of ω in the range around ω0. ∆t is
determined by h := ω0∆t/(2π), while ∆x = ∆y are determined by the CFL condition.

We assume a uniform distribution and the following parameters Lorentz material:

ε∞ = 1, εs = 2.25, ν = 2.8× 1015 1/sec, ω0 = 4× 1016 rad/sec.

Gibson (OSU) AMS Western 2018 April 14, 2018 27 / 36



Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis
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Figure 4: Plots of phase error at θ = 0.
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis

0 2 4 6 8

10
16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
h=0.1 and r=0.1 w0^2

P=1

P=2

P=3

P=4

Figure 5: Plots of phase error at θ = 0.

Gibson (OSU) AMS Western 2018 April 14, 2018 29 / 36



Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis
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Figure 6: Plots of phase error at θ = 0.
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis
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Dispersion Analysis PC-Lorentz FDTD Dispersion Analysis
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Current/Future Work

Current/Future Work

Current Work:

Analyze the dispersion error of the Random Lorentz model

Future Work:

Extend to nonlinear polarization models

Allow εs , ε∞ to be uncertain.
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Current/Future Work
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