Limits and Continuity

Read Lesson 11 in the study guide

Read Section 12.3 in the text

Continue work on online homework Also try 11-45, odd numbered

Mth 254H - Winter 2013

1/11

Examples:

$$f(x,y) = \frac{3x^2y}{2x^2 + y^2} \qquad \lim_{(x,y)\to(0,0)} \frac{3x^2y}{2x^2 + y^2}$$

What happens as (x, y) approaches (0, 0) along the axes?

$$\frac{3x^2y}{2x^2+y^2} = 3\left(\frac{x^2}{2x^2+y^2}\right)y \to 0 \text{ along the axes.}$$

In fact, \rightarrow 0 no matter how you come in to origin. Why?

Limits and Continuity

Def: Suppose z = f(x, y) has domain *D* with points (x, y) arbitrarily close to (a, b).

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

provided f(x, y) can be made arbitrarily close to L by requiring (x, y) to be sufficiently close to (a, b).

That is, for each $\epsilon >$ 0, there is a $\delta >$ 0 so that if

if $0 < d((x, y), (a, b)) < \delta$ then $|f(x, y) - L| < \epsilon$

Mth 254H - Winter 2013

2/11

Mth 254H - Winter 2013

More Examples

Result: If $f(x, y) \rightarrow L_1$ as $(x, y) \rightarrow (a, b)$ along C_1 and if $f(x, y) \rightarrow L_2 \neq L_1$ as $(x, y) \rightarrow (a, b)$ along C_2 then

 $\lim_{(x,y)\to(a,b)} f(x,y) \text{ does not exist.}$

Example:

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

What happens if you approach along y=0 or y = x?

Mth 254H - Winter 2013

5/11

Limit Rules

Note: Same limit rules apply as in Single Var Calc.

Assume *c* is constant.

THEOREM 12.1 Limits of Constants and Linear Functions

Let a, b, and c be real numbers.

- 1. Constant functions f(x, y) = c: $\lim_{(x,y)\to(a,b)} c = c$
- **2.** Linear function f(x, y) = x: $\lim_{(x,y)\to(a,b)} x = a$
- 3. Linear function f(x, y) = y: $\lim_{(x,y)\to(a,b)} y = b$

Mth 254H - Winter 2013

6/11

Rules, Continued

Suppose $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{(x,y)\to(a,b)} g(x,y) = M$.

- **1.** Sum $\lim_{(x,y)\to(a,b)} [f(x, y) + g(x, y)] = L + M$
- **2.** Difference $\lim_{(x,y)\to(a,b)} [f(x, y) g(x, y)] = L M$
- **3.** Constant multiple $\lim_{(x,y)\to(a,b)} [c f(x, y)] = c L$
- 4. **Product** $\lim_{(x,y)\to(a,b)} f(x, y) g(x, y) = LM$
- 5. Quotient $\lim_{(x,y)\to(a,b)} \left[\frac{f(x,y)}{g(x,y)}\right] = \frac{L}{M}$, provided $M \neq 0$
- 6. **Power** $\lim_{(x,y)\to(a,b)} [f(x, y)]^n = L^n$
- 7. m/n power If m and n have no common factors and $n \neq 0$,

then
$$\lim_{(x,y)\to(a,b)} (f(x,y))^{m/n} = L^{m/n}$$
, $(L > 0 \text{ if } n \text{ even})$

Interior and Boundary Points

DEFINITION Interior and Boundary Points

Let *R* be a region in \mathbb{R}^2 . An **interior point** *P* of *R* lies entirely within *R*, which means it is possible to find a disk centered at *P* that contains only points of *R* (Figure 12.40).

A boundary point Q of R lies on the edge of R in the sense that *every* disk centered at Q contains at least one point in R and at least one point not in R.

Open and Closed Sets

DEFINITION Open and Closed Sets

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

Mth 254H - Winter 2013

9/11

More Variables

Functions of three or more variables

-Similar definitions for limits, continuity

Continuity

Def: f(x, y) is *continuous* at (a, b) if

 $\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$

Note: Polynomial functions and rational functions are continuous at all points in their domains. *Compositions* of continuous functions are continuous.

Mth 254H - Winter 2013

10/11