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Main Result

For every finitely generated abelian group G, we

construct an unsplittable Cantor set CG in S 3 with

embedding homogeneity group isomorphic to G.

(Pacific J. of Math., 2014)
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Terminology

C ⊂ S 3 is unsplittable if no 2-sphere in S 3−C

separates C.

Cantor sets C and D in S 3 are equivalent if there is a

self homeomorphism of S 3 taking C to D.

A Cantor set C ⊂ S 3 is rigidly embedded if the only

self homeomorphism of C that extends to S 3 is the

identity.
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Tools

Carefully constructed Antoine type Cantor sets made

up of rigid pieces.

A generalization of an Antoine Cantor set using

infinite chains.

Results about local genus of points in Cantor sets.

Results about geometric index.
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Relation to 3-Manifolds

Each Cantor set C in S 3 has complement an open

3-manifold M 3 with end set C.

Properties of the embedding of the Cantor set give rise to

properties of the corresponding complementary 3-manifold

M 3.

e.g. unsplittable⇐⇒ irreducible

We phrase things in terms of Cantor sets in this talk.

May 7, 2014 Homogeneity Groups of Cantor sets in S 3 4/33



Relation to 3-Manifolds

Each Cantor set C in S 3 has complement an open

3-manifold M 3 with end set C.

Properties of the embedding of the Cantor set give rise to

properties of the corresponding complementary 3-manifold

M 3.

e.g. unsplittable⇐⇒ irreducible

We phrase things in terms of Cantor sets in this talk.

May 7, 2014 Homogeneity Groups of Cantor sets in S 3 4/33



Relation to 3-Manifolds

Each Cantor set C in S 3 has complement an open

3-manifold M 3 with end set C.

Properties of the embedding of the Cantor set give rise to

properties of the corresponding complementary 3-manifold

M 3.

e.g. unsplittable⇐⇒ irreducible

We phrase things in terms of Cantor sets in this talk.

May 7, 2014 Homogeneity Groups of Cantor sets in S 3 4/33



Definitions

C ⊂ S 3

The embedding homogeneity group of C is the group

of homeomorphisms of C that extend to

homeomorphisms of S 3.

The homogeneity group of the end set is the group of

homeomorphisms of the end set C that extend to

homeomorphisms of the open 3-manifold M 3.
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Possibilities

The standardly embedded Cantor set is at one

extreme. The embedding homogeneity group is the

full group of self-homeomorphisms of the Cantor set.

(strongly homogenously embedded. )

At the other extreme are rigidly embedded Cantor

sets, i.e. those Cantor sets for which only the identity

homeomorphism extends.
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Question

Question: What types of groups can arise?

Symmetric Groups (splittable example).

Finitely Generated Abelian Groups (this talk).

Other groups?
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Antoine Cantor Sets

S0 ⊃ S1 ⊃ S2 ⊃ . . .

C ≡
∞⋂

i=0

Si
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Properties

Antoine Cantor sets are unsplittable and have non

simply connected complement.

[Sher ’68] If C and D are equivalent Cantor sets

defined by S0 ⊃ S1 ⊃ S2 . . . and T0 ⊃ T1 ⊃ T2 . . .,

then there is a homeomorphism of S 3 taking each Si

to Ti (i.e. The stages match up exactly!)

[Shilepsky ’74] This can be used to construct

(uncountable many) inequivalent Antoine rigid Cantor

sets.
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Homogeneity group Zp

Antoine Chain With Z6 Group Action
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Zp Construction

S0 an unknotted solid torus in

S 3.

{S(1,i) |1≤ i ≤ 4p}, an Antoine

chain of length 4p in S0, and

S1 =
4p⋃

i=1

S(1,i).
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Construction, Continued
Cj ,1≤ j ≤ 4, distinct rigid

Antoine Cantor sets in S(1, j).

Let r be a homeomorphism of

S 3, fixed on the complement of

S0, that takes S(1, j) to

S(1, j+4 mod 4p) for 1≤ j ≤ 4p.

Require that r p is the identity on

each S(1, i).
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Construction Continued, II

For 4k < i ≤ 4k +4, let Ci be

the rigid Cantor set in S(1, i)

given by r k(Ci−4k).

CZp =
⋃4p

i=1 Ci .
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Sketch of Proof

Any homeomorphism of S 3

taking C to C can be assumed

to take each S(1, i) to some S(1, j)

by Sher.

h|C(1,1) must = C(1,1+4k) for

some k , and so is r k |C(1,1)

Linking argument shows h|C(1,2)

must = C(1,2+4k).

This inductively shows h|C = rk .
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Homogeneity Group Z
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Genus 2 at w
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Z construction

0

1

2

-2

-1

w

T

T
T

T

T

0S

S0 a pinched torus.

{Ti |i ∈ Z} an infinite chain of linked
tori converging to w as i→±∞

ρ a homeomorphism of S 3 fixed
outside of S0 that takes Ti to Ti+3.

C0,C1,C2 distinct rigid Antoine
Cantor sets in T0,T1,T2

Ck ⊂ Tk = ρ j(Ck mod 3) (j = bk/3c).
C = ∪Ci ∪{w}
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Needed Results

w has local genus 2 in C, other points have local

genus 1.

Any homeomorphism of S 3 taking C to C fixes w .

Generalization of Sher type result to infinite chains.

Proof used local genus and geometric index.

Unsplittable
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Finitely Generated Abelian G
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Details on Sher’s Result

It suffices to show if C has two Antoine defining sequences

{Mi} and {Ni}, then there is a homeomorphism h as in the

the result.

Step 1: There is a general position homeomorphism h1,

fixed on C, so that h1(∂(M1)∪∂(M2)) is in general position

with ∂(N1)∪∂(N2). The curves of intersection of

h1(∂(M1)∪∂(M2))∩ (∂(N1)∪∂(N2)) can be eliminated by

a homeomorphism h2 also fixed on C.
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Details, II

Step 2: Let T be a component of h2 ◦h1(M1) and assume

T intersects a component S of N1.

Assume first: T ⊂ IntS.

If the geometric index of T in S is 0, then all components of

h2 ◦h1(M1) are in the interior of S. This is a contradiction

since there are points of C not in S. So the geometric

index of T in S is greater than or equal to 1.
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Details, III

Step 3: T cannot be contained in any component of N2.

So T contains all the components of N2 that are in S.

Each of these components has geometric index 0 in T , so

the union of these components has an even geometric

index in T .

This geometric index must then be 2 and the geometric

index of T in S must be 1.
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Details IV

If instead, IntT⊃ S, a similar argument works, reversing

the roles of S and T.

The net result is that it is possible to construct a

homeomorphism h ′3 taking the components of h2 ◦h1(M1)

to the components of N1. One now proceeds inductively,

matching up further stages in the constructions, obtaining

the desired homeomorphism h as a limit.
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Ideas on Non Abelian Case

Finitely generated Free Groups

Finite Groups with Cayley Graph automorphisms

coming from homeomorphisms of R3

Other finitely generated groups?
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Generalization - A Cayley Graph

May 7, 2014 Homogeneity Groups of Cantor sets in S 3 25/33



Generalization - A Cayley Graph- II
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Generalization - Vertices
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Generalization - Edges I
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Generalization - Edges II
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Generalization - Edges III
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Closeup at Vertiex
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Generalization - F2- Stage 4
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Generalization - F2- Stage 4
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