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Maxwell’s Equations

Maxwell’s Equations

∂D

∂t
= ∇×H− J in Ω× (0,T]

∂B

∂t
= −∇× E in Ω× (0,T]

∇ ·D = ∇ · B = 0 in Ω× (0,T]

E(0, x) = E0(x); H(0, x) = H0(x) in Ω

E× n = 0 on ∂Ω, t ∈ (0,T]

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂Ω
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Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Maxwell’s Equations Dispersive Media

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.

Prof. Gibson (OSU) PC-FDTD AMCS 2013 6 / 41



Maxwell’s Equations Dispersive Media
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Figure: Real part of ε(ω), ε, or the permittivity [GLG96].
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Maxwell’s Equations Dispersive Media

Dry skin data
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Maxwell’s Equations Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1− ωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)
q = [εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)1−α
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Maxwell’s Equations Polarization Models

Dispersive Dielectrics

Debye Material

Input is five cycles (periods) of a sine curve.
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Maxwell’s Equations Polarization Models

Dispersive Media
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Figure: Debye model simulations.
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Maxwell’s Equations Polarization Models

Scalar Equations in Two Dimensions (cont)

Letting H = Hz , we have the 2D Maxwell-Debye TE scalar equations:

∂H

∂t
=

1

µ0

(
∂Ex

∂y
− ∂Ey

∂x

)
,

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂Px

∂t
,

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂Py

∂t
,

∂Px

∂t
=
ε0εd
τ

Ex −
1

τ
Px ,

∂Py

∂t
=
ε0εd
τ

Ey −
1

τ
Py .
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Maxwell’s Equations Polarization Models

Stability Estimates for Maxwell-Debye

Theorem (Li2010)

For Ω ∈ R2, let E, P, and H be the solutions to the 2D Maxwell-Debye
TE scalar equations with PEC boundary conditions. Then the Debye
model satisfies the stability estimate

E(t) ≤ E(0)

where the energy is defined as

E(t) = ||√µ0H(t)||2L2 + ||
√
ε0ε∞E(t)||2L2 +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

P(t)

∣∣∣∣∣∣∣∣2
L2

.

and the L2(Ω) norm is defined as

‖U(t)‖2
2 =

∫
Ω
|U(z , t)|2dz .
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Maxwell’s Equations Distribution of Relaxation Times

Motivation for Distributions

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

Debye is efficient to simulate, but does not represent permittivity well

Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the known
existence of multiple physical mechanisms: multi-pole debye (like
stair-step approximation)

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]

Empirical measurements suggest a log-normal or Beta distribution
[Wagner1913] (but uniform is easier)

Using Mellin transforms, can show Cole-Cole corresponds to a
continuous distribution
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Maxwell’s Equations Fit to dry skin data with uniform distribution
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Figure: Real part of ε(ω), ε, or the permittivity [REU2008].
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Maxwell’s Equations Fit to dry skin data with uniform distribution
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].
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Maxwell’s Equations Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider

h(t, x; F ) =

∫
Q

g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x) =

∫ t

0
h(t − s, x; F )E(s, x)ds.
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Maxwell’s Equations Distribution of Parameters

Random Polarization

Alternatively we can define the random polarization P(t, x; τ) to be the
solution to

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Dispersion Analysis

Maxwell-Random Debye system

In a polydisperse Debye material, we have

ε0ε∞
∂E

∂t
= ∇×H− P

∂t
(1a)

∂H

∂t
= − 1

µ0
∇× E (1b)

τ
∂P
∂t

+ P = ε0εdE (1c)

with

P(t, x) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Dispersion Analysis Dispersion Relation

Theorem (Gibson2013)

The dispersion relation for the system (1) is given by

ω2

c2
ε(ω) = |~k |2

where the complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1− iωτ

]
Here, ~k is the wave number and c = 1/

√
µ0ε0 is the speed of light in

freespace.
Note: for a uniform distribution, this has an analytic form since

E
[

1

1− iωτ

]
=

1

2τrω

[
arctan(ωτ)− i

1

2
ln
(
1 + (ωτ)2

)]τ=τm+τr

τ=τm−τr
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Dispersion Analysis Dispersion Relation

Proof: (for 2D)

Letting H = Hz , we have the 2D Maxwell-Random Debye TE scalar
equations:

∂H

∂t
=

1

µ0

(
∂Ex

∂y
− ∂Ey

∂x

)
, (2a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂Px

∂t
, (2b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂Py

∂t
, (2c)

τ
Px

∂t
+ Px = ε0εdEx (2d)

τ
Py

∂t
+ Py = ε0εdEy . (2e)
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Dispersion Analysis Dispersion Relation

Proof: (cont.)

Assume plane wave solutions of the form

V = Ṽ e(kxx+kyy−ωt)

and let ~x = (x , y)T and ~k = (kx , ky )T . Then (2) becomes

−iωH̃ =
1

µ0

(
iky Ẽx − ikx Ẽy

)
, (3a)

−ε0ε∞iωẼx = iky H̃ − (−iωP̃x), (3b)

−ε0ε∞iωẼy = −ikx H̃ − (−iωP̃y ), (3c)

−iωτ P̃x + P̃x = ε0εd Ẽx (3d)

−iωτ P̃y + P̃y = ε0εd Ẽy . (3e)
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Dispersion Analysis Dispersion Relation

Proof: (cont.)

By (3d) we have

P̃x = E[P̃x ] = ε0εd ẼxE
[

1

1− iωτ

]
(4)

Substituting into (3b) we have

−ε0ε∞iωẼx = iky H̃ +

(
iωε0εd ẼxE

[
1

1− iωτ

])
,

−iωε0

(
ε∞ + εdE

[
1

1− iωτ

])
Ẽx = iky H̃,

−iωε0ε(ω)Ẽx = iky H̃. (5)

Similarly for combining (3e) and (3c)

−iωε0ε(ω)Ẽy = −ikx H̃. (6)
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Dispersion Analysis Dispersion Relation

Proof: (cont.)

Substituting both (5) and (6) into (3a) yields

−iωH̃ =
1

µ0

(
(iky )2

−iωε0ε(ω)
+

(ikx)2

−iωε0ε(ω)

)
H̃,

−(iω)2µ0ε0ε(ω) = k2
y + k2

x

ω2

c2
ε(ω) = |~k |2

The proof is similar in 1 and 3 dimensions.

The exact dispersion relation will be compared with a discrete
dispersion relation to determine the amount of dispersion error.
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Dispersion Analysis Discrete Dispersion

Finite Difference Methods

The Yee Scheme

In 1966 Kane Yee originated a set of finite-difference equations for the
time dependent Maxwell’s curl equations.

The finite difference time domain (FDTD) or Yee algorithm solves for
both the electric and magnetic fields in time and space using the
coupled Maxwell’s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.

Approximates first order derivatives very accurately by evaluating on
staggered grids.
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Dispersion Analysis Discrete Dispersion

Yee Scheme in One Space Dimension

Staggered Grids: The electric field/flux is evaluated on the primary
grid in both space and time and the magnetic field/flux is evaluated
on the dual grid in space and time.

The Yee scheme is

H|n+ 1
2

`+ 1
2

− H|n−
1
2

`+ 1
2

∆t
= − 1

µ

E |n`+1 − E |n`
∆z

E |n+1
` − E |n`

∆t
= −1

ε

H|n+ 1
2

`+ 1
2

− H|n+ 1
2

`− 1
2

∆z

-�h

tn+ 1
2

tn+1

� � � � � �

v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2
. . .
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Dispersion Analysis Discrete Dispersion

The FDTD or Yee grid in 1D
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Dispersion Analysis Discrete Dispersion

This gives an explicit second order accurate scheme in both time and
space.

It is conditionally stable with the CFL condition

ν =
c∆t

h
≤ 1√

d

where ν is called the Courant number and c = 1/
√
εµ and d is the

spatial dimension.

The initial value problem is well-posed and the scheme is consistent
and stable. The method is convergent by the Lax-Richtmyer
Equivalence Theorem.

The Yee scheme can exhibit numerical dispersion.

Dispersion error can be reduced by decreasing the mesh size or
resorting to higher order accurate finite difference approximations.
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Dispersion Analysis Discrete Dispersion

Extensions of the Yee Scheme to Dispersive Media

The ordinary differential equation for the polarization is discretized
using an averaging of zero order terms.

The resulting scheme remains second-order accurate in both time and
space with the same CFL condition.

However, the Yee scheme for the Maxwell-Debye system is now
dissipative in addition to being dispersive.
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Dispersion Analysis Discretization

Yee Scheme for Maxwell-Debye System (in 1D)

ε0ε∞
∂E

∂t
= −∂H

∂z
− ∂P

∂t

µ0
∂H

∂t
= −∂E

∂z

τ
∂P

∂t
= ε0εdE − P

become

ε0ε∞
E

n+ 1
2

j − E
n− 1

2
j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

P
n+ 1

2
j − P

n− 1
2

j

∆t

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z

τ
P

n+ 1
2

j − P
n− 1

2
j

∆t
= ε0εd

E
n+ 1

2
j + E

n− 1
2

j

2
−

P
n+ 1

2
j + P

n− 1
2

j

2
.
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Dispersion Analysis Discretization

Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the
(deterministic) Maxwell-Debye, the discrete dispersion relation can be
written

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) = ε∞ + εd

(
1

1− iω∆τ∆

)
with discrete representations of ω and τ given by

ω∆ =
sin (ω∆t/2)

∆t/2
, τ∆ = sec(ω∆t/2)τ
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Dispersion Analysis Discretization

Discrete Debye Dispersion Relation (cont.)

The quantity K∆ is given by

K∆ =
sin (k∆z/2)

∆z/2

in 1D and is related to the symbol of the discrete first order spatial
difference operator by

iK∆ = F(D1,∆z).

In this way, we see that the left hand side of the discrete dispersion relation

ω2
∆

c2
ε∆(ω) = K 2

∆

is unchanged when one moves to higher order spatial derivative
approximations (Bokil-Gibson2011) or even higher spatial dimension.
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Dispersion Analysis Discretization

Polynomial Chaos

Apply Polynomial Chaos (PC) method to approximate the random
polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = τrξ + τm

resulting in
(τr M + τmI )~̇α + ~α = ε0εdE ê1

or
A~̇α + ~α = ~f .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ; F ) = E[P] ≈ α0(t, x).
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Dispersion Analysis Discretization

The discretization of the PC system

A~̇α + ~α = ~f

is performed similarly to the deterministic system in order to preserve
second order accuracy. Applying second order central differences to

~α
n+ 1

2
j = ~α(tn, zj):

A
~α

n+ 1
2

j − ~αn− 1
2

j

∆t
+
~α

n+ 1
2

j + ~α
n− 1

2
j

2
=
~f

n+ 1
2

j + ~f
n− 1

2
j

2
. (7)

Couple this with the equations from above:

ε0ε∞
E

n+ 1
2

j − E
n− 1

2
j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

α
n+ 1

2
0,j − α

n− 1
2

0,j

∆t
(8a)

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z
. (8b)
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Dispersion Analysis Discretization

Energy Decay and Stability

Theorem (Gibson2013)

For n ≥ 0, let Un = [Hn,En
x ,E

n
y , α

n
0,x , . . . , α

n
0,y , . . .]

T be the solutions of
the 2D TE mode Maxwell-PC Debye FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
c∆t ≤ ∆z/

√
2, then there exists the energy decay property

En+1
h ≤ En

h

where

En
h =

∣∣∣∣∣∣√µ0H
n
∣∣∣∣∣∣2

H
+ ||
√
ε0ε∞En||2E +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

~αn

∣∣∣∣∣∣∣∣2
α

.

Note: E[‖P‖2] = ‖E[P]2 + Var(P)‖2 ≈ ‖~α‖2
α

Energy decay implies that the method is (conditionally) stable and hence
convergenent.
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Dispersion Analysis Discretization

Energy Decay and Stability (cont.)

Proof.

Involves recognizing that

(En
h )2 = µ0‖H

n‖2
H + ε0ε∞(En,AhEn)E +

1

ε0εd
(~αn − E ê1,A

−1(~αn − E ê1))2
α

with Ah positive definite when the CFL condition is satisfied, and A−1 is
always positive definite (eigenvalues between τm − τr and τm + τr ).
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Dispersion Analysis Discretization

Theorem (Gibson2013)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
in (8) and (7) is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) := ε∞ + εd êT
1 (I − iω∆A∆)−1 ê1

and the discrete PC matrix is given by

A∆ := sec(ω∆t/2)A.

The definitions of the parameters ω∆ and K∆ are the same as before.
Recall the exact complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1− iωτ

]
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Dispersion Analysis Discretization

Proof: (for 1D)

Assume plane wave solutions of the form

V n
j = Ṽ ei(kj∆z−ωn∆t)

and
αn
`,j = α̃`ei(kj∆z−ωn∆t)

Substitute into (8b)

µ0H̃ei(k(j+ 1
2

)∆z−ω(n+ 1
2

)∆t)
(
e
−iω∆t

2 − e
iω∆t

2

)
/∆t

= Ẽei(k(j+ 1
2

)∆z−ω(n+ 1
2

)∆t)
(
e

ik∆z
2 − e

−ik∆z
2

)
/∆z

µ0H̃

(
−2i

∆t
sin(ω∆t/2)

)
= −Ẽ

(
2i

∆z
sin(k∆z/2)

)
(
µ0∆z

∆t

)
H̃ sin(ω∆t/2) = Ẽ sin(k∆z/2) (9)
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Dispersion Analysis Discretization

Proof: (cont.)

Similarly (8a) yields(
ε0ε∞

∆z

∆t
Ẽ +

∆z

∆t
α̃0

)
sin(ω∆t/2) = H̃ sin(k∆z/2) (10)

and (7) yields

Aα̃

(
−2i

∆t
sin(ω∆t/2)

)
+ cos(ω∆t/2)α̃ = ε0εd cos(ω∆t/2)Ẽ ê1 (11)

which implies
α̃0 = êT

1 (I − iω∆A∆)−1 ê1εoεd Ẽ . (12)

The rest of the proof follows as before.

Note that the same relation holds in 2 and 3D as well as with higher order
accurate spatial difference operators.
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Dispersion Analysis Discretization

Dispersion Error

We define the phase error Φ for any method applied to a particular model
to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (13)

where the numerical wave number k∆ is implicitly determined by the
corresponding dispersion relation and kEX is the exact wave number for
the given model.

We wish to examine the phase error as a function of ω∆t in the
range [0, π].

We note that ω∆t = 2π/Nppp, where Nppp is the number of points
per period, and is related to the number of points per wavelength as,
Nppw =

√
ε∞νNppp.

We assume the following parameters which are appropriate constants
for modeling water Debye type materials:

ε∞ = 1, εs = 78.2, τm = 8.1× 10−12 sec, τr = 0.5τm.
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Dispersion Analysis Discretization
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