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Inference Background Inverse Problems

Inverse Problems

Inverse problems arise from indirect observations of a quantity of
interest.

A physical system may be described by a (forward) model, which
predicts some measurable features of the system given a set of
parameters.

The corresponding inverse problem consists of inferring these
parameters from a set of observations of the features.
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Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Inverse Problems

Observations may be limited in number relative to the dimension or
complexity of the parameter space.

Further, the action of the forward operator may include filtering or
smoothing effects.

These features typically render inverse problems ill-posed in the sense
that

no solution may exist
multiple solutions may exist
solutions may not depend continuously on the data

In practical settings, where observations are inevitably corrupted by
noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization
methods to impose well-posedness, and solved the resulting problems
by optimization.

However, important insights and methodologies emerge by casting
inverse problems in the framework of statistical inference.

Prof. Gibson (OSU) Spectral Approaches to Bayesian Inference AMC 2011 4 / 36



Inference Background Bayesian Setting

Bayesian Inference

In particular, the Bayesian setting for inverse problems offers

a rigorous foundation for inference from noisy data and uncertain
forward models
a natural mechanism for incorporating prior information
a quantitative assessment of uncertainty in the inferred results

Indeed, the output of Bayesian inference is not a single value for the
model parameters, but a probability (posterior) distribution that
summarizes all available information about the parameters.

From this posterior distribution, one may estimate means, modes, and
higher-order moments, compute marginal distributions, or make
additional predictions by averaging over the posterior.
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Inference Background Bayesian Setting

Consider a forward problem

d t = G (Z )

where d t ∈ Rnd represents some true, observable data and
Z = (Z1, . . . ,Znz ) is a set (vector) of model parameters.

In the Bayesian setting:

Z is a random variable.
Assume each component of Z has a (prior) probability distribution

Fi (zi ) = P(Zi < zi ) ∈ [0, 1]

and a (prior) probability density πi (z) = dFi/dzi . Assuming each Zi

mutually independent then πZ (z) =
∏nz

i=1 πi (zi ) is the joint density
function for Z (we will omit subscripts when convenient).

Probability is used to express knowledge about true values of
parameters. In other words, the prior and posterior probabilities
represent degrees of belief about values before and after observing the
data.
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Inference Background Bayesian Setting

Prior Probability Distribution

Information about the parameters (quantities of interest) may enter
through the prior density π(Z ).
Examples include

range of feasible values

correlations

shape or smoothness
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Inference Background Bayesian Setting

In practice there may exist measurement error so that the observed
data does not match the predicted data.

Assuming additive observational errors, we have

d = d t + e = G (Z ) + e,

where components of e ∈ Rnd are i.i.d. random variables with
probability density function πe .

We make the usual assumption that e is also independent of Z .

In this simple model, e may encompass both measurement error (e.g.
sensor noise) and model error–the extent to which forward model
predictions may differ from “true” values because of some unmodeled
physics of the system.

A typical choice is ei ∼ N (0, σ2).

Note that if parameters in the noise model, or prior, are unknown,
they may themselves be endowed with a prior and included as
hyperparameters to be estimated from data. For example, some
choices of σ above give “better” results than others.
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Inference Background Bayesian Setting

Likelihood Function

Data enters the formulation through the likelihood which is defined to
be π(d |z) and may be viewed as a function of z :

L(z) = π(d |z).

This is the conditional probability of d given z .

One estimate of a quantity of interest given data is that which
maximizes the likelihood function (or minimizes −log(L(z))), called
the MLE.
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Inference Background Bayesian Setting

MLE vs. MAP

Information is generally available in the form P(effect|cause) rather
than P(cause|effect) which is what we would like to determine.

For example, P(symptom|disease) is easy to measure by observations,
however P(disease|symptom) is more important yet harder to
determine.

Rather than finding the maximizer to the former (MLE) we may
instead wish to maximize the latter (MAP).
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Inference Background Bayesian Setting

For this reason we employ Bayes’ Rule

π(z |d) =
π(d |z) π(z)∫
π(d |z) π(z) dz

where again π(z) is the prior density of Z and π(z |d), the density of Z
conditioned on d , is the posterior density of Z . To emphasize the depence
on z one may write

πd(z) =
L(z) π(z)∫
L(z) π(z) dz

.

In the presence of additive noise as defined above, the likelihood becomes

L(z) = π(d |z) =

nd∏
i=1

πe(di − Gi (z))

We now see that the posterior density may be evaluated at any z for a
cost of an evaluation of G (z).
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Inference Background Forward Model Example

Consider a general, time-dependent PDE with dependence on a set of
random variables Z ∈ Rnz

ut(x , t, z) = L(u), D × (0,T ]× Rnz

where D is some spatial domain and T > 0 is some fixed time, along
with appropriate boundary and initial conditions, and where L is a
(nonlinear) differential operator.

We define the observation map g : Rnu → Rnd relating the solution u
of the system to the true observable data

d t = g(u)

then the forward model becomes

d t = G (Z ) = g ◦ u(Z )

and computation of G is presumed to be expensive.
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Inference Background Sampling the Posterior

Therefore, while (to the extent that π(z) and π(e) are known) πd(z)
can be evaluated at any z , this is far from being useful. The posterior
probability distribution is typically not of analytical form and,
especially in high dimensions, cannot be easily interrogated.

A typical use of Bayesian estimation is in the computation of integrals
over the posterior

I [f ] =

∫
f (z)πd(z)dz =

∫
f (z)L(z)π(z)dz

for example, the posterior expectation of f is Eπf = I [f ]/I [1].

Note that approximations could be constructed utilizing sampling z(j)

from the prior (MC), or a deterministic quadrature rule could be used
at discrete nodes z(k) on the support of the prior, but each requires
numerous evaluations of G .
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Posterior Surrogate

Posterior Surrogate

An alternate approach that may accelerate evaluation of Bayesian
integrals and other characterizations of the posterior is to employ
spectral representations of uncertain parameters and field quantities,
specifically polynomial chaos (PC) expansions for random variables
and stochastic processes, in order to create a posterior surrogate for
efficient Bayesian inference in inverse problems.

In particular, we propagate prior uncertainty through the forward
model, thus yielding a polynomial approximation G̃ of the forward
solution over the support of the prior.

This approximation then enters the likelihood function, resulting in an
approximate posterior density that is inexpensive to evaluate.
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Posterior Surrogate

Two main approaches

Stochastic Galerkin methods:
Exact computation of the coefficients of G̃ via Galerkin projection
results in an intrusive stochastic spectral methodology, in which
polynomial chaos representations of the unknown parameters lead to
a reformulation of the governing equations of the forward model.

Stochastic Collocation:
Uses numerical quadrature rather than Galerkin projection to
approximate the coefficients in the spectral expansion. A key
advantage of stochastic collocation is that it requires only a finite
number of uncoupled deterministic simulations, with no reformulation
of the governing equations of the forward model.
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Posterior Surrogate Stochastic Collocation [2]

Comments on Stochastic Collocation

preferable in very high dimensions: many methods already exist for
addressing high input dimensionality via efficient low-degree
integration formulae or sparse grids

can deal with highly nonlinear problems that are challenging, if not
impossible, to handle with stochastic Galerkin methods

a spectral representation may also be applied to arbitrary functionals
of the forward solution (e.g., location of a root of a solution)

does not depend on Galerkin projection step and therefore can be
more flexible in the choice of prior/polynomial pair.
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Posterior Surrogate PC Stochastic Galerkin [1]

This process involves:
1 constructing PC expansions for each unknown parameter and field

quantity, according to probability distributions that include the support
of the prior

2 substituting these expansions into the governing equations and using
Galerkin projection to obtain a coupled system of equations for the PC
mode strengths of G̃

3 solving this system
4 forming an expression for the posterior density based on the resulting

PC expansions of forward model predictions, then exploring this
posterior density with an appropriate sampling strategy.

In this scheme, sampling can have negligible cost; nearly all the
computational time is spent solving the system in Step 3.

Depending on model non-linearities and the necessary size of the PC
basis, this computational effort may be orders of magnitude less
costly than exploring the posterior via direct sampling.
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Polynomial Chaos

Let ξ be a random variable with density πξ(ξ) = w(ξ) and assume (say)
ξ ∼ U[−1, 1]. Then the normalized Legendre polynomials {ψi (ξ)} are
orthogonal with respect to w , i.e.,

〈ψi , ψj〉 =

∫
ψi (ξ) ψj(ξ) w(ξ) dξ = δij .

Suppose X is a random variable with a known polynomial chaos (PC)
expansion

X =
P∑

i=0

xiψi (ξ).

Then the orthogonality property can be used to calculate the truncated PC
expansion of a function f (X ) by projecting onto the PC basis

f̃ =
P∑

k=0

fk ψi (ξ), fk = 〈f (X ), ψk〉.

This orthogonal projection minimizes the error ‖f − f̃ ‖ on the space
spanned by {ψk}P

k=0.
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Polynomial Chaos Galerkin Projection

Suppose that the behavior of f can be expressed as O(f ,X ) = 0, where O
is some deterministic operator. Substituting PC expansions for f and X
into this operator and requiring the residual to be orthogonal to ψj for
j = 0 . . .P yields a set of coupled, deterministic equations for the PC
coefficients fk :〈

O

(
P∑

k=0

fk ψk ,

P∑
i=0

xi ψi

)
, ψj

〉
= 0, j = 0, . . . ,P.

This Galerkin approach is known as “intrusive” spectral projection due to
the reformulation of the forward problem, in contrast to “non-intrusive”
approaches in which the inner product is evaluated by sampling or
quadrature, thus requiring repeated evaluations of f (X ) corresponding to
different realizations of ξ.
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Polynomial Chaos Example

For simplicity assume nz = nd = nu = 1 and let g be the identity map.
Consider the ODE model

u̇ = −Zu, Z = Z (ξ) = ξ, ξ ∼ N (0, 1).

We apply a truncated Polynomial Chaos expansion in terms of orthogonal
Hermite polynomials Hj to the solution u:

u(t, ξ) =
P∑

k=0

uk(t)ψk(ξ).

Taking the Galerkin Projection onto span({ψi}P
i=0), the ODE becomes

u̇j + (j + 1)uj+1 + uj−1 = 0, j = 0, . . . ,P,

Letting ~u represent the vector containing u0(t), . . . , uP(t) the system of
ODEs can be written

~̇u + M~u = ~0.
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Polynomial Chaos Example

Comments on PC Stochastic Galerkin

While the coupled system is larger than the original model, it need
only be solved once to determine the coefficients involved in the
approximate model G̃ .

Note also that this approximate model is independent of the
parameters of the prior density of Z , it merely depended on the choice
of type distribution of ξ.
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PC Stochastic Galerkin Generalizations

Generalizations

For arbitrary observation map g , recalling our notation
G (Z ) = g ◦ u(Z ), we define instead the PC expansion
G̃ =

∑P
i=0 gkψ(ξ) and compute gk using the proceedure above.

If polynomials of degree less than or equal to N are used, then the
number of terms in the expansion is P = (nz+N)!

nz ! N! − 1.

If the prior is such that it is difficult to write a PC expansion for Z
then a change of variables Z = h(ξ) may be assumed where the
support of the density of h(ξ) includes that of the prior. The change
of variables formula says that

πξ(ξ) = πz(h(ξ))| det(Dh(ξ))|

where Dh is the Jacobian matrix of h. This imposes that h be a
diffeomorphism.
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PC Stochastic Galerkin Convergence

Convergence

To establish convergence of the PC-based Bayesian algorithm, we
quantify the difference between the approximate posterior π̃d

N

computed with an Nth degree PC expansion and the exact posterior
πd , via Kullback-Leibler divergence.

The Kullback-Leibler divergence (KLD) measures the difference
between probability distributions and is defined, for probability density
functions π1(z) and π2(z), as

D(π1‖π2) :=

∫
π1(z) log

π1(z)

π2(z)
dz .

It is always non-negative, and D(π1‖π2) = 0 when π1 = π2.
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PC Stochastic Galerkin Convergence

Theorem ([2] 4.1)

Under certain assumptions, if

‖G (Z )− GN(Z )‖L2
πZ
≤ C N−α, α > 0

then
D(π̃d

N‖πd) ≤ C N−α, α > 0.

Thus if the forward problem converges exponentially fast, the inverse
problem converges at least as fast.

A similar result holds for GQ
N (Z ) where Q denotes the order of the

numerical quadrature rule used in Stochastic Collocation.
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PC Stochastic Galerkin Convergence

[2] Fig. 2. Convergence of the forward model G in L2 norm, and posterior
density πd in Kullback-Leibler distance D(π̃d

N‖πd) from the direct
posterior to the approximate posterior, versus N.
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PC Stochastic Galerkin Example [1]

Consider the dimensionless diffusion model on a 2D square domain

∂u

∂t
= ∇2u +

s

2πσ2
exp

(
−‖~q − ~x‖2

2σ2

)
[1− H(t − τ)], (0,T ]× S

∇u · n̂ = 0, ∂S

u(~x , 0) = 0, S

where S = [0, 1]× [0, 1], t ∈ [0,T ]. The gaussian source term is active on
a finite interval of time [0, τ ], centered at ~q with size and strength given
by σ and s, respectively.
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PC Stochastic Galerkin Example [1]

[1] Fig. 1. Scalar field u in the deterministic forward problem for
(q1, q2) = (0.25, 0.75) at (a) t = 0.05 and (b) t = 0.15.

Note that for later times the inverse problem becomes more ill-posed
since as the solution flattens it becomes more dominated by noise.
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PC Stochastic Galerkin Example [1]

Each of q, σ, s, τ could be parameters to be determined.

In this example we seek to infer the location of the source
q = (q1, q2) (with all other parameters known) based on (noisy)
observations of u at several locations over a few discrete times,

d t = {u(~xi , tj)}M,N
i ,j=1, MN = nd

= {u(~x`, t`)}nd
`=1

We assume in advance only that q1 and q2 ∈ [0, 1], thus the prior is
U[0, 1] for each component.

We further assume that errors between “real-world” measurements
and model predictions (encapsulating measurement error, model error
and simulation error) are i.i.d. N (0, ζ2) with known ζ.
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PC Stochastic Galerkin Example [1]

Given that the prior is a uniform distribution, we choose to employ
Legendre Polynomials.

We further define “standard” random variables ξi ∼ U[−1, 1], i = 1, 2
so that q = h(ξ) defines the (linear) map from [−1, 1] to [0, 1] for
each component of q

hi = 0.5 + 0.5ξi .

Then each component of q can be written in a PC expansion,

qi = gi (ξ) =
P∑

k=0

gik ψk(ξ)

(where only two are actually needed).

Using stochastic Galerkin method we obtain a PC expansion for each
prediction of the scalar field G̃`(ξ) which replaces G` in the likelihood
function.
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PC Stochastic Galerkin Example [1]

[1] Fig. 16. Contours of the posterior denisty. Solid lines are obtained with
direct evaluations of the forward problem and dashed lines from

Uniform-Legendre PC expansions with p = 9.
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PC Stochastic Galerkin Example [1]

[1] Fig. 7. Kullback-Leibler distance D(π̃‖π) from the direct posterior to
the PC-reformulated posterior, versus p.
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PC Stochastic Galerkin Distributed Parameters [3]

Distributed Parameters

Consider that the unknown parameters are actually functions of space
or time, i.e., spatial or temporal fields (distributed parameter
estimation).

Estimating fields rather than parameters typically increases the
ill-posedness of the inverse problem, since one is recovering an
infinite-dimensional object from finite amounts of data.

One approach is to discretize the field on a finite set of grid points,
however this presents difficulties for stochastic spectral approaches as
the size of a PC basis does not scale favorably with dimension.
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PC Stochastic Galerkin Distributed Parameters [3]

Karhunen-Loève (K-L) expansion

Ideally, one should employ a representation that reflects how much
information is truly required to capture variation among realizations
of the unknown field.

To this end, they introduce a Karhunen-Loève (K-L) expansion based
on the prior random process, transforming the inverse problem to
inference on a truncated sequence of weights of the K-L modes.

In particular, the K-L representation of a scaled Gaussian process prior
defines the uncertainty that is propagated through the forward model
with a stochastic Galerkin scheme.

The deterministic forward model, originally specified by (a system of)
partial differential equations, is thus replaced by stochastic PDEs.
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The deterministic forward model, originally specified by (a system of)
partial differential equations, is thus replaced by stochastic PDEs.
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PC Stochastic Galerkin Distributed Parameter Example

Let M(x) be a real-valued field endowed with a with a Gaussian
process prior with mean µ(x) and covariance kernel C , we denote this
as M ∼ GP(µ,C ).

Introduce the corresponding K-term K-L representation of M

MK (x , ω) = µ(x) +
K∑

k=1

√
λk ck(ω) φk(x).

The eigenvalues λk and eigenfunctions φk satisfy∫
C (x1, x2) φk(x2)dx2 = λk φk(x1).

In this example the ck are Gaussian and independent, ck ∼ N (0, 1).
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PC Stochastic Galerkin Distributed Parameter Example

Consider the following model problem

∂u

∂t
=

∂

∂x

(
v(x)

∂u

∂x

)
+ S(x , t)

where S is a known gaussian source term active on a finite interval of
time, and v(x) is to be inferred from (noisy) observations of u at
discrete points in space and time.

Taking a truncated K-L expansion of v leaves coefficients ck (each
with Gaussian prior) to be determined conditioned on data.

Treat the vector of ck as ~c = g(ξ) and proceed as before with PC and
Galerkin projection to solve the stochastic forward problem.
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PC Stochastic Galerkin Distributed Parameter Example

[3] Fig 8b. K-L-based inversion of the sinusoidal log-diffusivity profile,
K = 10.
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