Motivation

Read §46. Most of these results will be presented in summary form.

Given a homotopy between maps f and $g: X \to Y$, we would like to know if there is a "path" of continuous functions from X to Y. That is, in C(X, Y), is there a path joining f to g?

Mth 532 - Winter 2012

Pointwise and Compact Convergence

1/8

Topology of Compact Convergence

Def. If (Y, d) is metric and X is a space, given $f \in Y^X$ and $C^{compact} \subset X$, $B_C(f, \varepsilon)$ consists of all g for which $\sup\{d(f(x), g(x)) | x \in C\} < \varepsilon$

These sets form a basis for a topology on Y^X called the *topology of compact convergence*.

Thm: f_n converges to f in Y^X with the top. of compact convergence iff for each compact C in X, $f_n|_C$ converges uniformly to $f|_C$.

Topology of Pointwise Convergence

Def: For $x \in X$ and $U^{open} \subset Y$ $S(x, U) \equiv \{f \in Y^X | f(x) \in U\}$. The topology of *pointwise convergence* on Y^X is the topology having for a basis finite intersections of sets of this form.

Note: this is just the product topology.

Thm: f_n converges to f in Y^X with the top. of pointwise convergence iff for each x in X, $f_n(x)$ converges to f(x) in Y.

Mth 532 - Winter 2012

Pointwise and Compact Convergence

2/8

Comparison of Topologies

Thm: Let X be a space and (Y, d) be metric. For Y^X ,

(uniform)⊃(cpct. conv)⊃(ptwise conv.)

If *X* is compact, the first two coincide.

If *X* is discrete, the last two coincide.

Mth 532 – Winter 2012 Pointwise and Compact Convergence

Mth 532 - Winter 2012

Pointwise and Compact Convergence

4/8

Compactly Generated Spaces

Def. X is compactly generated if a set U is open in X iff $U \cap C$ is open in C for each compact C in X.

Lemma: If *X* is locally compact or first countable, then *X* is compactly generated.

Lemma: If X is compactly generated, then $f: X \to Y$ is continuous iff for each compact C in X, $f|_C$ is continuous.

Thm: If X is compactly generated and (Y, d) is metric, then C(X, Y) is closed in Y^X with the topology of compact conv.

Mth 532 - Winter 2012

Pointwise and Compact Convergence

5/8

Evaluation Map e

Cor: If (Y, d) is metric, the compact convergence topology on C(X, Y) does not depend on the specific metric d. So if X is cpct, the uniform topology on C(X, Y) does not depend on the metric d.

Thm: Let X be locally cpct Hausdorff and let C(X, Y) have the cpct open topology. Then $e: X \times C(X, Y) \to Y$ given by e(x, f) = f(x) is continuous.

Compact Open Topology

Def. Let X and Y be spaces. If $C^{\text{cpct}} \subset X$ and $U^{\text{open}} \subset Y$, let

$$S(C,U) = \{ f \in C(X,Y) | f(C) \subset U \}$$

Note: Finite intersections of these sets form a basis for a topology on Y^X called the *compact open topology*.

Thm: If X is a space and (Y, d) is metric, then on C(X, Y), the compact open topology and the topology of compact convergence coincide.

Mth 532 - Winter 2012

Pointwise and Compact Convergence

6/8

Homotopic maps and paths in C(X, Y)

Def: Given a continuous $f: X \times Z \rightarrow Y$, there is a $F: Z \rightarrow C(X, Y)$ given by (F(z))(x) = f(x, z). Conversely, given F, this defines f. F is induced by f.

Thm: Let C(X, Y) have the compact open topology. If $f: X \times Z \to Y$ is continuous, so is $F: Z \to C(X, Y)$. The converse holds if X is locally compact Hausdorff.

Thm: Let X be locally compact Hausdorff, Y be a space and let C(X, Y) have the compact open topology. $H: X \times I \to Y$ is continuous if and only if the induced $F: I \to C(X, Y)$ is.