CONTRACTIBLE 3-MANIFOLDS AND THE DOUBLE 3-SPACE PROPERTY

DENNIS J. GARITY, DUŠAN REPOVŠ, AND DAVID G. WRIGHT

Abstract

Gabai showed that the Whitehead manifold is the union of two submanifolds each of which is homeomorphic to \mathbb{R}^{3} and whose intersection is again homeomorphic to \mathbb{R}^{3}. Using a family of generalizations of the Whitehead Link, we show that there are uncountably many contractible 3 -manifolds with this double 3 -space property. Using a separate family of generalizations of the Whitehead Link and using an extension of interlacing theory, we also show that there are uncountably many contractible 3 -manifolds that fail to have this property.

Gabai [Gab11] showed a surprising result that the Whitehead contractible 3-manifold [Whi35] and whose intersection is also homeomorphic to \mathbb{R}^{3}. A 3-manifold with this double 3-space property must be a contractible open 3 -manifold. The manifold \mathbb{R}^{3} clearly has this property, but it takes a lot of ingenuity to show that the Whitehead contractible 3-manifold has the double 3 -space property. This naturally raises two questions:

1) Are there other contractible 3 -manifolds with this property?
2) Do all contractible 3 -manifolds have this property?

We show the answer to the first question is yes by constructing uncountably many contractible 3 -manifolds with the double 3 -space property. We show the answer to the second question is no by constructing uncountably many contractible 3-manifolds that fail to have the double 3-space property. The answer to the second question requires a careful extension of interlacing theory originally introduced in [Wri89].

2. Definitions and Preliminaries

A solid torus is homeomorphic to $B^{2} \times S^{1}$ where B^{2} is a 2-dimensional disk and S^{1} is a circle. All spaces and embeddings will be piecewise-linear [RS82]. If M is a manifold with boundary, then Int M denotes the interior of M and ∂M denotes the boundary of M. We let \mathbb{R}^{3} denote Euclidean 3 -space. A disk with holes is a compact, connected planar 2-manifold with boundary. A properly embedded disk with holes H in a solid torus T is said to be

[^0]interior-inessential if the inclusion map on ∂H can be extended to a map of H into ∂T. If the inclusion map on ∂H cannot be extended to a map of H into ∂T we say that H is interior-essential [Dav07], [DV09, p. 170]. If H is interior-essential, we also say H is a meridional disk with holes for the solid torus T.

For background on contractible open 3-manifolds, see [McM62, Mye88, Mye99, Wri92].
Definition 2.1. A Whitehead Link is a pair of solid tori $T^{\prime} \subset \operatorname{Int} T$ so that T^{\prime} is contained in Int T as illustrated in Figure 1(a).

The famous Whitehead contractible 3-manifold [Whi35] is a 3-manifold that is the ascending union of nested solid tori $T_{i}, i \geq 0$, so that for each $i, T_{i} \subset \operatorname{Int} T_{i+1}$ is a Whitehead Link.

Definition 2.2. If $T^{\prime} \subset$ Int T are solid tori, the geometric index of T^{\prime} in $T, N\left(T^{\prime}, T\right)$, is the minimal number of points of the intersection of the centerline of T^{\prime} with a meridional disk of T.

Note: If $T^{\prime} \subset \operatorname{Int} T$ is a Whitehead Link, then the geometric index of T^{\prime} in T is 2 .
See Schubert [Sch53] and [GRWŽ11] for the following results about geometric index.

- Let T_{0} and T_{1} be unknotted solid tori in S^{3} with $T_{0} \subset \operatorname{Int} T_{1}$ and $N\left(T_{0}, T_{1}\right)=1$. Then ∂T_{0} and ∂T_{1} are parallel.
- Let T_{0}, T_{1}, and T_{2} be solid tori so that $T_{0} \subset \operatorname{Int} T_{1}$ and $T_{1} \subset \operatorname{Int} T_{2}$. Then $N\left(T_{0}, T_{2}\right)=$ $N\left(T_{0}, T_{1}\right) \cdot N\left(T_{1}, T_{2}\right)$.

We now define a generalization of the Whitehead Link (which has geometric index 2) to a Gabai Link that has geometric index $2 n$ for some positive integer n. We will use this generalization in Section 3 to produce our examples of 3 -manifolds that have the double 3 -space property.

Definition 2.3. Let n be a positive integer. A Gabai Link of geometric index $2 n$ is a pair of solid tori $T^{\prime} \subset \operatorname{Int} T$ as illustrated in Figure 1. Figure 1(b) shows a Gabai Link of index 4, Figure 1(c) shows a Gabai Link of index 6, and Figure 1(d) shows a generalized Gabai Link of index $2 n$. For the link of geometric index $2 n$, there are $n-1$ clasps on the left and n clasps on the right.

Note that the inner torus T^{\prime} in a Gabai Link is contractible in the outer torus T.
Definition 2.4. A genus one 3-manifold M is the ascending union of solid tori $T_{i}, i \geq 0$, so that for each $i, T_{i} \subset \operatorname{Int} T_{i+1}$ and the geometric index of T_{i} in T_{i+1} is not equal to 0 .

Theorem 2.5. If M is a genus one 3-manifold with defining sequence $\left(T_{i}\right)$, then, for each j, T_{j} does not lie in any open subset of M that is homeomorphic to \mathbb{R}^{3}.

Proof. If T_{j} lies in U so that U is homeomorphic to \mathbb{R}^{3}, then, since T_{j} is compact, it lies in a 3-ball $B \subset U$. Since B is compact, it lies in the interior of some T_{k} with $k>j$. This implies that the geometric index of T_{j} in T_{k} is 0 , but since the geometric index is multiplicative, the geometric index of T_{j} in T_{k} is not zero. So there is no such U.

Figure 1. Whitehead and Gabai Links

Theorem 2.6. If M is a genus one 3-manifold with defining sequence $\left(T_{i}\right)$, and J is an essential simple closed curve that lies in some T_{j}, then J does not lie in any open subset of M that is homeomorphic to \mathbb{R}^{3}.

Proof. By thickening up T_{j} we may assume, without loss of generality, that J is the centerline of a solid torus T that lies in Int T_{j}. Since J is essential in T_{j}, the geometric index of T in T_{j} is not equal to zero. Thus, M is the ascending union of tori $T, T_{j}, T_{j+1}, T_{j+2}, \cdots$
and by the previous theorem, T does not lie in any open subset of M that is homeomorphic to \mathbb{R}^{3}. If J lies in U so that U is homeomorphic to \mathbb{R}^{3}, then we could have chosen T so that it also lies in U. Thus, by Theorem $2.5, J$ does not lie in any open subset of M that is homeomorphic to \mathbb{R}^{3}.

Theorem 2.7. A genus one 3-manifold M with defining sequence $\left(T_{i}\right)$ so that each T_{i} is contractible in T_{i+1}, is a contractible 3-manifold that is not homeomorphic to \mathbb{R}^{3}.

Proof. It is contractible since all the homotopy groups are trivial. If M is homeomorphic to \mathbb{R}^{3}, then each T_{i} in the defining sequence lies in an open subset that is homeomorphic to \mathbb{R}^{3} which is a contradiction.

Definition 2.8. A 3-manifold is said to satisfy the double 3-space property if it is the union of two open sets U and V so that each of U, V, and $U \cap V$ is homeomorphic to \mathbb{R}^{3}.

3. Gabai Manifolds Satisfy the Double 3-Space Property

3.1. Gabai Manifolds. Refer to Definition 2.3 and Figure 1 for the definition of a Gabai Link.

Definition 3.1. A Gabai contractible 3-manifold is the ascending union of nested solid tori so that any two consecutive tori form a Gabai Link. Given a sequence $n_{1}, n_{2}, n_{3}, \ldots$ of positive integers, there is a Gabai contractible 3-manifold $G=\bigcup_{m=0}^{\infty} T_{m}$ so that the tori $T_{m-1} \subset$ Int T_{m} form a Gabai Link of index $2 n_{m}$.

In fact, it is possible to assume that each $T_{m} \subset \mathbb{R}^{3}$ because if a Gabai Link is embedded in \mathbb{R}^{3} so that the larger solid torus is unknotted, then the smaller solid torus is also unknotted. McMillan's proof [McM62] that there are uncountably many genus one contractible 3 -manifolds transfers immediately to show that there are uncountably many Gabai contractible 3-manifolds. This proof uses properties of geometric index to show that if a prime p is a factor of infinitely many of $n_{1}, n_{2}, n_{3}, \ldots$ and only finitely many of $m_{1}, m_{2}, m_{3}, \ldots$, then the two 3 -manifolds formed using these sequences cannot be homeomorphic.
3.2. Special Subsets of S^{1} and $B^{2} \times S^{1}$. In S^{1} choose a closed interval I which we identify with the closed interval $[0,1]$. Let $C \subset I \subset S^{1}$ be the standard middle thirds Cantor set. Let $U_{1}=\left(\frac{1}{3}, \frac{2}{3}\right), U_{2}=\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right)$, and, in general, U_{i} be the union of the 2^{i-1} components of $[0,1]-C$ that have length $1 / 3^{i}$. Let $U_{0}=S^{1}-[0,1], C_{1}=C \cap\left[0, \frac{1}{3}\right]$, and $C_{2}=C \cap\left[\frac{2}{3}, 1\right]$. Let $h: B^{2} \times S^{1} \rightarrow \mathbb{R}^{3}$ be an embedding so that $T=h\left(B^{2} \times S^{1}\right)$ is a standard unknotted solid torus in \mathbb{R}^{3}. Set $V^{i}=h\left(B^{2} \times U_{i}\right), A=h\left(B^{2} \times C_{1}\right)$, and $B=h\left(B^{2} \times C_{2}\right)$. So V^{i} (for $i \geq 0), A$, and B are all subsets of T. The subset V^{0} is homeomorphic to $B^{2} \times(0,1)$. For $i>0, V^{i}$ is homeomorphic to the disjoint union of 2^{i-1} copies of $B^{2} \times(0,1)$, and both A and B are homeomorphic to $B^{2} \times C$.

For each positive integer n, let g_{n} be a homeomorphism of \mathbb{R}^{3} to \mathbb{R}^{3} that takes T into its interior, so that the pair $\left(g_{n}(T), T\right)$ forms a Gabai Link of geometric index $2 n$. Let $T_{n}^{\prime}=g_{n}(T), A_{n}^{\prime}=g_{n}(A), B_{n}^{\prime}=g_{n}(B)$, and $V_{n}^{i '}=g_{n}\left(V^{i}\right)$.

Lemma 3.2. The homeomorphisms $g_{n}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ can be chosen so that:

$$
\begin{gather*}
A \cap T_{n}^{\prime}=A_{n}^{\prime} \text { and } B \cap T_{n}^{\prime}=B_{n}^{\prime} \tag{1a}\\
V_{n}^{0^{\prime}} \subset V^{0} \text { and for } i>0, V_{n}^{i \prime} \subset V^{j} \text {, where } j<i . \tag{1b}
\end{gather*}
$$

Proof. Fix a positive integer n. We first define g_{n} on T. The idea is to identify $4 n$ subsets of $T=B^{2} \times S^{1}$, each homeomorphic to a tube of the form an interval cross B^{2}, and to use the S^{1} coordinate to linearly (in the $S^{1}-U_{0}=I$ factor) stretch these tubes from the region V^{0} to the region V^{1} in T.

Choose a positive integer $m>0$ and a nonnegative integer $k<2^{m-1}$ so that $2^{m}+2 k=$ $4 n<2^{m+1}$. Remove the subsets $U_{1}, \ldots U_{m}$ from I so that 2^{m} intervals of length 3^{-m} remain. Then remove $2 k$ of the intervals in U_{m+1}, namely the middle third of the first k and the last k of these remaining intervals in I so that $4 n=2^{m}+2 k$ intervals remain, $4 k$ of length $3^{-(m+1)}$, and the remaining $2^{m}-2 k$ of length 3^{-m}. Let \widetilde{U}_{m+1} be the union of the intervals in U_{m+1} that have been removed. Figure 2 shows the case where $n=3, m=3$, and $k=2$. The integers i across the bottom of this figure correspond to the U_{i} defined above.

Figure 2. Labelled Removed Intervals in $[0,1]$

Now let $\widetilde{V}_{m+1}=h\left(B^{2} \times \widetilde{U}_{m+1}\right)$ and consider $W=T-\cup_{j=0}^{m} V^{j}-\widetilde{V}_{m+1} . W$ consists of $4 n$ tubes homeomorphic to an interval cross B^{2}. Let g_{n} be a homeomorphism of T into its interior so that:
(1) The pair $\left(g_{n}(T), T\right)$ forms a Gabai Link of geometric index $2 n$,
(2) $g_{n}\left(V^{0} \cup V^{1}\right) \subset V^{0}$,
(3) The components of $\cup_{j=2}^{m} V^{j} \cup \widetilde{V}_{m+1}$ are taken by g_{n} into V_{0} or V_{1}, and
(4) g_{n} restricted to each of the $4 n$ tubes mentioned above is a product of a homeomorphism of the B^{2} factor onto a subdisk with a linear homeomorphism on the interval factor that stretches the tube from V^{0} to V^{1} or from V^{1} to V^{0} in either $B^{2} \times[0,1 / 3]$ or in $B^{2} \times[2 / 3,1]$.

Figure 3 illustrates this when $n=3$, with the numbers j listed by parts of the interior torus corresponding to the subsets $g_{n}\left(V^{j}\right)$. The last two regions mentioned in (4) above correspond to the top or bottom parts of the $T-\left(V_{0} \cup V_{1}\right)$ in Figure 3. In particular, the S^{1} factor, after U_{0} is removed is parameterized in a counterclockwise manner in Figure 3.
The interval factor of each of the tubes in W corresponds to an interval in I of length 3^{-m} or of length $3^{-(m+1)}$, one of the remaining intervals in stage m or stage $m+1$ of the standard construction of C. Let D be one of these intervals. The self similarity of C shows that a linear homeomorphism from D onto either $E=[0,1 / 3]$ or onto $E=[2 / 3,1]$ takes $C \cap D$ onto $C \cap E$ and takes the intervals of $U_{i} \cap D$ homeomorphically to the intervals of $U_{i-k} \cap E$ where $k=m-1$ or $k=m$.

From this, it follows that condition (1b) is satisfied. The nature of a Gabai Link guarantees that $A_{n}^{\prime} \subset B^{2} \times[0,1 / 3] \subset T$ and that $B_{n}^{\prime} \subset B^{2} \times[1 / 3,2 / 3] \subset T$. This, together with the discussion in the previous paragraph shows that condition (1a) is satisfied.

Since both T and $T^{\prime}=g_{n}(T)$ are unknotted solid tori, the map g_{n} extends to a homeomorphism of \mathbb{R}^{3} if and only if g_{n} takes a longitudinal curve of T to a longitudinal curve of T^{\prime}. If this is not the case, we can first take a twisting homeomorphism of T to itself that preserves the subsets A, B, and V^{i} of T so that the compositions of the twisting homeomorphism and our g_{n} takes a longitudinal curve of T to a longitudinal curve of T^{\prime}. Thus we may assume that g_{n} extends to a homeomorphism of \mathbb{R}^{3} to itself.

Figure 3. Labelled Regions on Tori in Gabai Link
3.3. Construction. We will now inductively construct a Gabai 3 -manifold corresponding to a sequence $n_{1}, n_{2}, n_{3}, \ldots$ of positive integers, with special subsets corresponding to the subsets of T and T_{n}^{\prime} just described. Let $T_{0}=T$. Let $h_{1}: T \rightarrow R^{3}$ be given by $g_{n_{1}}^{-1}$ and let $T_{1}=h_{1}(T)$. Let $A_{1}=h_{1}(A), B_{1}=h_{1}(B)$, and $V_{1}^{i}=h_{1}\left(V^{i}\right)$. Note that the pair $\left(T_{0}, T_{1}\right)$ is homeomorphic to $\left(T_{n_{1}}^{\prime}, T\right)$ via $g_{n_{1}}$ and so forms a Gabai Link of index $2 n_{1}$. It follows immediately from Lemma 3.2 and the definitions of the various subsets that:

$$
\begin{gather*}
A_{1} \cap T_{0}=A \text { and } B_{1} \cap T_{0}=B \tag{2a}\\
V^{0} \subset V_{1}^{0} \text { and for } i>0, V^{i} \subset V_{1}^{j}, \text { where } j<i . \tag{2b}
\end{gather*}
$$

Inductively assume that homeomorphisms $h_{i}: T \rightarrow R^{3}$ have been described for $i \leq k$ and that $A_{i}=h_{i}(A), B_{i}=h_{i}(B)$, and $V_{i}^{j}=h_{i}\left(V^{j}\right)$ for $i \leq k$. Also assume that for each $i \leq k$:

$$
\begin{align*}
& \quad A_{i} \cap T_{i-1}=A_{i-1} \text { and } B_{i} \cap T_{i-1}=B_{i-1} \tag{3a}\\
& V_{i-1}^{0} \subset V_{i}^{0} \text { and for } j>0, V_{i-1}^{j} \subset V_{i}^{\ell} \text {, where } \ell<j \tag{3b}\\
& \text { the pair }\left(T_{i-1}, T_{i}\right) \text { is a Gabai Link of index } 2 n_{i} . \tag{3c}
\end{align*}
$$

For the inductive step, let $h_{k+1}: T \rightarrow R^{3}$ be given by $h_{k} \circ g_{n_{k+1}}^{-1}$ and let $T_{k+1}=h_{k+1}(T)$, $A_{k+1}=h_{k+1}(A), B_{k+1}=h_{k+1}(B)$, and $V_{k+1}^{j}=h_{k+1}\left(V^{j}\right)$. Note that the pair $\left(T_{k}, T_{k+1}\right)$ is then homeomorphic to $\left(T_{n_{k+1}}^{\prime}, T\right)$ via the homeomorphsm $g_{n_{k+1}} \circ h_{k}^{-1}$ and so forms a Gabai Link of index $2 n_{k+1}$. This shows that Statement (3c) holds when $i=k+1$. Properties (3a) and (3b) for $i=k+1$ follow by applying h_{k+1} to properties (1a) and (1b) from Lemma 3.2. This completes the verification of the inductive step and shows that the following lemma holds.

Lemma 3.3. The Gabai 3-manifold $G=\bigcup_{m=0}^{\infty} T_{m}$ constructed as above satisfies the properties listed in (3a), (3b), and (3c) for all $i>0$.
3.4. Main Result on Gabai Manifolds. Using the notation from the previous subsection we can state and prove the main result about Gabai manifolds.
Theorem 3.4. Let $G=\bigcup_{m=0}^{\infty} T_{m}$ be a Gabai contractible 3-manifold where each T_{m} is a solid torus and consecutive tori form a Gabai Link. Then G satisfies the double 3-space property.

Proof. The key to the proof is that in the Gabai manifold G, we may assume that the conditions in Lemma 3.3 are satisfied.

To show that G satisfies the double 3-space property, we choose the closed sets $A^{\prime}=\cup_{n=0}^{\infty} A_{n}$ and $B^{\prime}=\cup_{n=0}^{\infty} B_{n}$. Recall that $A_{n}=h_{n}(A)=h_{n}\left(h\left(B^{2} \times C_{1}\right)\right)$ and that $B_{n}=h_{n}(B)=$ $h_{n}\left(h\left(B^{2} \times C_{2}\right)\right)$. We claim that $M=G-A^{\prime}, N=G-B^{\prime}$ and $M \cap N=G-\left(A^{\prime} \cup B^{\prime}\right)$ are each homeomorphic to \mathbb{R}^{3}.
We first show $M \cap N=G-\left(A^{\prime} \cup B^{\prime}\right)$ is homeomorphic to \mathbb{R}^{3}. It suffices to show that $M \cap N$ is an increasing union of copies of \mathbb{R}^{3} [Bro61]. First notice that Int $V_{n}^{0} \subset T_{n}$ is homeomorphic to \mathbb{R}^{3} since it is the product of an open interval and an open 2-cell. Next notice that $M \cap N=\bigcup_{n=0}^{\infty} \operatorname{Int} V_{n}^{0}$ because any point p in $M \cap N$ must lie in the interior of some V_{m}^{i} and therefore lies in the interior of V_{m+i}^{0} by condition (3b) in Lemma 3.3. Again by condition (3b) in Lemma 3.3, the Int V_{n}^{0} are nested. So $M \cap N$ is an increasing union of copies of \mathbb{R}^{3}, and so is homeomorphic to \mathbb{R}^{3}.

The proofs that M and N are homeomorphic to \mathbb{R}^{3} are similar, so we will just focus on M. Let $W_{0}=V_{0} \cup V_{1} \cup\left(B^{2} \times[2 / 3,1]\right) \subset T$ and let $W_{i}=V_{i+1} \cap\left(B^{2} \times[0,1 / 3]\right) \subset T$. Then $T-\bigcup_{i=0}^{\infty} W_{i}$ is precisely $B^{2} \times A$. Let $W_{n}^{i}=h_{i}\left(W_{n}\right)$. Then as in the preceeding paragraph,
by the conditions in Lemma 3.3, $M=\bigcup_{n=0}^{\infty}$ Int W_{n}^{0} which is an increasing union of copies of \mathbb{R}^{3}. So M is homeomorphic to \mathbb{R}^{3}.

Corollary 3.5. There are uncountably many distinct contractible 3-manifolds with the double 3-space property.

Proof. This follows directly from Theorem 3.4 and the discussion following Definition 3.1.

4. Interlacing Theory

Definition 4.1. Let A and B be finite subsets of a simple closed curve J each containing k points. We say (A, B) is a k-interlacing of points if each component of $J-A$ contains exactly one point of B.

Definition 4.2. Let A and B be disjoint compact sets. We say that (A, B) is a k-interlacing for a simple closed curve J if there exist finite subsets $A^{\prime} \subset A \cap J$ and $B^{\prime} \subset B \cap J$ so that $\left(A^{\prime}, B^{\prime}\right)$ is a k-interlacing of points, but it is impossible to find such subsets that form a $(k+1)$-interlacing of points. If either $A \cap J=\emptyset$ or $B \cap J=\emptyset$, then we say that (A, B) is a 0 -interlacing.

Theorem 4.3 (Interlacing Theorem for a Simple Closed Curve). If A and B are disjoint compact sets and J is a simple closed curve, then (A, B) is a k-interlacing for some non-negative integer k.

Proof. If $A \cap J=\emptyset$ or $B \cap J=\emptyset$, then (A, B) is a 0 -interlacing. Otherwise, using compactness, it is possible to cover $A \cap J$ with a finite collection of non-empty, connected, disjoint open sets $U_{1}, U_{2}, \ldots, U_{m}$ and cover $B \cap J$ with a finite collection of non-empty, connected, disjoint open sets $V_{1}, V_{2}, \ldots, V_{n}$ so that the U_{i} and V_{j} are also disjoint. If $A^{\prime} \subset A$ and $B^{\prime} \subset B$ so that $\left(A^{\prime}, B^{\prime}\right)$ is a k-interlacing of points for J, then A^{\prime} contains at most one point from each U_{i} and B^{\prime} contains at most one point from each V_{j}. So there is a bound on k, and our theorem is proved.

Theorem 4.4 (Neighborhood Interlacing Theorem for Simple Closed Curves). If (A, B) is a k-interlacing for a simple closed curve J, then there are open neighborhoods U and V of $A \cap J$ and $B \cap J$, respectively, in J so that if \bar{A} and \bar{B} are disjoint compact sets with $A \cap J \subset \bar{A} \cap J \subset U$ and $B \cap J \subset \bar{B} \cap J \subset V$, then (\bar{A}, \bar{B}) is also a k-interlacing.

Proof. As in the proof of the preceding theorem find the non-empty, connected, disjoint open sets U_{i} and V_{i}, but in addition we may assume that $m=n=k$. Let $U=\bigcup_{i=1}^{m} U_{i}$ and $V=\bigcup_{i=1}^{n} V_{i}$.
Theorem 4.5 (Meridional Disk with Holes Theorem). [Wri89, Theorem A6] Let H be a properly embedded disk with holes in a solid torus T. Then H is a meridional disk with holes if and only if the inclusion $f: H \rightarrow T$ lifts to a map \hat{f} from H to the universal cover $\widetilde{T}=B^{2} \times \mathbb{R}$ and $\hat{f}(H)$ separates \widetilde{H} into two unbounded components.
Definition 4.6. Let $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{k}$ be disjoint meridional disks with holes in a solid torus T. Let $A=\cup_{i=1}^{k} A_{i}$ and $B=\cup_{i=1}^{k} B_{i}$. We say that (A, B) is a k-interlacing collection of meridional disks with holes if each component of $T-A$ contains exactly one B_{i}.

Definition 4.7. Let A and B be disjoint compact sets. We say that (A, B) is a k interlacing for a solid torus T if there exist disjoint meridional disks with holes in T, $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{k}$ with $A^{\prime}=\cup_{i=1}^{k} A_{i} \subset A$ and $B^{\prime}=\cup_{i=1}^{k} B_{i} \subset B$ so that $\left(A^{\prime}, B^{\prime}\right)$ is a k-interlacing collection of meridional disks with holes, but it is impossible to find such subsets that form a $(k+1)$-interlacing collection of meridional disks with holes. If either A or B fails to contain a meridional disk with holes in T, then we say that (A, B) is a 0 -interlacing.

Lemma 4.8. If (A, B) is a k-interlacing collection of meridional disks with holes for the solid torus T and J is a simple closed curve core for T, then (A, B) is an n-interlacing of J where $n \geq k$.

Proof. If $k=0$ or $k=1$ the proof is quite easy. Each component of $T-A$ contains exactly one meridional disk with holes component of B. Let J be a simple closed curve core for T. Since each disk with holes component of A is interior essential, J must meet each component of A. Let U be a component of $J-A$ so that the endpoints of the closure of U are in different components of A. Then U must meet a component of B since each component of B is interior essential. Since there are at least k such components of $J-A$ with endpoints of the closure in different components of $A,(A, B)$ must be at least a k-interlacing for J. Thus we see that (A, B) is an n-interlacing of J where $n \geq k$.

Theorem 4.9 (Interlacing Theorem for a Solid Torus). If A and B are disjoint compact sets and T is a solid torus, then (A, B) is a k-interlacing of T for some non-negative integer k.

Proof. We just need to show that the interlacing number of (A, B) with respect to T is bounded. Let J be a core simple closed curve for the solid torus. The interlacing number of (A, B) with respect to T is less than or equal to the interlacing number of (A, B) with respect to J which is well-defined by the Interlacing Theorem for simple closed curves.

5. McMillan Contractible 3-Manifolds Do Not Satisfy the Double 3-Space Property

There is an alternative generalization of a Whitehead Link that was used by McMillan [McM62] to show the existence of uncountably many contractible 3-manifolds. We call these links McMillan Links.

Definition 5.1. Let n be a positive integer. A McMillan Link of geometric index $2 n$ is a pair of solid tori $T^{\prime} \subset T$ so that T^{\prime} is embedded in T as illustrated in Figure 4 for a McMillan Link of index 4 and of index $2 n$.

Definition 5.2. If M is a genus one 3-manifold with defining sequence $\left(T_{i}\right)$, then we say that M is a McMillan Contractible 3-manifold if for each $i, T_{i} \subset T_{i+1}$ is a McMillan Link of geometric index at least 4.

There are immediate results that follow from the previous section.

Figure 4. McMillan Links

Theorem 5.3 (Interlacing Theorem for a McMillan Link). Suppose that A and B are disjoint planar 2-manifolds properly embedded in a solid torus T so that (A, B) is a k interlacing for T. If T^{\prime} is a McMillan Link of geometric index $2 n$ in T so that T^{\prime} is in general position with respect to $A \cup B$, then (A, B) is an m-interlacing for T^{\prime} where $m \geq 2 n k-1$.

Proof. Let $p: \widetilde{T} \rightarrow T$ be the projection map from the n-fold cover of T. Since (A, B) is a k-interlacing for T, there exist disjoint meridional disks with holes, $A_{1}, A_{2}, \ldots, A_{k}$ and $B_{1}, B_{2}, \ldots, B_{k}$ with $A^{\prime}=\cup_{i=1}^{k} A_{i} \subset A$ and $B^{\prime}=\cup_{i=1}^{k} B_{i} \subset B$ so that $\left(A^{\prime}, B^{\prime}\right)$ is a k-interlacing collection of meridional disks with holes for T. Set $\widetilde{A}^{\prime}=p^{-1}\left(A^{\prime}\right)$ and $\widetilde{B}^{\prime}=p^{-1}\left(B^{\prime}\right)$. Using the Meridional Disk with Holes Theorem, we see that $\left(\widetilde{A^{\prime}}, \widetilde{B^{\prime}}\right)$ is an $n k$-interlacing collection of meridional disks with holes for \widetilde{T}. Let $\widetilde{i}: T^{\prime} \rightarrow \widetilde{T}$ be a lift of the inclusion map $i: T^{\prime} \rightarrow T$. Then $T^{\prime \prime}=\widetilde{i}\left(T^{\prime}\right)$ is a Whitehead Link in \widetilde{T}. By [Wri89, Lemma A10] ($\left.\widetilde{A^{\prime}}, \widetilde{B^{\prime}}\right)$ is an m interlacing of $T^{\prime \prime}$ where $m \geq 2 n k-1$. It now follows that (A, B) is an m-interlacing for T^{\prime} for $m \geq 2 n k-1$.

Corollary 5.4. In the previous theorem, if T^{\prime} has geometric index at least 4, then $m>k$.
We now prove some lemmas that are needed in proving that McMillan contractible 3manifolds do not have the double 3 -space property.

Lemma 5.5. Let H be a properly embedded 2-manifold in a solid torus T so that each component of H is an interior-inessential disk with holes. Then there is an essential simple closed curve in T that misses H.

Proof. Let J be an oriented essential simple closed curve in T that is in general position with respect to H. The proof is by induction on the number of points in $J \cap H$. Consider
a component H^{\prime} of H that meets J. Choose an orientation on H^{\prime}. Since H^{\prime} is interiorinessential, the algebraic intersection number of J and H^{\prime} is zero (meaning that there are the same number of positive and negative intersections). Let $p, q \in J \cap H^{\prime}$ be points with opposite orientations. The points p and q separate J into two components J_{1} and J_{2}. Let A be an arc in H^{\prime} between p and q that misses all other points of $J \cap H^{\prime}$. Then $J_{1} \cup A$ and $J_{2} \cup A$ are simple closed curves. If $J_{1} \cup A$ and $J_{2} \cup A$ are both inessential in T, then so is J, so at least one of $J_{1} \cup A$ and $J_{2} \cup A$ is essential in J. We suppose that $J^{\prime}=J_{1} \cup A$ is essential in T. Using a collar on H^{\prime}, we can push J_{1} off H to get an essential simple closed curve $J^{\prime \prime}$ that meets H in two fewer points than J.

Lemma 5.6. Let M be a 3-manifold so that $M=U \cup V$ where U, V are homeomorphic to \mathbb{R}^{3}. Let $T \subset M$ be a solid torus so that for every essential simple closed curve $J \subset T$, $J \not \subset U$ and $J \not \subset V$. Let $C=M-U$ and $D=M-V$. Then any neighborhood of $T \cap C$ in T contains a meridional disk with holes.

Proof. Notice that by DeMorgan's Law, $C \cap D=\emptyset$. Since $T \not \subset U$ and $T \not \subset V$, then $C^{\prime}=T \cap C \neq \emptyset$ and $D^{\prime}=T \cap D \neq \emptyset$. So C^{\prime} and D^{\prime} are disjoint non-empty compact subsets of T. Let N be an open neighborhood of C^{\prime} in T that misses D^{\prime}. Let $K=T-N$. Then K is a compact set in U that contains D^{\prime}. Since U is homeomorphic to \mathbb{R}^{3}, K is contained in the interior of a 3 -ball $B \subset U$ with boundary a 2 -sphere S that we may suppose is in general position with respect to T. Notice that C^{\prime} and D^{\prime} are in separate components of $M-S$ and so $S \cap T=\emptyset$ is impossible. Also $S \subset$ Int T is impossible because this would allow for an essential simple closed curve in T that would lie in either U or V. Thus the set $H=S \cap T \neq \emptyset$ lies in the neighborhood N of C^{\prime}, and each component of H is a disk with holes. If each component is interior-inessential, then, by the previous lemma, there is an essential simple closed curve J in T that misses H. So J lies in a component of $M-S$ and must miss either C or D. So $J \subset U$ or $J \subset V$ which is a contradiction. Thus at least one of the components of H must be interior-essential and thus a meridional disk with holes.

Theorem 5.7. No McMillan contractible 3-manifold M can be expressed as the union of two copies of \mathbb{R}^{3}.

Proof. Let T_{i} be a defining sequence for M so that $M=\cup_{i=0}^{\infty} T_{i}$. Suppose $M=U \cup V$ where U, V are homeomorphic to \mathbb{R}^{3}. Then by Lemma 2.6, for each essential simple closed curve $J^{\prime} \subset T_{i}, J^{\prime} \not \subset U$ and $J^{\prime} \not \subset V$. Let $C=M-U$ and $D=M-V$. Then by Lemma 5.6 each neighborhood of $T_{i} \cap C$ and each neighborhood of $T_{i} \cap D$ contains a meridional disk with holes for T_{i}.
Let J be a simple closed curve core of T_{0}. Let n be the interlacing number of $(J \cap C, J \cap D)$. Let \bar{C} and \bar{D} be closed neighborhoods in J of $J \cap C$ and $J \cap D$, respectively so that the interlacing number for (\bar{C}, \bar{D}) is also n. Let H_{C} be a meridional disk with holes in a neighborhood of $C \cap T_{n}$ and H_{D} be a meridional disk with holes in a neighborhood of $D \cap T_{n}$ so that
(1) $H_{C} \cap H_{D}=\emptyset$
(2) $H_{C} \cap J \subset \bar{C}, H_{D} \cap J \subset \bar{D}$
(3) H_{C} an H_{D} are in general position with respect to $T_{i}, 0 \leq i \leq n$.

By Corollary 5.4 the interlacing number of $\left(H_{C} \cap T_{0}, H_{D} \cap T_{0}\right)$ in T_{0} is greater than n. This implies that the interlacing number of (\bar{A}, \bar{B}) in J is also greater than n, a contradiction to Lemma 4.8

Corollary 5.8. There are uncountably many distinct contractible 3-manifolds that fail to have the double 3-space property.

Proof. This follows directly from Theorem 5.7 and the discussion following Definition 3.1.

6. Questions and Acknowledgments

The results in this paper produce two infinite classes of genus one contractible 3-manifolds, one of which has the double 3 -space property and one of which does not. There are many genus one contractible 3-manifolds that do not fit into either of these two classes. This leads to a number of questions.

Question 6.1. Is it possible to characterize which genus one contractible 3-manifolds have the double 3-space property?

Question 6.2. Is it possible to characterize which contractible 3-manifolds have the double 3-space property?

Question 6.3. Is there a contractible 3-manifold M which is the union of two copies of \mathbb{R}^{3}, but which does not have the double 3-space property?

The authors were supported in part by the Slovenian Research Agency grant BI-US/13$14 / 027$. The first author was supported in part by the National Science Foundation grant DMS0453304. The first and third authors were supported in part by the National Science Foundation grant DMS0707489. The second author was supported in part by the Slovenian Research Agency grants P1-0292-0101 and J1-5435-0101.

References

[Bro61] Morton Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814. MR 0126835 (23 \#A4129)
[Dav07] Robert J. Daverman, Decompositions of manifolds, AMS Chelsea Publishing, Providence, RI, 2007. Reprint of the 1986 original. MR 2341468 (2008d:57001)
[DV09] Robert J. Daverman and Gerard A. Venema, Embeddings in manifolds, Graduate Studies in Mathematics, vol. 106, American Mathematical Society, Providence, RI, 2009. MR 2561389 (2011g:57025)
[Gab11] David Gabai, The Whitehead manifold is a union of two Euclidean spaces, J. Topol. 4 (2011), no. 3, 529-534, DOI 10.1112/jtopol/jtr010. MR 2832566 (2012i:57037)
[GRWŽ11] Dennis J. Garity, Dušan Repovš, David Wright, and Matjaž Željko, Distinguishing BingWhitehead Cantor sets, Trans. Amer. Math. Soc. 363 (2011), no. 2, 1007-1022, DOI 10.1090/S0002-9947-2010-05175-X. MR 2728594 (2011j:54034)
[McM62] D. R. McMillan Jr., Some contractible open 3-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373-382. MR 0137105 (25 \#561)
[Mye88] Robert Myers, Contractible open 3-manifolds which are not covering spaces, Topology 27 (1988), no. 1, 27-35, DOI 10.1016/0040-9383(88)90005-5. MR 935526 (89c:57012)
[Mye99] , Contractible open 3-manifolds which non-trivially cover only non-compact 3-manifolds, Topology 38 (1999), no. 1, 85-94, DOI 10.1016/S0040-9383(98)00004-4. MR 1644087 (99g:57022)
[RS82] Colin P. Rourke and Brian J. Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919 (83g:57009)
[Sch53] Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286 (German). MR 0072482 (17,291d)
[Whi35] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), no. 6, 268-279.
[Wri89] David G. Wright, Bing-Whitehead Cantor sets, Fund. Math. 132 (1989), no. 2, 105-116. MR 1002625 (90d:57020)
[Wri92] , Contractible open manifolds which are not covering spaces, Topology 31 (1992), no. 2, 281-291, DOI 10.1016/0040-9383(92)90021-9. MR 1167170 (93f:57004)

Mathematics Department, Oregon State University, Corvallis, OR 97331, U.S.A.
E-mail address: garity@math.oregonstate.edu
URL: http://www.math.oregonstate.edu/~garity

Faculty of Education, and Faculty Mathematics and Physics, University of Lubbljana, Kardeljeva PL.16, Ljubljana, 1000 Slovenia

E-mail address: dusan.repovs@guest.arnes.si
URL: http://www.fmf.uni-lj.si/~repovs

Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A.
E-mail address: wright@math.byu.edu
URL: http://www.math.byu.edu/~wright

[^0]: Date: August 27, 2014.
 1991 Mathematics Subject Classification. Primary 54E45, 54F65; Secondary 57M30, 57N10.
 Key words and phrases. contractible 3-manifold, open 3-manifold, Whitehead Link, defining sequence, geometric index, McMillan contractible 3-manifold, Gabai Link.

