Acceleration and Curvature

This section answers the following questions about a path $\mathbf{r}(t)$ traced out over time:

- How does the acceleration increases or decreases the speed and change the direction of the path?
- What is the curvature of the path?

Read Lesson 8 in the study guide

Read Section 11.9 in the text

Try 11, 13, 15, 17, 23, 25, 31, 33, 39

Mth 254H - Winter 2013

1/10

Arc Length

Arc Length:
$$s(t) = \int_{t_0}^t |\mathbf{v}(u)| \, du$$

Note:
$$\frac{ds}{dt} = |\mathbf{v}(t)| =$$
speed.

Mth 254H - Winter 2013

Velocity and Acceleration

Position: $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$

Velocity: $v(t) = r'(t) = \langle f'(t), g'(t), h'(t) \rangle$

Acceleration: $\mathbf{a}(t) = \mathbf{r}''(t) = \langle f''(t), g''(t), h''(t) \rangle$

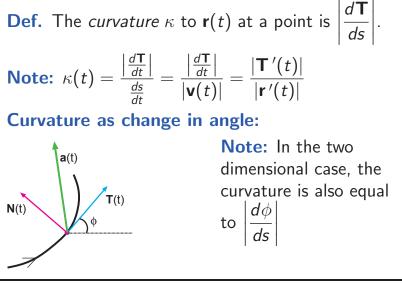
Speed: $|\mathbf{v}(t)| = |\mathbf{r}'(t)| = \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2}$

Unit Tangent Vector: $\mathbf{T}(t) = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}$

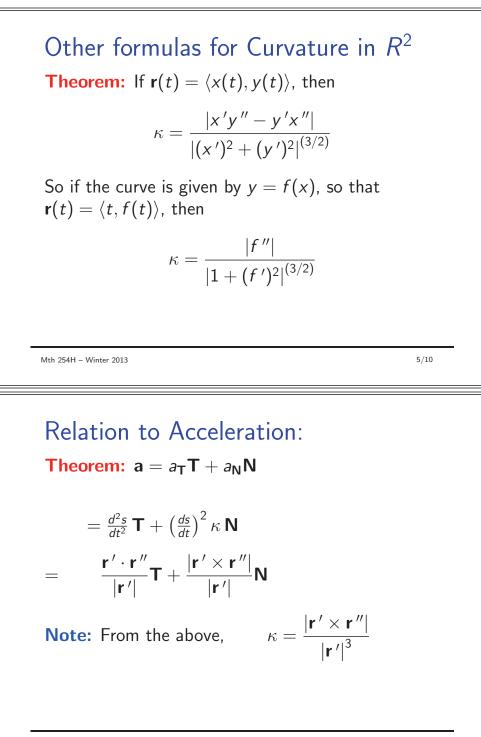
Mth 254H - Winter 2013

2/10

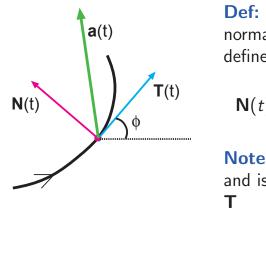
Curvature:



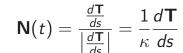
Mth 254H - Winter 2013



Principal Unit Normal Vector



Def: The principal unit normal vector $\mathbf{N}(t)$ is defined to be



Note: N has length 1, and is perpendicular to T

Mth 254H - Winter 2013

6/10

Osculating Circle:

The osculating circle to $\mathbf{r}(t)$ at $\mathbf{r}(t_0)$ is the circle through $\mathbf{r}(t_0)$ tangent to the curve with curvature κ .

Center:
$$\mathbf{r}(t_0) + \frac{1}{\kappa} \mathbf{N}(t_0)$$
 Radius: $\frac{1}{\kappa}$

Mth 254H - Winter 2013

To Find	Compute	To Find	Compute
v	r′	a _N	$ a_{N}N =$
speed	r ′	$= \left(\frac{ds}{dt}\right)^2 \kappa$	$ \mathbf{r}' \times \mathbf{r}'' $
а	r″	$-\left(\frac{d}{dt}\right) \kappa$	r '
т	<u>r'</u>	${\sf N}=rac{1}{\kappa}rac{d{\sf T}}{ds}$	$a_{ m N}{ m N}/a_{ m N}$
	r ′		$\kappa = \frac{ \mathbf{r}' \times \mathbf{r}'' }{ \mathbf{r}' } a_{\mathbf{N}}/ \mathbf{r}' ^2$
aT	$\frac{\mathbf{r}'\cdot\mathbf{r}''}{ \mathbf{r}' } = \frac{d^2s}{dt^2}$	$\kappa =$	$\kappa = \frac{ \mathbf{r}' }{ \mathbf{r}' } a_{\mathbf{N}}/ \mathbf{r} $
		$\kappa = \left \frac{d\mathbf{T}}{d\mathbf{s}} \right $	$\frac{ x'y''-y'x''}{ (x')^2+(y')^2 ^{(3)}}$
a _N N	а — а _Т Т	dS	$ (x')^2+(y')^2 ^{(3)}$
		$= \left \frac{d\phi}{ds} \right $	$\frac{ f'' }{ 1+(f')^2 ^{(3/2)}}$

Binormal Vector **B**

Def. The binormal vector $\mathbf{B}(t)$ is defined to be

 $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

Note: The vector $\mathbf{B}(t)$ has length 1, is perpendicular to $\mathbf{N}(t)$ and $\mathbf{T}(t)$. These three vectors can be used to provide a three dimensional coordinate system at a point on a curve.

Example:

Mth 254H - Winter 2013

10/10