Partial Derivatives

Read Lesson 12 in the study guide

Read Section 12.4 in the text

Continue work on online homework Also Try 7 - 15 odd numbered, 19, 21, 25, 27, 29, 35, 37, 41, 43, 45

Mth 254H - Winter 2013

1/8

Partial Derivatives

Def. If f is a function of two variables, its partial derivatives f_x and f_y are defined by

$$f_{x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_{y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Notation:

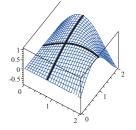
$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

Mth 254H - Winter 2013

3/8

Motivation for Partial Derivatives

Consider f(x, y) = sin(xy) near the point $(\frac{\pi}{4}, 1)$.



We get different slopes if we approach this point along the two different curves on the surface obtained by fixing x and y.

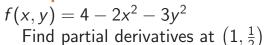
Mth 254H - Winter 2013

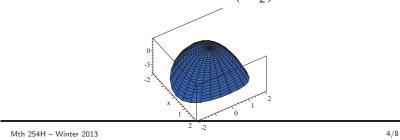
2/8

How to find partial derivatives

- To find *f_x* regard *y* as a constant and differentiate
- To find *f_y* regard *x* as a constant and differentiate.

Example:





Higher order derivatives

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

Examples:
 $z = x^4 - 2x^2y$

$$z = \frac{x}{x + 2y}$$

Mth 254H - Winter 2013

5/8

Differentiability

Def: If z = f(x, y), then f is *differentiable* or locally linear at (a, b) if $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$ can be expressed as $\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \epsilon_1\Delta x + \epsilon_2\Delta y$ where $\epsilon_1 \& \epsilon_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$

f is differentiable on an open set D if it is differentiable at each point of D.

Preview of Result on Mixed Partials

Clairaut's Theorem: If f(x, y) is defined on an open set D containing (a, b) and if both f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$

Functions of more than 2 variables

 $f(x, y, z) \qquad \frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \quad \frac{\partial f}{\partial z}$ $f(x_1, x_2, \cdots, x_n) \qquad \frac{\partial f}{\partial x_1} \quad \frac{\partial f}{\partial x_2} \quad \cdots \quad \frac{\partial f}{\partial x_n}$

Mth 254H - Winter 2013

6/8

Conditions for Differentiability

Theorem: Suppose f has partial derivatives f_x and f_y defined on an open region containing (a, b), with f_x and f_y continuous at (a, b). Then f is differentiable at (a, b).

Theorem: Suppose f is differentiable at (a, b), then f is continuous at (a, b).

Mth 254H - Winter 2013