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4 Applications
Electromagnetics
Hydropower

Prof. Gibson (OSU) UQ with Apps AMC 2018 2 / 50



Outline

1 Polynomial Chaos

2 Stochastic Collocation

3 Karhunen-Loève
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Motivating Applications

Many real world problems involve computational simulations of differential
equation models. Most problems involve several sources of uncertainty.

Electromagnetic interrogation

Material parameters, geometry

Hydropower planning

Inflows, demand, alternate power supply, power price

To solve problems and make informed decisions we need to both quantify
these input uncertainties, and quantify the effect on the outputs of the
models, usually expected values and variances.
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Popular UQ Methods

Polynomial Chaos [Wiener, 1938; Xiu, PhD Dissertation, 2004]

Spectral method in random space

Stochastic Collocation [Tatang, PhD Dissertation, 1994]

Weighted Gaussian quadrature in random space

Karhunen-Loève expansion [Kosambi, 1943; Karhunen, 1947]

Principal component analysis for functions
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Karhunen-Loève expansion [Kosambi, 1943; Karhunen, 1947]

Principal component analysis for functions

Prof. Gibson (OSU) UQ with Apps AMC 2018 4 / 50



Popular UQ Methods

Polynomial Chaos [Wiener, 1938; Xiu, PhD Dissertation, 2004]

Spectral method in random space

Stochastic Collocation [Tatang, PhD Dissertation, 1994]

Weighted Gaussian quadrature in random space
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Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear ODE

ẏ = −ky , k = k(ξ) = ξ, ξ ∼ N (0, 1).

We apply a Polynomial Chaos expansion in terms of orthogonal Hermite
polynomials Hj to the solution y :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ).

The Hermite polynomials Hj ’s are orthogonal with respect to the
weighting function given by the probability density function of the
Gaussian random variable. I.e., define the weighted inner product

〈f , g〉W =

∫
Γ
f (ξ)g(ξ)W (ξ)dξ.

then
〈φj , φi 〉W = 〈φi , φi 〉W δij .
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Polynomial Chaos

Why orthogonal?
To allow the coefficients of the expansion to be easily computed using
a projection.

Why wrt Gaussian density?
So that

E[y ] :=

∫
Γ
y(t, ξ)W (ξ)dξ = 〈y , 1〉W = α0(t).

and variance is α2
1 + α2

2 + . . .+ α2
p.
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Polynomial Chaos

Triple recursion formula

Then the ODE ẏ = −ξy becomes

∞∑
j=0

α̇j(t)φj(ξ) = −
∞∑
j=0

αj(t)ξφj(ξ).

We can eliminate the explicit dependence on ξ by using the triple recursion
relation for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j φj + αj (jφj−1 + φj+1) = 0.
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Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

To get a finite dimensional approximation,

y(t, ξ) ≈
p∑

j=0

αj(t)φj(ξ) =: yp(t, ξ),

we take the weighted inner product of the ODE with each basis function
corresponding to i = 0, . . . , p

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0.

Using orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have simply

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p,

(let α−1(t) and αp+1(t) be identically zero).
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Polynomial Chaos

Deterministic ODE system

Letting ~α represent the vector containing α0(t), . . . , αp(t) the (modal)
system of ODEs can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


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Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp


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Polynomial Chaos

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [a, b]
uniform Legendre [a, b]

Note: other random variables may be approximated by a non-linear
function (e.g., Taylor expansion) of one of these random variables.
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Polynomial Chaos

Spectral convergence

Any set of orthogonal polynomials can be used in the truncated
expansion, but there may be an optimal choice.

If the polynomials are orthogonal with respect to weighting function
W (ξ), and k has PDF W (k), then it can be shown that the PC
solution converges exponentially in terms of p.

In practice, approximately 4 are generally sufficient.
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Polynomial Chaos

Figure: Error with Gaussian random variable by Hermitian Chaos [Xiu].
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Polynomial Chaos

More Generalizations [McKenzie]

Consider the non-homogeneous ODE

ẏ + ky = g(t), k = k(ξ) = σξ + µ,

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system

~̇α + (σM + µI )~α = g(t)~e1.

Note: eigenvalues of the (p + 1)× (p + 1) Jacobi matrix M are roots of
the p + 1 degree orthogonal polynomial.
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Polynomial Chaos

Example

Consider the ODE

ẏ + ky = 0, y(0) = 1, k ∼ U [0, 2].

We apply Legendre Chaos expansions with p = 2 to arrive at the modal
system

~̇α + A~α = ~0, ~α(0) = [1, 0, 0]T

where

A = (σM + µI ) =

1 1
3 0

1 1 2
5

0 2
3 1


which has eigenvalues 1.7746, 1, and 0.2254.
Diagonalizing A we can find the modal solutions, for instance,
α0 = 0.2778 exp(−1.7746 t) + 0.4444 exp(−t) + 0.2778 exp(−0.2254 t).
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Polynomial Chaos
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Figure: Mean and confidence intervals using p = 2.
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Polynomial Chaos
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Figure: Mean and confidence intervals using p = 20.

Prof. Gibson (OSU) UQ with Apps AMC 2018 18 / 50



Stochastic Collocation

Outline

1 Polynomial Chaos

2 Stochastic Collocation

3 Karhunen-Loève
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Stochastic Collocation

Intrusive vs Non-intrusive

Each gPC expansion coefficient can be represented via a projection

αi (t) = E[y(t, ~ξ)φi (~ξ)] =

∫
Γ

y(t, ~ξ)φi (~ξ)W (~ξ)d~ξ.

Γ =
∏N

k=1 Γk , Γk = ξk(Ω), where (Ω,F ,P) is a probability space

W (~ξ) is a joint probability density of the random vector ~ξ

The Polynomial Chaos method finds the coupled DE system for these coefficients,
but this is intrusive as it changes the system we would like to solve (not good if
we wish to reuse code from deterministic simulations).

Instead, the computation of the coefficients αi , i = 0, . . . , p can be done
non-intrusively with the use of the stochastic collocation method.
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Stochastic Collocation

Stochastic Collocation and gPC

Choose a set of collocation points zj = (zj,1, zj,2, . . . , zj,N) ∈ Γ and weights
wj , j = 1, . . . ,Ncp.

For each j = 1, . . . ,Ncp evaluate the system deterministically to find y(t, zj).

Approximate the gPC expansion coefficients using Gaussian Quadrature

αi (t) = E[y(t, ~ξ)φi (~ξ)] =

∫
Γ

y(t, ~ξ)φi (~ξ)W (~ξ)d~ξ ≈
Ncp∑
j=1

wjy(t, zj)φi (zj).

Construct the N-variate, pth-order gPC approximation, if necessary

yp(t, ~ξ) =

Mp∑
i=0

αi (t)φi (~ξ). (1)

Or just use E[y(t, ~ξ)] ≈ α0(t) ≈
Ncp∑
j=1

wjy(t, zj), Var[y(t, ~ξ)] ≈
Mp∑
i=1

αi (t)2.
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Stochastic Collocation

Back to Example

Consider again the ODE

ẏ + ky = 0, y(0) = 1, k ∼ U [0, 2].

Look up the Gauss-Legendre weights and nodes online for Ncp = 3 (they
are actually just the roots of the 3rd degree Legendre polynomial):

xj ∈ {0,±
√

3
5} with weights 8

9 and 5
9 .

Note that these are for x ∈ [−1, 1] and W (x) = 1. Need to shift and scale
to get:
zj ∈ {1.7746, 1, 0.2254} with weights 0.2778, 0.4444 and 0.2778.

Thus, we have
α0 = 0.2778 exp(−1.7746 t) + 0.4444 exp(−t) + 0.2778 exp(−0.2254 t).
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Karhunen-Loève Parameterization of Random Inputs

In the case when the random coefficients, or more likely, the random
forcing, are time varying, we seek a representation of these stochastic
processes in terms of standard random variables so that we may apply gPC
or SC methods.

Consider the case when all that is known about a random forcing process
Yt(ω) is its mean µY (t) and its covariance function C (t, s) = cov(Yt ,Ys).
Then the Karhunen-Loève expansion is given by

Yt(ω) = µY (t) +
∞∑
i=1

√
λi ψi (t) ξi

where the eigenpair (λi , ψi ) solve the eigenvalue problem∫
T
C (t, s) ψi (s)ds = λi ψi (t), t ∈ T

and {ξi} are mutually uncorrelated zero-mean, unit-variance random
variables.
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Karhunen-Loève Parameterization of Random Inputs

Often the eigenvalues decay exponentially (faster for larger correlation
length), thus justifying a truncated expansion as an approximation

Yt(ω) = µY (t) +
d∑

i=1

√
λi ψi (t) ξi .

Since the computational complexity of gPC and SC grows exponentially
with the dimension of the random space, we want as few random variables
as possible.

One can show that of all the d dimensional expansions, KL is the best
(minimizes means square error).

The total variance of the process is the sum of the eigenvalues, so we can
estimate the error in the truncation at d by computing the percentage

λd+1∑d+1
i=1 λi

.
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Karhunen-Loève Parameterization of Random Inputs

Example

The covariance function for a Brownian Bridge process on 0 ≤ t ≤ 1
(Brownian motion conditioned on B(0) = B(1) = 0) is

CB(s, t) = min(s, t)− st.

The eigenfunctions and eigenvalues are as follows

λn = (nπ)−2,

φn(t) =
√

2 sin
(
t/
√
λn

)
.

Thus the KL expansion is

Bt(ω) =

√
2

π

∞∑
n=1

1

n
sin(nπ t)ξn.
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Karhunen-Loève Parameterization of Random Inputs

Figure: Realizations of the Brownian Bridge.
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Karhunen-Loève Parameterization of Random Inputs

Figure: Realizations of the KL expansion of the Brownian Bridge with d = 10.
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Applications: Electromagnetics

Maxwell’s Equations

∂D

∂t
+ J = ∇×H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric displacement

B = Magnetic flux density

J = Current density

Prof. Gibson (OSU) UQ with Apps AMC 2018 30 / 50



Applications: Electromagnetics

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Applications: Electromagnetics

Dispersive Dielectrics

The material response is modeled via the polarization with material
parameters

D = εE + P.

Debye model
τ Ṗ + P = ε0(εs − ε∞)E

where q = {ε∞, εs , τ} and, in particular, τ is called the relaxation
time.

Lorentz model

Ṗ = J

J̇ +
1

τ
J + ω2

0P = ε0(εs − ε∞)ω2
0E

where q = {ε∞, εs , τ, ω0}.
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Applications: Electromagnetics

Frequency Domain

Converting to frequency domain via Fourier transforms

D = εE + P

becomes
D̂ = ε(ω)Ê

where ε(ω) is called the complex permittivity.

Debye model gives

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ
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Applications: Electromagnetics Fit to Dry Skin Data
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Figure: Real part of ε(ω), called simply ε, or the permittivity. Model A refers to
the Debye model with a uniform distribution on τ .
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Applications: Electromagnetics Random Polarization

Random Polarization

We define the random polarization P(x , t; τ) to be the solution to

τ Ṗ + P = ε0(εs − ε∞)E

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (x , t)

P(x , t;F ) = E[P] :=

∫ τb

τa

P(x , t; τ)f (τ)dτ.
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P(x , t;F ) = E[P] :=

∫ τb

τa

P(x , t; τ)f (τ)dτ.
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Applications: Electromagnetics Random Polarization

We can apply Polynomial Chaos method to our random polarization

τ Ṗ + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + r

resulting in
(rM + mI )~̇α + ~α = ε0(εs − ε∞)E ~e1 =: ~g

or
A~̇α + ~α = ~g .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).
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Applications: Electromagnetics Discretization

Applying the central difference approximation, based on the Yee scheme,
Maxwell’s equations with conductivity and polarization included

ε
∂E

∂t
= −∂H

∂z
− σE − ∂P

∂t

and

µ
∂H

∂t
= −∂E

∂z

become

E
n+ 1

2
k − E

n− 1
2

k

∆t
= −1

ε

Hn
k+ 1

2

− Hn
k− 1

2

∆z
− σ

ε

E
n+ 1

2
k + E

n− 1
2

k

2
− 1

ε

P
n+ 1

2
k − P

n− 1
2

k

∆t

and
Hn+1
k+ 1

2

− Hn
k+ 1

2

∆t
= − 1

µ

E
n+ 1

2
k+1 − E

n+ 1
2

k

∆z
.

Note that while the electric field and magnetic field are staggered in time,
the polarization updates simultaneously with the electric field.
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Applications: Electromagnetics Discretization

Need a similar approach for discretizing the PC system

A~̇α + ~α = ~g .

Applying second order central differences, as before, to ~α = ~α(zk):

A
~αn+ 1

2 − ~αn− 1
2

∆t
+
~αn+ 1

2 + ~αn− 1
2

2
=
~gn+ 1

2 + ~gn− 1
2

2
.

Combining like terms gives

(2A + ∆tI )~αn+ 1
2 = (2A−∆tI )~αn− 1

2 + ∆t
(
~gn+ 1

2 + ~gn− 1
2

)
Note that we first solve the discrete electric field equation for E

n+ 1
2

k and

plug in here (in ~gn+ 1
2 ) to update ~α.
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Applications: Electromagnetics Theory

Energy Decay and Stability

Theorem (Gibson2013)

For n ≥ 0, let Un = [Hn,En
x ,E

n
y , α

n
0,x , . . . , α

n
0,y , . . .]

T be the solutions of
the 2D TE mode Maxwell-PC Debye FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
c∆t ≤ ∆z/

√
2, then there exists the energy decay property

En+1
h ≤ Enh

where

(Enh )2 =
∣∣∣∣∣∣√µ0H

n
∣∣∣∣∣∣2
H

+ ||
√
ε0ε∞En||2E +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

~αn

∣∣∣∣∣∣∣∣2
α

.

Note: ‖P‖2
F = E[‖P‖2

2] = ‖E[P]2 + Var(P)‖2
2 ≈ ‖~α‖2

α.

Energy decay implies that the method is stable and hence convergent.
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Applications: Electromagnetics Summary

Comments on Polynomial Chaos

Gives a simple and efficient method to simulate DE systems involving
random parameters.

Works equally well in three spatial dimensions.

Limitation: choice of polynomials depends on type of distribution.
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Applicatons: Hydropower

Reservoir Operations

The broad context of the problem of interest is a PDE-constrained optimal
control problem with uncertainty. In particular, one must

meet electrical demand with hydro-power production

mitigate flooding

preserve ecological conditions

possibly maximize revenue

etc.

all without perfect knowledge of the system, the inflows, the demand, or
prices.
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Applicatons: Hydropower River system and modeling equations

Simple River System

Consider this simple network system

Unknowns: flow discharge upstream Qu and downstream Qd , water depth
downstream yd for each reach i = 1, . . . , 8.
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Applicatons: Hydropower River system and modeling equations

Simulation of Unsteady Flows

Most free surface flows are unsteady and nonuniform.

Unsteady flows in river systems are typically simulated using 1D models.

Saint-Venant equations: PDEs representing conservation of mass and
momentum for a control volume:

B
∂y

∂t
+
∂Q

∂x
= 0, (2)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂y

∂x
+ Sf − S0

)
= 0, (3)

where x is a distance along the channel in the longitudinal direction, t is time,
y is a water depth, Q is a flow discharge,
B is a width of the channel, g is an acceleration due to gravity,
A is a cross-sectional area of the flow, Sf is a friction slope, S0 is a river bed slope.

Initial and boundary conditions are required to close the system.
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Applicatons: Hydropower Sources of uncertainty and assumptions

Sources of Uncertainty

Hydrological conditions (particularly inflows) and power demand (and
price) are the main sources of uncertainties.

Chosen approach

Parametrization of the uncertain inputs, such as stream inflows

Stochastic representation of the solutions - discharge and water depth

Robust optimization

Assumptions on the uncertain inputs

We have M predictions, M > 1, of the inflow function Qu1 , forecast
for the same points in time {tj}nj=1.

The logarithm of the inflow function Qu1 can be represented as a
Gaussian process.
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Applicatons: Hydropower Parametrization of the uncertain inputs

Parametrization of the Stream Inflow

Li (tj) = lnQu1,i (tj) is the value of the logarithm of the ith inflow at tj .

Expectation of the log stream inflow L̄ and its covariance C (tj , tk),

L̄(tj) =
1

M

M∑
i=1

Li (tj), j = 1, . . . , n,

C (tj , tk) =
1

M − 1

M∑
i=1

(Li (tj)− L̄(tj))(Li (tk)− L̄(tk)).

Qu1 (t) can be represented as

Qu1 (t) = exp

(
L̄(t) +

∞∑
k=1

√
λkψk(t)ξk

)
.

(λk , ψk): λψ(t) =

∫
C (s, t)ψ(s)ds.

{ξ}∞k=1 is a sequence of standard normal random variables.
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Applicatons: Hydropower Parametrization of the uncertain inputs

Numerical Experiments. Stochastic Parametrizations

Experiment: 5 predictions
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Applicatons: Hydropower Stochastic representation of the solutions

Polynomial Chaos Representation of the Solutions

Goal: Given the parametrization of the uncertain inputs, provide the stochastic
representation of the solutions.

Approach: Generalized Polynomial Chaos (gPC) Expansion.

Consider a flow discharge at the most downstream reach, Qd8 . Its representation
in terms of a degree p polynomial expansion

Qp
d8

(t, ~ξ) =

Mp∑
i=0

vi (t)φi (~ξ), (4)

~ξ = (ξ1, ξ2, . . . , ξN) are r.v. in the representation of Qu1

{φi}
Mp

i=0 are the N-variate orth. polynomial functions of degree up to p

if {ξk} are i.i.d. N(0, 1), {φi}
Mp

i=0 are chosen as tensor products of univariate
Hermite polynomials.

Mp < (N + p)!/(N!p!) (max number of polynomial basis functions)
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Applicatons: Hydropower Stochastic representation of the solutions

Stochastic Collocation and gPC

Choose a set of collocation points zj = (zj,1, zj,2, . . . , zj,N) ∈ Γ and weights
wj , j = 1, . . . ,Ncp.

For each j = 1, . . . ,Ncp evaluate the inflow function Qu1,j(t) = Qu1 (t, zj).

Simulate deterministically the corresponding downstream flow Qd8,j(t).

Approximate the gPC expansion coefficients using Gaussian Quadrature

vi (t) = E[Qd8 (t, ~ξ)φi (~ξ)] ≈
Ncp∑
j=1

wjQd8 (t, zj)φi (zj). (5)

Construct the N-variate, pth-order gPC approximation, if necessary

Qp
d8

(t, ~ξ) =

Mp∑
i=0

vi (t)φi (~ξ). (6)

Or just use E[Qd8 (t, ~ξ)] ≈ v0(t), Var[Qd8 (t, ~ξ)] ≈
Mp∑
i=1

vi (t)2.
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Applicatons: Hydropower Stochastic representation of the solutions
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Applicatons: Hydropower Summary

Summary

We use KL expansions generated from sample means and sample
covariances of reservoir inflow predictions

If predictions not available, can use historical inflows to capture
statistics

Not great for prediction, but easier to compute expected outflows with
than ARMA models.
KL of ARMA models seem to work well!

Have used KL on historical decisions to create a reduced order basis
for decision space: works great!
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