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Main Topological Questions

For the purposes of this talk, all spaces will be –
subspaces of Rn for some n.

Two Main Questions in Topology:

Characterizing or Classifying Certain Spaces,
Classes of Spaces, or Maps

Determining when Embeddings of One Space in
Another are Equivalent
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Characterization Example

The circle is the only space that has the following property:

No single point separates;

each pair of points separates.

D. Garity (Oregon State University) Cantor Sets Oct. 2014 2 / 27



Classification Examples

Ever compact connected surface is either a 2-sphere,
an n-holed torus, or the connected sum of n projective
planes.

These surfaces are distinguished by their orientability
and Euler characteristic.

Every map from S1 to itself is homotopic to one of the
maps fi given by fi(z) = z i .
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Equivalent Embeddings

As a specific example of the second question, given a
subspace A of Rn, and two embeddings

f : A→ Rn and g : A→ Rn,

when should we view these embeddings as equivalent, or
as topologically the same?

A
g
  

f
~~

Rn Rn
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Knots

For example, consider knots in R3 as embeddings of
circles:
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Definition of Equivalence

Def. Embeddings f : A→ Rn and g : A→ Rn are
equivalent if there is a homeomorphism h : Rn→ Rn such
that h ◦ f = g.

A
g
  

f
~~

Rn h // Rn

Theorem: Any two embeddings of a circle in R2 are
equivalent.

This is known as the Schönflies Theorem, one
consequence of which is the Jordan Curve Theorem.
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The Cantor Set

The Standard Middle Thirds Cantor Set C in R2 is
defined as follows: S0 = [0,1], S1 =

[
0, 1

3

]
∪
[2

3 ,1
]

Inductively, Sn has 2n closed intervals of length 1
3n .

To get Sn+1, delete the open middle third of each closed
interval in Sn.

Def. C =
∞⋂

i=0
Si .

Cantor Set in Base Three: Equivalently,

C =

{
∞

∑
i=1

ai

3i

∣∣∣∣∣ai ∈ {0,2}
}
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Stages in Construction

First 5 Stages of Cantor Set
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Characterization

Topologically, the Cantor Set is characterized as follows:

Theorem:
A space X is homeomorphic to the Cantor set C
if and only if X is

totally disconnected
(every component is a single point)
compact
every point is a limit point

D. Garity (Oregon State University) Cantor Sets Oct. 2014 9 / 27



Procedure for Producing Cantor Sets

The preceding characterization allows us to show that the
following procedure always yields a space homeomorphic
to the Cantor Set:

Let A1 be a finite collection of pairwise disjoint compact
subsets of Rn.

Assume that Ak is a finite collection of pairwise disjoint
nonempty compact subsets of Rn so that each set in Ak is
contained in some element of Ak−1 and so that each
element of Ak−1 contains at least two elements of Ak .
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Procedure, Continued

Theorem:
If the diameter of the sets in Ak goes to 0 as k → ∞, then
X = ∩∞

k=1Ak is a Cantor set.

One pattern that leads to a non-standard Cantor Set in R3:
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Properties of the Cantor Set

Every compact metric space is the continuous image
of a subspace of C
C contains a copy of every 0 dimensional space
C ∼= ∏

∞
i=1{0,1}

∏
∞
i=1 C ∼= C

The measure of the removed intervals from [0,1] to

obtain C is 1.
(

∑
∞
i=0

2i

3i+1 = 1
)

C is uncountable
C is homogenous (in fact there is a self
homeomorphism taking any countable dense subset
to any other such subset)
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More Properties

There is a continuous nondecreasing function f from
C onto I = [0,1].
There is a continuous function f ∞ from

C =
∞

∏
i=1

C onto
∞

∏
i=1

I = Iω.

f

(
∞

∑
i=1

ni

3i

)
=

∞

∑
i=1

ni

2 ·2i
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More Properties (Analysis)
There is a continuous nondecreasing function from I onto I
that is constant on I−C. So there is a continuous function
from I to I, with derivative 0 almost everywhere, that is not
constant.
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Yet More Properties

Any two copies of C in R2 are equivalent
There are uncountably many inequivalent copies of C
in R3.
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Higher Dimensional Analogs

Note: For each positive integer n, there is an
n-dimensional analog of the Cantor Set, µn in R2n+1

characterized by:
compact
n-dimensional
n−1 connected (Cn−1)

locally n−1 connected (LCn−1)

Disjoint n cells property
µn has analogous properties to C, in particular, it contains
a copy of every n-dimensional space.
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The One Dimensional Universal Space µ1

µ1 is the Menger cube or Menger sponge.
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Closeup View
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Inequivalent Cantor Sets

Sher (1968) showed that any two constructions as above in
R3 that yield equivalent Cantor Sets must have the same
number of tori at each stage.

How to get inequivalent such Cantor sets?

Vary the number of tori at each stage.

What if numbers are kept the same?
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Links with Twists

LIPSCHITZ HOMOGENEOUS WILD CANTOR SETS 11

Closed chains with twists: Consider the case of a linked chain forming
a loop with 2n components, with k positive half twists, where k is even, in
one of the links,LCk

2n.
Orient as in the previous case. By considering the diagram,

Figure 3

one can make the following computations.

X(LCk
2n) = A−8X(LCk−2

2n )+A−4(A−2−A2)X(C2n+1), or

= A−8X(LCk−2
2n )+A−4(A−2−A2)(−A−4−A4)2n

The starting point here is when k = 0, LC0
2n = LC2n

The maximum exponent is the max{max .exp(LC2k−2
2n )−8,8n−2}

The minimum exponent is the min{min .exp(LC2k−2
2n )−8,−8n−6}

An easy induction now shows that span(X(LC2k
2n)) = 16n−4+4k, distin-

guishing topologically all the chains with 2n links and different numbers of
even twists. This completes the proof of the lemma. �

Figure 4 below shows a large torus with 60 smaller similar tori linked in a
simple chain inside. Each of the smaller tori is rotated by π/2 radians from
the previous one. The figure at the right in Figure 4 show an enlarged view
of 5 of the smaller tori.

Figure 4
Figure 5 below shows a large torus with 60 smaller similar tori linked in a

simple chain inside. Each of the smaller tori is rotated by π/4 radians from
the previous one. The figure at the right in Figure 5 show an enlarged view
of 5 of the smaller tori.
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Figure 5

5. OTHER RESULTS AND QUESTIONS

Using techniques similar to those used in the proof of Theorem 1, we can
prove the following result. Note that in this case, we assume that G is of the
form Z p ×Z q for some positive integers p and q.

Theorem 3. For each i, 1 ≤ i ≤ 2, suppose that f i : Rn →Rn is a Lipschitz
homeomorphism and
(i) f i|Rn−Int(X) = id
(ii) f 1(X (a,b)) = X (a+1,b) for (a,b) ∈ G,
(iii) f 2(X (a,b)) = X (a,b+1) for (a,b) ∈ G and the following diagrams com-
mute

X
S (a,b) ↙ ↘ S (a+1,b)

X (a,b)
f 1→ X (a+1,b)

X
S (a,b) ↙ ↘ S (a,b+1)

X (a,b)
f 2→ X (a,b+1)

Then |(S,T)| is Lipschitz homogeneous in Rn.

The construction suggested by the previous theorem is similar to the
Blankinship construction for wild Cantor sets in R4.

Question: Can the previous theorem be used to show that a Lipschitz ho-
mogeneous wild Cantor set in R4 exists? This would require a more careful
Blankinship type construction [Bla51] in which the successive stages in the
construction were self similar to the original stage.

6. ACKNOWLEDGEMENTS

The authors would like to thank the referee for helpful suggestions. The
first author was supported in part by NSF grants DMS 0139678 and DMS
0104325. The second and third author were supported in part by MESS

D. Garity (Oregon State University) Cantor Sets Oct. 2014 21 / 27



Close Up View

L
IP

SC
H

IT
Z

H
O

M
O

G
E

N
E

O
U

S
W

IL
D

C
A

N
T

O
R

SE
T

S
11

C
lo

se
d

ch
ai

ns
w

it
h

tw
is

ts
:

C
on

si
de

r
th

e
ca

se
of

a
lin

ke
d

ch
ai

n
fo

rm
in

g
a

lo
op

w
ith

2n
co

m
po

ne
nt

s,
w

ith
k

po
si

tiv
e

ha
lf

tw
is

ts
,w

he
re

k
is

ev
en

,i
n

on
e

of
th

e
lin

ks
,L

C
k 2n

.
O

ri
en

ta
s

in
th

e
pr

ev
io

us
ca

se
.

B
y

co
ns

id
er

in
g

th
e

di
ag

ra
m

,

F
ig

ur
e

3

on
e

ca
n

m
ak

e
th

e
fo

llo
w

in
g

co
m

pu
ta

tio
ns

.

X
(L

C
k 2n
)
=

A
−

8 X
(L

C
k−

2
2n

)
+

A
−

4 (
A
−

2
−

A
2
)X

(C
2n

+
1)

,o
r

=
A
−

8 X
(L

C
k−

2
2n

)
+

A
−

4 (
A
−

2
−

A
2
)(
−A

−
4
−

A
4
)2n

T
he

st
ar

tin
g

po
in

th
er

e
is

w
he

n
k
=

0,
LC

0 2n
=

LC
2n

T
he

m
ax

im
um

ex
po

ne
nt

is
th

e
m

ax
{m

ax
.e

xp
(L

C
2k
−

2
2n

)
−

8,
8n

−
2}

T
he

m
in

im
um

ex
po

ne
nt

is
th

e
m

in
{m

in
.e

xp
(L

C
2k
−

2
2n

)
−

8,
−8

n
−

6}
A

n
ea

sy
in

du
ct

io
n

no
w

sh
ow

s
th

at
sp

an
(X

(L
C

2k 2n
))
=

16
n
−

4
+

4k
,d

is
tin

-
gu

is
hi

ng
to

po
lo

gi
ca

lly
al

lt
he

ch
ai

ns
w

ith
2n

lin
ks

an
d

di
ff

er
en

tn
um

be
rs

of
ev

en
tw

is
ts

.T
hi

s
co

m
pl

et
es

th
e

pr
oo

f
of

th
e

le
m

m
a.

�
Fi

gu
re

4
be

lo
w

sh
ow

s
a

la
rg

e
to

ru
s

w
ith

60
sm

al
le

rs
im

ila
rt

or
il

in
ke

d
in

a
si

m
pl

e
ch

ai
n

in
si

de
.E

ac
h

of
th

e
sm

al
le

r
to

ri
is

ro
ta

te
d

by
π/

2
ra

di
an

s
fr

om
th

e
pr

ev
io

us
on

e.
T

he
fig

ur
e

at
th

e
ri

gh
ti

n
Fi

gu
re

4
sh

ow
an

en
la

rg
ed

vi
ew

of
5

of
th

e
sm

al
le

r
to

ri
.

F
ig

ur
e

4
Fi

gu
re

5
be

lo
w

sh
ow

s
a

la
rg

e
to

ru
s

w
ith

60
sm

al
le

rs
im

ila
rt

or
il

in
ke

d
in

a
si

m
pl

e
ch

ai
n

in
si

de
.E

ac
h

of
th

e
sm

al
le

r
to

ri
is

ro
ta

te
d

by
π/

4
ra

di
an

s
fr

om
th

e
pr

ev
io

us
on

e.
T

he
fig

ur
e

at
th

e
ri

gh
ti

n
Fi

gu
re

5
sh

ow
an

en
la

rg
ed

vi
ew

of
5

of
th

e
sm

al
le

r
to

ri
.

12
D

E
N

N
IS

G
A

R
IT

Y
,D

U
ŠA
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Other types of Embeddings

There are nonstandard Cantor sets C in R3:
that have simply connected complement,
that are rigidly embedded (the only self
homeomorphism of C that extends to a
homeomorphism of R3 is the identity), and
that have both of the above properties
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Relation to Algebra

The homogeneity group of C ⊂ R3 is group of homeo-
morphisms of C that extend to homeomorphisms of R3.

The standardly Cantor, at one extreme, is strongly
homeogeneously embedded. That is, the homogeneity
group is the full group of self-homeomorphisms of the
Cantor set, an extremely rich group (there is such a
homeomorphism taking any countable dense set to any
other).

At the other extreme are rigidly embedded Cantor sets, i.e.
those Cantor sets for which only the identity
homeomorphism extends.
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Result, Conjecture

Theorem: (G, Repovš-2013) For every finitely generated
Abelian group G, there is a Cantor set CG in R3 with
homogeneity group G.

Conjecture: For every finitely generated group G, there is
a Cantor set CG in R3 with homogeneity group G.
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Dimension - Topological and Hausdorff

Every Cantor set has topological dimension 0.

The standard Cantor set in R has Hausdorff dimension

ln(2)
ln(3)

∼ 0.6309 . . .
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Iterated Function Systems

The Cantor set is the invariant set of the iterated function
system:

f1(x) =
x
3

f2(x) =
x
3
+

2
3
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