Homogeneity Groups of Cantor sets in S^3

Dennis J. Garity (joint work with Dušan Repovš)

For every finitely generated abelian group G, we construct an unsplittable Cantor set C_G in S^3 with embedding homogeneity group isomorphic to G. (Pacific J. of Math., 2014)

Terminology

C ⊂ S³ is unsplittable if no 2-sphere in S³ − C separates C.

Terminology

- C ⊂ S³ is unsplittable if no 2-sphere in S³ − C separates C.
- Cantor sets C and D in S³ are equivalent if there is a self homeomorphism of S³ taking C to D.

Terminology

- C ⊂ S³ is unsplittable if no 2-sphere in S³ − C separates C.
- Cantor sets C and D in S³ are equivalent if there is a self homeomorphism of S³ taking C to D.
- A Cantor set C ⊂ S³ is rigidly embedded if the only self homeomorphism of C that extends to S³ is the identity.

• Carefully constructed Antoine type Cantor sets made up of rigid pieces.

- Carefully constructed Antoine type Cantor sets made up of rigid pieces.
- A generalization of an Antoine Cantor set using infinite chains.

- Carefully constructed Antoine type Cantor sets made up of rigid pieces.
- A generalization of an Antoine Cantor set using infinite chains.
- Results about local genus of points in Cantor sets.

- Carefully constructed Antoine type Cantor sets made up of rigid pieces.
- A generalization of an Antoine Cantor set using infinite chains.
- Results about local genus of points in Cantor sets.
- Results about geometric index.

- Carefully constructed Antoine type Cantor sets made up of rigid pieces.
- A generalization of an Antoine Cantor set using infinite chains.
- Results about local genus of points in Cantor sets.
- Results about geometric index.

Each Cantor set *C* in S^3 has complement an open 3-manifold M^3 with end set *C*.

Each Cantor set *C* in S^3 has complement an open 3-manifold M^3 with end set *C*.

Properties of the embedding of the Cantor set give rise to properties of the corresponding complementary 3-manifold M^3 .

Each Cantor set *C* in S^3 has complement an open 3-manifold M^3 with end set *C*.

Properties of the embedding of the Cantor set give rise to properties of the corresponding complementary 3-manifold M^3 .

e.g. unsplittable \iff irreducible

We phrase things in terms of Cantor sets in this talk.

Definitions

$$\mathcal{C}\subset \mathcal{S}^3$$

 The embedding homogeneity group of *C* is the group of homeomorphisms of *C* that extend to homeomorphisms of S³.

Definitions

$$\mathcal{C}\subset \mathcal{S}^3$$

- The embedding homogeneity group of *C* is the group of homeomorphisms of *C* that extend to homeomorphisms of S³.
- The homogeneity group of the end set is the group of homeomorphisms of the end set *C* that extend to homeomorphisms of the open 3-manifold *M*³.

Definitions

$$\mathcal{C}\subset \mathcal{S}^3$$

- The embedding homogeneity group of *C* is the group of homeomorphisms of *C* that extend to homeomorphisms of S³.
- The homogeneity group of the end set is the group of homeomorphisms of the end set *C* that extend to homeomorphisms of the open 3-manifold *M*³.

 The standardly embedded Cantor set is at one extreme. The embedding homogeneity group is the full group of self-homeomorphisms of the Cantor set. (strongly homogenously embedded.)

- The standardly embedded Cantor set is at one extreme. The embedding homogeneity group is the full group of self-homeomorphisms of the Cantor set. (strongly homogenously embedded.)
- At the other extreme are rigidly embedded Cantor sets, i.e. those Cantor sets for which only the identity homeomorphism extends.

Question: What types of groups can arise?

• Symmetric Groups (splittable example).

Question

Question: What types of groups can arise?

- Symmetric Groups (splittable example).
- Finitely Generated Abelian Groups (this talk).

Question: What types of groups can arise?

- Symmetric Groups (splittable example).
- Finitely Generated Abelian Groups (this talk).
- Other groups?

Question: What types of groups can arise?

- Symmetric Groups (splittable example).
- Finitely Generated Abelian Groups (this talk).
- Other groups?

Antoine Cantor Sets

Antoine Cantor Sets

$S_0 \supset S_1 \supset S_2 \supset \ldots$

Antoine Cantor Sets

 ∞

• Antoine Cantor sets are unsplittable and have non simply connected complement.

Properties

- Antoine Cantor sets are unsplittable and have non simply connected complement.
- [Sher '68] If *C* and *D* are equivalent Cantor sets defined by S₀ ⊃ S₁ ⊃ S₂... and T₀ ⊃ T₁ ⊃ T₂..., then there is a homeomorphism of S³ taking each S_i to T_i (i.e. The stages match up exactly!)

- Antoine Cantor sets are unsplittable and have non simply connected complement.
- [Sher '68] If *C* and *D* are equivalent Cantor sets defined by S₀ ⊃ S₁ ⊃ S₂... and T₀ ⊃ T₁ ⊃ T₂..., then there is a homeomorphism of S³ taking each S_i to T_i (i.e. The stages match up exactly!)
- [Shilepsky '74] This can be used to construct (uncountable many) inequivalent Antoine rigid Cantor sets.

Homogeneity group \mathbb{Z}_{p}

Antoine Chain With \mathbb{Z}_6 Group Action

• S_0 an unknotted solid torus in S^3 .

\mathbb{Z}_p Construction

• S_0 an unknotted solid torus in S^3 .

• $\{S_{(1,i)} | 1 \le i \le 4p\}$, an Antoine chain of length 4p in S_0 , and

$$S_1 = \bigcup_{i=1}^{4p} S_{(1,i)}$$

Construction, Continued

C_j, 1 ≤ *j* ≤ 4, distinct rigid
 Antoine Cantor sets in *S*_(1,*j*).

Construction, Continued

- *C_j*, 1 ≤ *j* ≤ 4, distinct rigid
 Antoine Cantor sets in *S*_(1,*j*).
- Let *r* be a homeomorphism of S³, fixed on the complement of S₀, that takes S_(1,j) to
 - $S_{(1,j+4 \mod 4p)}$ for $1 \le j \le 4p$.

Construction, Continued

- *C_j*, 1 ≤ *j* ≤ 4, distinct rigid
 Antoine Cantor sets in *S*_(1,*j*).
- Let r be a homeomorphism of S³, fixed on the complement of
 - S_0 , that takes $S_{(1,j)}$ to
 - $S_{(1,j+4 \mod 4p)}$ for $1 \le j \le 4p$.
- Require that r^p is the identity on each S_(1,i).

Construction Continued, II

 For 4k < i ≤ 4k + 4, let C_i be the rigid Cantor set in S_(1,i) given by r^k(C_{i−4k}).

Construction Continued, II

For 4k < i ≤ 4k + 4, let C_i be the rigid Cantor set in S_(1,i) given by r^k(C_{i−4k}).

•
$$C_{\mathbb{Z}_p} = \bigcup_{i=1}^{4p} C_i.$$

 Any homeomorphism of S³ taking C to C can be assumed to take each S_(1,i) to some S_(1,j) by Sher.

 Any homeomorphism of S³ taking C to C can be assumed to take each S_(1,i) to some S_(1,j) by Sher.

•
$$h|_{C_{(1,1)}}$$
 must = $C_{(1,1+4k)}$ for
some *k*, and so is $r^k|_{C_{(1,1)}}$

- Any homeomorphism of S³ taking C to C can be assumed to take each S_(1,i) to some S_(1,j) by Sher.
- $h|_{C_{(1,1)}}$ must = $C_{(1,1+4k)}$ for some *k*, and so is $r^k|_{C_{(1,1)}}$
- Linking argument shows $h|_{C_{(1,2)}}$ must = $C_{(1,2+4k)}$.

- Any homeomorphism of S³ taking C to C can be assumed to take each S_(1,i) to some S_(1,j) by Sher.
- $h|_{C_{(1,1)}}$ must = $C_{(1,1+4k)}$ for some *k*, and so is $r^k|_{C_{(1,1)}}$
- Linking argument shows $h|_{C_{(1,2)}}$ must = $C_{(1,2+4k)}$.
- This inductively shows $h|_C = r^k$.

Homogeneity Group \mathbb{Z}

Genus 2 at w

• S_0 a pinched torus.

- S₀ a pinched torus.
- $\{T_i | i \in \mathbb{Z}\}$ an infinite chain of linked tori converging to *w* as $i \to \pm \infty$

- S₀ a pinched torus.
- {*T_i* | *i* ∈ ℤ} an infinite chain of linked tori converging to *w* as *i* → ±∞

 ρ a homeomorphism of S³ fixed outside of S₀ that takes T_i to T_{i+3}.

{*T_i*|*i* ∈ ℤ} an infinite chain of linked tori converging to *w* as *i* → ±∞

- ρ a homeomorphism of S³ fixed outside of S₀ that takes T_i to T_{i+3}.
- C₀, C₁, C₂ distinct rigid Antoine Cantor sets in T₀, T₁, T₂

{*T_i* | *i* ∈ ℤ} an infinite chain of linked tori converging to *w* as *i* → ±∞

- ρ a homeomorphism of S³ fixed outside of S₀ that takes T_i to T_{i+3}.
- C₀, C₁, C₂ distinct rigid Antoine Cantor sets in T₀, T₁, T₂
- $C_k \subset T_k = \rho^j (C_k \mod 3) \ (j = \lfloor k/3 \rfloor).$

{*T_i* | *i* ∈ ℤ} an infinite chain of linked tori converging to *w* as *i* → ±∞

- C₀, C₁, C₂ distinct rigid Antoine Cantor sets in T₀, T₁, T₂
- C_k ⊂ T_k = ρ^j(C_{k mod 3}) (j = ⌊k/3⌋).
 C = ∪C_i ∪ {w}

• *w* has local genus 2 in *C*, other points have local genus 1.

- w has local genus 2 in C, other points have local genus 1.
- Any homeomorphism of S^3 taking C to C fixes w.

- w has local genus 2 in C, other points have local genus 1.
- Any homeomorphism of S^3 taking C to C fixes w.
- Generalization of Sher type result to infinite chains.
 Proof used local genus and geometric index.

- w has local genus 2 in C, other points have local genus 1.
- Any homeomorphism of S^3 taking C to C fixes w.
- Generalization of Sher type result to infinite chains.
 Proof used local genus and geometric index.
- Unsplittable

Finitely Generated Abelian G

It suffices to show if *C* has two Antoine defining sequences $\{M_i\}$ and $\{N_i\}$, then there is a homeomorphism *h* as in the the result.

It suffices to show if *C* has two Antoine defining sequences $\{M_i\}$ and $\{N_i\}$, then there is a homeomorphism *h* as in the the result.

Step 1: There is a general position homeomorphism h_1 , fixed on *C*, so that $h_1(\partial(M_1) \cup \partial(M_2))$ is in general position with $\partial(N_1) \cup \partial(N_2)$. The curves of intersection of $h_1(\partial(M_1) \cup \partial(M_2)) \cap (\partial(N_1) \cup \partial(N_2))$ can be eliminated by a homeomorphism h_2 also fixed on *C*.

Details, II

Step 2: Let *T* be a component of $h_2 \circ h_1(M_1)$ and assume *T* intersects a component *S* of N_1 .

Step 2: Let *T* be a component of $h_2 \circ h_1(M_1)$ and assume *T* intersects a component *S* of N_1 .

Assume first: $T \subset IntS$.

If the geometric index of *T* in *S* is 0, then all components of $h_2 \circ h_1(M_1)$ are in the interior of *S*. This is a contradiction since there are points of *C* not in *S*. So the geometric index of *T* in *S* is greater than or equal to 1.

Details, III

Step 3: *T* cannot be contained in any component of N_2 . So *T* contains all the components of N_2 that are in *S*. **Step 3:** *T* cannot be contained in any component of N_2 . So *T* contains all the components of N_2 that are in *S*. Each of these components has geometric index 0 in *T*, so the union of these components has an even geometric index in *T*. **Step 3:** *T* cannot be contained in any component of N_2 . So *T* contains all the components of N_2 that are in *S*. Each of these components has geometric index 0 in *T*, so the union of these components has an even geometric index in *T*.

This geometric index must then be 2 and the geometric index of T in S must be 1.

Details IV

If instead, $IntT \supset S$, a similar argument works, reversing the roles of S and T.

If instead, $IntT \supset S,$ a similar argument works, reversing the roles of S and T.

The net result is that it is possible to construct a homeomorphism h'_3 taking the components of $h_2 \circ h_1(M_1)$ to the components of N_1 . One now proceeds inductively, matching up further stages in the constructions, obtaining the desired homeomorphism h as a limit.

Ideas on Non Abelian Case

• Finitely generated Free Groups

Ideas on Non Abelian Case

- Finitely generated Free Groups
- Finite Groups with Cayley Graph automorphisms coming from homeomorphisms of *R*³

Ideas on Non Abelian Case

- Finitely generated Free Groups
- Finite Groups with Cayley Graph automorphisms coming from homeomorphisms of R³
- Other finitely generated groups?

Generalization - A Cayley Graph

Generalization - A Cayley Graph- II

Generalization - Vertices

Generalization - Edges I

Generalization - Edges II

Generalization - Edges III

Closeup at Vertiex

Generalization - F2- Stage 4

Generalization - F2- Stage 4

