
CONTRACTIBLE 3-MANIFOLDS AND THE DOUBLE 3-SPACE1
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Abstract. Gabai showed that the Whitehead manifold is the union of two submanifolds
each of which is homeomorphic to R3 and whose intersection is again homeomorphic to R3.
Using a family of generalizations of the Whitehead Link, we show that there are uncountably
many contractible 3-manifolds with this double 3-space property. Using a separate family
of generalizations of the Whitehead Link and using an extension of interlacing theory, we
also show that there are uncountably many contractible 3-manifolds that fail to have this
property.

1. Introduction4

Gabai [Gab11] showed a surprising result that the Whitehead contractible 3-manifold [Whi35]5

is the union of two sub-manifolds each of which is homeomorphic to Euclidean 3-space R3
6

and whose intersection is also homeomorphic to R3. A 3-manifold with this double 3-space7

property must be a contractible open 3-manifold. The manifold R3 clearly has this property,8

but it takes a lot of ingenuity to show that the Whitehead contractible 3-manifold has the9

double 3-space property. This naturally raises two questions:10

1) Are there other contractible 3-manifolds with this property?11

2) Do all contractible 3-manifolds have this property?12

We show the answer to the first question is yes by constructing uncountably many con-13

tractible 3-manifolds with the double 3-space property. We show the answer to the second14

question is no by constructing uncountably many contractible 3-manifolds that fail to have15

the double 3-space property. The answer to the second question requires a careful extension16

of interlacing theory originally introduced in [Wri89].17

2. Definitions and Preliminaries18

A solid torus is homeomorphic to B2 × S1 where B2 is a 2-dimensional disk and S1 is a19

circle. All spaces and embeddings will be piecewise-linear [RS82]. If M is a manifold with20

boundary, then Int M denotes the interior of M and ∂ M denotes the boundary of M . We let21

R3 denote Euclidean 3 -space. A disk with holes is a compact, connected planar 2-manifold22

with boundary. A properly embedded disk with holes H in a solid torus T is said to be23
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interior-inessential if the inclusion map on ∂H can be extended to a map of H into ∂ T .24

If the inclusion map on ∂H cannot be extended to a map of H into ∂ T we say that H25

is interior-essential [Dav07], [DV09, p. 170]. If H is interior-essential, we also say H is a26

meridional disk with holes for the solid torus T .27

For background on contractible open 3-manifolds, see [McM62,Mye88,Mye99,Wri92].28

Definition 2.1. A Whitehead Link is a pair of solid tori T ′ ⊂ Int T so that T ′ is contained29

in Int T as illustrated in Figure 1(a).30

The famous Whitehead contractible 3-manifold [Whi35] is a 3-manifold that is the ascending31

union of nested solid tori Ti, i ≥ 0, so that for each i, Ti ⊂ Int Ti+1 is a Whitehead Link.32

Definition 2.2. If T ′ ⊂ Int T are solid tori, the geometric index of T ′ in T , N(T ′, T ), is the33

minimal number of points of the intersection of the centerline of T ′ with a meridional disk34

of T .35

Note: If T ′ ⊂ Int T is a Whitehead Link, then the geometric index of T ′ in T is 2.36

See Schubert [Sch53] and [GRWŽ11] for the following results about geometric index.37

• Let T0 and T1 be unknotted solid tori in S3 with T0 ⊂ Int T1 and N(T0, T1) = 1.38

Then ∂ T0 and ∂ T1 are parallel.39

• Let T0, T1, and T2 be solid tori so that T0 ⊂ Int T1 and T1 ⊂ Int T2. Then N(T0, T2) =40

N(T0, T1) ·N(T1, T2).41

We now define a generalization of the Whitehead Link (which has geometric index 2) to42

a Gabai Link that has geometric index 2n for some positive integer n. We will use this43

generalization in Section 3 to produce our examples of 3-manifolds that have the double44

3-space property.45

Definition 2.3. Let n be a positive integer. A Gabai Link of geometric index 2n is a pair46

of solid tori T ′ ⊂ Int T as illustrated in Figure 1. Figure 1(b) shows a Gabai Link of index47

4, Figure 1(c) shows a Gabai Link of index 6, and Figure 1(d) shows a generalized Gabai48

Link of index 2n. For the link of geometric index 2n, there are n− 1 clasps on the left and49

n clasps on the right.50

Note that the inner torus T ′ in a Gabai Link is contractible in the outer torus T .51

Definition 2.4. A genus one 3-manifold M is the ascending union of solid tori Ti, i ≥ 0, so52

that for each i, Ti ⊂ Int Ti+1 and the geometric index of Ti in Ti+1 is not equal to 0.53

Theorem 2.5. If M is a genus one 3-manifold with defining sequence (Ti), then, for each54

j, Tj does not lie in any open subset of M that is homeomorphic to R3.55

Proof. If Tj lies in U so that U is homeomorphic to R3, then, since Tj is compact, it lies in56

a 3-ball B ⊂ U . Since B is compact, it lies in the interior of some Tk with k > j. This implies57

that the geometric index of Tj in Tk is 0, but since the geometric index is multiplicative, the58

geometric index of Tj in Tk is not zero. So there is no such U . �59
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(a) Whitehead Link (b) Gabai Link: Index 4

(c) Gabai Link: Index 6 (d) Gabai Link: Index 2n

Figure 1. Whitehead and Gabai Links

Theorem 2.6. If M is a genus one 3-manifold with defining sequence (Ti), and J is an60

essential simple closed curve that lies in some Tj, then J does not lie in any open subset of61

M that is homeomorphic to R3.62

Proof. By thickening up Tj we may assume, without loss of generality, that J is the63

centerline of a solid torus T that lies in Int Tj. Since J is essential in Tj, the geometric index64

of T in Tj is not equal to zero. Thus, M is the ascending union of tori T, Tj, Tj+1, Tj+2, · · ·65
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and by the previous theorem, T does not lie in any open subset of M that is homeomorphic66

to R3. If J lies in U so that U is homeomorphic to R3, then we could have chosen T so67

that it also lies in U . Thus, by Theorem 2.5, J does not lie in any open subset of M that is68

homeomorphic to R3. �69

Theorem 2.7. A genus one 3-manifold M with defining sequence (Ti) so that each Ti is70

contractible in Ti+1, is a contractible 3-manifold that is not homeomorphic to R3.71

Proof. It is contractible since all the homotopy groups are trivial. If M is homeomorphic72

to R3, then each Ti in the defining sequence lies in an open subset that is homeomorphic to73

R3 which is a contradiction. �74

Definition 2.8. A 3-manifold is said to satisfy the double 3-space property if it is the union75

of two open sets U and V so that each of U , V , and U ∩ V is homeomorphic to R3.76

3. Gabai Manifolds Satisfy the Double 3-space Property77

3.1. Gabai Manifolds. Refer to Definition 2.3 and Figure 1 for the definition of a Gabai78

Link.79

Definition 3.1. A Gabai contractible 3-manifold is the ascending union of nested solid80

tori so that any two consecutive tori form a Gabai Link. Given a sequence n1, n2, n3, . . .81

of positive integers, there is a Gabai contractible 3-manifold G =
∞⋃

m=0

Tm so that the tori82

Tm−1 ⊂ Int Tm form a Gabai Link of index 2 nm.83

In fact, it is possible to assume that each Tm ⊂ R3 because if a Gabai Link is embedded in84

R3 so that the larger solid torus is unknotted, then the smaller solid torus is also unknot-85

ted. McMillan’s proof [McM62] that there are uncountably many genus one contractible86

3-manifolds transfers immediately to show that there are uncountably many Gabai con-87

tractible 3-manifolds. This proof uses properties of geometric index to show that if a prime88

p is a factor of infinitely many of n1, n2, n3, . . . and only finitely many of m1, m2, m3, . . . ,89

then the two 3-manifolds formed using these sequences cannot be homeomorphic.90

3.2. Special Subsets of S1 and B2×S1. In S1 choose a closed interval I which we identify91

with the closed interval [0, 1]. Let C ⊂ I ⊂ S1 be the standard middle thirds Cantor set.92

Let U1 = (1
3
, 2

3
), U2 = (1

9
, 2

9
)∪ (7

9
, 8

9
), and, in general, Ui be the union of the 2i−1 components93

of [0, 1]−C that have length 1/3i. Let U0 = S1− [0, 1], C1 = C ∩ [0, 1
3
], and C2 = C ∩ [2

3
, 1].94

Let h : B2 × S1 → R3 be an embedding so that T = h(B2 × S1) is a standard unknotted95

solid torus in R3. Set V i = h(B2 × Ui), A = h(B2 × C1), and B = h(B2 × C2). So V i (for96

i ≥ 0), A, and B are all subsets of T . The subset V 0 is homeomorphic to B2 × (0, 1). For97

i > 0, V i is homeomorphic to the disjoint union of 2i−1 copies of B2 × (0, 1), and both A98

and B are homeomorphic to B2 × C.99

For each positive integer n, let gn be a homeomorphism of R3 to R3 that takes T into100

its interior, so that the pair (gn(T ), T ) forms a Gabai Link of geometric index 2n. Let101

T ′n = gn(T ), A ′n = gn(A), B ′n = gn(B), and V i
n
′
= gn(V i).102
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Lemma 3.2. The homeomorphisms gn : R3 → R3 can be chosen so that:103

A ∩ T ′n = A ′n and B ∩ T ′n = B ′n (1a)

V 0
n
′ ⊂ V 0 and for i > 0, V i

n
′ ⊂ V j, where j < i. (1b)

Proof. Fix a positive integer n. We first define gn on T . The idea is to identify 4n subsets104

of T = B2 × S1, each homeomorphic to a tube of the form an interval cross B2, and to use105

the S1 coordinate to linearly (in the S1−U0 = I factor) stretch these tubes from the region106

V 0 to the region V 1 in T .107

Choose a positive integer m > 0 and a nonnegative integer k < 2m−1 so that 2m + 2k =108

4n < 2m+1. Remove the subsets U1, . . . Um from I so that 2m intervals of length 3−m remain.109

Then remove 2k of the intervals in Um+1, namely the middle third of the first k and the110

last k of these remaining intervals in I so that 4n = 2m + 2k intervals remain, 4k of length111

3−(m+1), and the remaining 2m − 2k of length 3−m. Let Ũm+1 be the union of the intervals112

in Um+1 that have been removed. Figure 2 shows the case where n = 3, m = 3, and k = 2.113

The integers i across the bottom of this figure correspond to the Ui defined above.114

1234 4 3

0 1/3

23 4 43

12/3

Figure 2. Labelled Removed Intervals in [0, 1]

115

Now let Ṽm+1 = h(B2× Ũm+1) and consider W = T −∪m
j=0V

j− Ṽm+1. W consists of 4n tubes116

homeomorphic to an interval cross B2. Let gn be a homeomorphism of T into its interior so117

that:118

(1) The pair (gn(T ), T ) forms a Gabai Link of geometric index 2n,119

(2) gn(V 0 ∪ V 1) ⊂ V 0,120

(3) The components of ∪m
j=2V

j ∪ Ṽm+1 are taken by gn into V0 or V1, and121

(4) gn restricted to each of the 4n tubes mentioned above is a product of a homeomor-122

phism of the B2 factor onto a subdisk with a linear homeomorphism on the interval123

factor that stretches the tube from V 0 to V 1 or from V 1 to V 0 in either B2× [0, 1/3]124

or in B2 × [2/3, 1].125

Figure 3 illustrates this when n = 3, with the numbers j listed by parts of the interior torus126

corresponding to the subsets gn(V j). The last two regions mentioned in (4) above correspond127

to the top or bottom parts of the T − (V0 ∪ V1) in Figure 3. In particular, the S1 factor,128

after U0 is removed is parameterized in a counterclockwise manner in Figure 3.129

The interval factor of each of the tubes in W corresponds to an interval in I of length 3−m or130

of length 3−(m+1), one of the remaining intervals in stage m or stage m + 1 of the standard131

construction of C. Let D be one of these intervals. The self similarity of C shows that a132

linear homeomorphism from D onto either E = [0, 1/3] or onto E = [2/3, 1] takes C ∩ D133

onto C ∩E and takes the intervals of Ui ∩D homeomorphically to the intervals of Ui−k ∩E134

where k = m− 1 or k = m.135
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From this, it follows that condition (1b) is satisfied. The nature of a Gabai Link guarantees136

that A ′n ⊂ B2 × [0, 1/3] ⊂ T and that B ′n ⊂ B2 × [1/3, 2/3] ⊂ T . This, together with the137

discussion in the previous paragraph shows that condition (1a) is satisfied.138

Since both T and T ′ = gn(T ) are unknotted solid tori, the map gn extends to a homeomor-139

phism of R3 if and only if gn takes a longitudinal curve of T to a longitudinal curve of T ′. If140

this is not the case, we can first take a twisting homeomorphism of T to itself that preserves141

the subsets A, B, and V i of T so that the compositions of the twisting homeomorphism and142

our gn takes a longitudinal curve of T to a longitudinal curve of T ′. Thus we may assume143

that gn extends to a homeomorphism of R3 to itself. �144

VV V

V

V

0 1

2

4
3 43

32 43 4

0 1

2

2

5
5

5
5

4
4

4
4
5
5

5
5

Figure 3. Labelled Regions on Tori in Gabai Link

145

3.3. Construction. We will now inductively construct a Gabai 3-manifold corresponding146

to a sequence n1, n2, n3, . . . of positive integers, with special subsets corresponding to the147

subsets of T and T ′n just described. Let T0 = T . Let h1 : T → R3 be given by g−1
n1

and let148

T1 = h1(T ). Let A1 = h1(A), B1 = h1(B), and V i
1 = h1(V

i). Note that the pair (T0, T1)149

is homeomorphic to (T ′n1
, T ) via gn1and so forms a Gabai Link of index 2n1. It follows150

immediately from Lemma 3.2 and the definitions of the various subsets that:151

A1 ∩ T0 = A and B1 ∩ T0 = B (2a)

V 0 ⊂ V 0
1 and for i > 0, V i ⊂ V j

1 , where j < i. (2b)
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Inductively assume that homeomorphisms hi : T → R3 have been described for i ≤ k and152

that Ai = hi(A), Bi = hi(B), and V j
i = hi(V

j) for i ≤ k. Also assume that for each i ≤ k:153

Ai ∩ Ti−1 = Ai−1 and Bi ∩ Ti−1 = Bi−1 (3a)

V 0
i−1 ⊂ V 0

i and for j > 0, V j
i−1 ⊂ V `

i , where ` < j (3b)

the pair (Ti−1, Ti) is a Gabai Link of index 2ni. (3c)

For the inductive step, let hk+1 : T → R3 be given by hk ◦ g−1
nk+1

and let Tk+1 = hk+1(T ),154

Ak+1 = hk+1(A), Bk+1 = hk+1(B), and V j
k+1 = hk+1(V

j). Note that the pair (Tk, Tk+1) is155

then homeomorphic to (T ′nk+1
, T ) via the homeomorphsm gnk+1

◦ h−1
k and so forms a Gabai156

Link of index 2nk+1. This shows that Statement (3c) holds when i = k + 1. Properties (3a)157

and (3b) for i = k + 1 follow by applying hk+1 to properties (1a) and (1b) from Lemma 3.2.158

This completes the verification of the inductive step and shows that the following lemma159

holds.160

Lemma 3.3. The Gabai 3-manifold G =
∞⋃

m=0

Tm constructed as above satisfies the properties161

listed in (3a), (3b), and (3c) for all i > 0.162

3.4. Main Result on Gabai Manifolds. Using the notation from the previous subsection163

we can state and prove the main result about Gabai manifolds.164

Theorem 3.4. Let G =
∞⋃

m=0

Tm be a Gabai contractible 3-manifold where each Tm is a solid165

torus and consecutive tori form a Gabai Link. Then G satisfies the double 3-space property.166

Proof. The key to the proof is that in the Gabai manifold G, we may assume that the167

conditions in Lemma 3.3 are satisfied.168

To show that G satisfies the double 3-space property, we choose the closed sets A ′ = ∪∞n=0An169

and B ′ = ∪∞n=0Bn. Recall that An = hn(A) = hn(h(B2 × C1)) and that Bn = hn(B) =170

hn(h(B2 ×C2)). We claim that M = G−A ′, N = G−B ′ and M ∩N = G− (A ′ ∪B ′) are171

each homeomorphic to R3.172

We first show M ∩ N = G − (A ′ ∪ B ′) is homeomorphic to R3. It suffices to show that173

M ∩ N is an increasing union of copies of R3 [Bro61]. First notice that Int V 0
n ⊂ Tn is174

homeomorphic to R3 since it is the product of an open interval and an open 2-cell. Next175

notice that M ∩ N =
∞⋃

n=0

Int V 0
n because any point p in M ∩ N must lie in the interior of176

some V i
m and therefore lies in the interior of V 0

m+i by condition (3b) in Lemma 3.3. Again177

by condition (3b) in Lemma 3.3, the Int V 0
n are nested. So M ∩N is an increasing union of178

copies of R3, and so is homeomorphic to R3.179

The proofs that M and N are homeomorphic to R3 are similar, so we will just focus on M .180

Let W0 = V0 ∪ V1 ∪ (B2 × [2/3, 1]) ⊂ T and let Wi = Vi+1 ∩ (B2 × [0, 1/3]) ⊂ T . Then181

T −
⋃∞

i=0 Wi is precisely B2 × A. Let W i
n = hi(Wn). Then as in the preceeding paragraph,182
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by the conditions in Lemma 3.3, M =
⋃∞

n=0 Int W 0
n which is an increasing union of copies183

of R3. So M is homeomorphic to R3. �184

Corollary 3.5. There are uncountably many distinct contractible 3-manifolds with the double185

3-space property.186

Proof. This follows directly from Theorem 3.4 and the discussion following Definition187

3.1. �188

4. Interlacing Theory189

Definition 4.1. Let A and B be finite subsets of a simple closed curve J each containing190

k points. We say (A, B) is a k-interlacing of points if each component of J − A contains191

exactly one point of B.192

Definition 4.2. Let A and B be disjoint compact sets. We say that (A, B) is a k-interlacing193

for a simple closed curve J if there exist finite subsets A′ ⊂ A ∩ J and B′ ⊂ B ∩ J so that194

(A′, B′) is a k-interlacing of points, but it is impossible to find such subsets that form a195

(k + 1)-interlacing of points. If either A ∩ J = ∅ or B ∩ J = ∅, then we say that (A, B) is a196

0-interlacing.197

Theorem 4.3 (Interlacing Theorem for a Simple Closed Curve). If A and B are198

disjoint compact sets and J is a simple closed curve, then (A, B) is a k-interlacing for some199

non-negative integer k.200

Proof. If A ∩ J = ∅ or B ∩ J = ∅, then (A, B) is a 0-interlacing. Otherwise, using201

compactness, it is possible to cover A ∩ J with a finite collection of non-empty, connected,202

disjoint open sets U1, U2, . . . , Um and cover B ∩ J with a finite collection of non-empty,203

connected, disjoint open sets V1, V2, . . . , Vn so that the Ui and Vj are also disjoint. If A′ ⊂ A204

and B′ ⊂ B so that (A′, B′) is a k-interlacing of points for J , then A′ contains at most one205

point from each Ui and B′ contains at most one point from each Vj. So there is a bound on206

k, and our theorem is proved. �207

Theorem 4.4 (Neighborhood Interlacing Theorem for Simple Closed Curves). If208

(A, B) is a k-interlacing for a simple closed curve J , then there are open neighborhoods U209

and V of A ∩ J and B ∩ J , respectively, in J so that if A and B are disjoint compact sets210

with A ∩ J ⊂ A ∩ J ⊂ U and B ∩ J ⊂ B ∩ J ⊂ V , then (A, B) is also a k-interlacing.211

Proof. As in the proof of the preceding theorem find the non-empty, connected, disjoint212

open sets Ui and Vi, but in addition we may assume that m = n = k. Let U =
⋃m

i=1 Ui and213

V =
⋃n

i=1 Vi. �214

Theorem 4.5 (Meridional Disk with Holes Theorem). [Wri89, Theorem A6] Let H215

be a properly embedded disk with holes in a solid torus T . Then H is a meridional disk with216

holes if and only if the inclusion f : H → T lifts to a map f̂ from H to the universal cover217

T̃ = B2 × R and f̂(H) separates H̃ into two unbounded components.218

Definition 4.6. Let A1, A2, . . . , Ak, B1, B2, . . . , Bk be disjoint meridional disks with holes219

in a solid torus T . Let A = ∪k
i=1Ai and B = ∪k

i=1Bi. We say that (A, B) is a k-interlacing220

collection of meridional disks with holes if each component of T −A contains exactly one Bi.221
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Definition 4.7. Let A and B be disjoint compact sets. We say that (A, B) is a k-222

interlacing for a solid torus T if there exist disjoint meridional disks with holes in T ,223

A1, A2, . . . , Ak, B1, B2, . . . , Bk with A′ = ∪k
i=1Ai ⊂ A and B′ = ∪k

i=1Bi ⊂ B so that (A′, B′)224

is a k-interlacing collection of meridional disks with holes, but it is impossible to find such225

subsets that form a (k + 1)-interlacing collection of meridional disks with holes. If either226

A or B fails to contain a meridional disk with holes in T , then we say that (A, B) is a227

0-interlacing.228

Lemma 4.8. If (A, B) is a k-interlacing collection of meridional disks with holes for the229

solid torus T and J is a simple closed curve core for T , then (A, B) is an n-interlacing of J230

where n ≥ k.231

Proof. If k = 0 or k = 1 the proof is quite easy. Each component of T −A contains exactly232

one meridional disk with holes component of B. Let J be a simple closed curve core for T .233

Since each disk with holes component of A is interior essential, J must meet each component234

of A. Let U be a component of J − A so that the endpoints of the closure of U are in235

different components of A. Then U must meet a component of B since each component of236

B is interior essential. Since there are at least k such components of J − A with endpoints237

of the closure in different components of A, (A, B) must be at least a k-interlacing for J .238

Thus we see that (A, B) is an n-interlacing of J where n ≥ k. �239

Theorem 4.9 (Interlacing Theorem for a Solid Torus). If A and B are disjoint compact240

sets and T is a solid torus, then (A, B) is a k-interlacing of T for some non-negative integer241

k.242

Proof. We just need to show that the interlacing number of (A, B) with respect to T is243

bounded. Let J be a core simple closed curve for the solid torus. The interlacing number244

of (A, B) with respect to T is less than or equal to the interlacing number of (A, B) with245

respect to J which is well-defined by the Interlacing Theorem for simple closed curves. �246

5. McMillan Contractible 3-Manifolds Do Not Satisfy the Double 3-space247

Property248

There is an alternative generalization of a Whitehead Link that was used by McMillan249

[McM62] to show the existence of uncountably many contractible 3-manifolds. We call these250

links McMillan Links.251

Definition 5.1. Let n be a positive integer. A McMillan Link of geometric index 2n is a252

pair of solid tori T ′ ⊂ T so that T ′ is embedded in T as illustrated in Figure 4 for a McMillan253

Link of index 4 and of index 2n.254

Definition 5.2. If M is a genus one 3-manifold with defining sequence (Ti), then we say255

that M is a McMillan Contractible 3-manifold if for each i, Ti ⊂ Ti+1 is a McMillan Link of256

geometric index at least 4.257

There are immediate results that follow from the previous section.258
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(a) McMillan Link: Index 4 (b) McMillan Link: Index 2n

Figure 4. McMillan Links

Theorem 5.3 (Interlacing Theorem for a McMillan Link). Suppose that A and B259

are disjoint planar 2-manifolds properly embedded in a solid torus T so that (A, B) is a k-260

interlacing for T . If T ′ is a McMillan Link of geometric index 2n in T so that T ′ is in general261

position with respect to A ∪B, then (A, B) is an m-interlacing for T ′ where m ≥ 2nk − 1.262

Proof. Let p : T̃ → T be the projection map from the n-fold cover of T . Since (A, B)263

is a k-interlacing for T , there exist disjoint meridional disks with holes, A1, A2, . . . , Ak and264

B1, B2, . . . , Bk with A′ = ∪k
i=1Ai ⊂ A and B′ = ∪k

i=1Bi ⊂ B so that (A′, B′) is a k-interlacing265

collection of meridional disks with holes for T . Set Ã′ = p−1(A′) and B̃′ = p−1(B′). Using266

the Meridional Disk with Holes Theorem, we see that (Ã′, B̃′) is an nk-interlacing collection267

of meridional disks with holes for T̃ . Let ĩ : T ′ → T̃ be a lift of the inclusion map i : T ′ → T .268

Then T ′′ = ĩ(T ′) is a Whitehead Link in T̃ . By [Wri89, Lemma A10] (Ã′, B̃′) is an m-269

interlacing of T ′′ where m ≥ 2nk − 1. It now follows that (A, B) is an m-interlacing for T ′270

for m ≥ 2nk − 1. �271

Corollary 5.4. In the previous theorem, if T ′ has geometric index at least 4, then m > k.272

We now prove some lemmas that are needed in proving that McMillan contractible 3-273

manifolds do not have the double 3-space property.274

Lemma 5.5. Let H be a properly embedded 2-manifold in a solid torus T so that each275

component of H is an interior-inessential disk with holes. Then there is an essential simple276

closed curve in T that misses H.277

Proof. Let J be an oriented essential simple closed curve in T that is in general position278

with respect to H. The proof is by induction on the number of points in J ∩H. Consider279
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a component H ′ of H that meets J . Choose an orientation on H ′. Since H ′ is interior-280

inessential, the algebraic intersection number of J and H ′ is zero (meaning that there are281

the same number of positive and negative intersections). Let p, q ∈ J ∩ H ′ be points with282

opposite orientations. The points p and q separate J into two components J1 and J2. Let283

A be an arc in H ′ between p and q that misses all other points of J ∩H ′. Then J1 ∪A and284

J2 ∪ A are simple closed curves. If J1 ∪ A and J2 ∪ A are both inessential in T , then so is285

J , so at least one of J1 ∪ A and J2 ∪ A is essential in J . We suppose that J ′ = J1 ∪ A is286

essential in T . Using a collar on H ′, we can push J1 off H to get an essential simple closed287

curve J ′′ that meets H in two fewer points than J . �288

Lemma 5.6. Let M be a 3-manifold so that M = U ∪ V where U , V are homeomorphic289

to R3. Let T ⊂ M be a solid torus so that for every essential simple closed curve J ⊂ T ,290

J 6⊂ U and J 6⊂ V . Let C = M − U and D = M − V . Then any neighborhood of T ∩ C in291

T contains a meridional disk with holes.292

Proof. Notice that by DeMorgan’s Law, C ∩ D = ∅. Since T 6⊂ U and T 6⊂ V , then293

C ′ = T ∩C 6= ∅ and D′ = T ∩D 6= ∅. So C ′ and D′ are disjoint non-empty compact subsets294

of T . Let N be an open neighborhood of C ′ in T that misses D′. Let K = T − N . Then295

K is a compact set in U that contains D′. Since U is homeomorphic to R3, K is contained296

in the interior of a 3-ball B ⊂ U with boundary a 2-sphere S that we may suppose is in297

general position with respect to T . Notice that C ′ and D′ are in separate components of298

M − S and so S ∩ T = ∅ is impossible. Also S ⊂ Int T is impossible because this would299

allow for an essential simple closed curve in T that would lie in either U or V . Thus the300

set H = S ∩ T 6= ∅ lies in the neighborhood N of C ′, and each component of H is a disk301

with holes. If each component is interior-inessential, then, by the previous lemma, there is302

an essential simple closed curve J in T that misses H. So J lies in a component of M − S303

and must miss either C or D. So J ⊂ U or J ⊂ V which is a contradiction. Thus at least304

one of the components of H must be interior-essential and thus a meridional disk with holes.305

�306

Theorem 5.7. No McMillan contractible 3-manifold M can be expressed as the union of307

two copies of R3.308

Proof. Let Ti be a defining sequence for M so that M = ∪∞i=0Ti . Suppose M = U ∪ V309

where U , V are homeomorphic to R3. Then by Lemma 2.6, for each essential simple closed310

curve J ′ ⊂ Ti, J ′ 6⊂ U and J ′ 6⊂ V . Let C = M − U and D = M − V . Then by Lemma 5.6311

each neighborhood of Ti ∩ C and each neighborhood of Ti ∩ D contains a meridional disk312

with holes for Ti.313

Let J be a simple closed curve core of T0. Let n be the interlacing number of (J∩C, J∩D). Let314

C and D be closed neighborhoods in J of J∩C and J∩D, respectively so that the interlacing315

number for (C, D) is also n. Let HC be a meridional disk with holes in a neighborhood of316

C ∩ Tn and HD be a meridional disk with holes in a neighborhood of D ∩ Tn so that317

(1) HC ∩HD = ∅318

(2) HC ∩ J ⊂ C, HD ∩ J ⊂ D319

(3) HC an HD are in general position with respect to Ti, 0 ≤ i ≤ n.320
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By Corollary 5.4 the interlacing number of (HC ∩ T0, HD ∩ T0) in T0 is greater than n. This321

implies that the interlacing number of (A, B) in J is also greater than n, a contradiction to322

Lemma 4.8 �323

Corollary 5.8. There are uncountably many distinct contractible 3-manifolds that fail to324

have the double 3-space property.325

Proof. This follows directly from Theorem 5.7 and the discussion following Definition326

3.1. �327

6. Questions and Acknowledgments328

The results in this paper produce two infinite classes of genus one contractible 3-manifolds,329

one of which has the double 3-space property and one of which does not. There are many330

genus one contractible 3-manifolds that do not fit into either of these two classes. This leads331

to a number of questions.332

Question 6.1. Is it possible to characterize which genus one contractible 3-manifolds have333

the double 3-space property?334

Question 6.2. Is it possible to characterize which contractible 3-manifolds have the double335

3-space property?336

Question 6.3. Is there a contractible 3-manifold M which is the union of two copies of R3,337

but which does not have the double 3-space property?338
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