Cross Products of Vectors

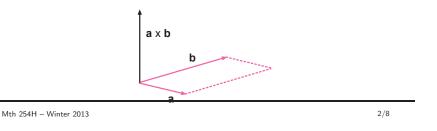
Read Lesson 4 in the study guide (11.4) in the text.

Finish Project One by Friday

Try 13-21 odd numbered, and 25, 27, 31, 35, 37, 39

Mth 254H - Winter 2013

1/8


Algebraic Definition

Alternate Definition: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, $\mathbf{a} \times \mathbf{b}$, is $\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle =$ $(a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$ $= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$ where $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \equiv ad - bc$ Note: Result is a vector!

Mth 254H - Winter 2013

Motivation

Def: The *cross product* of vectors **a** and **b**, $\mathbf{a} \times \mathbf{b}$, is the vector perpendicular to both **a** and **b**, in a direction determined by the right hand rule, with magnitude $|\mathbf{a}||\mathbf{b}|\sin\theta$, where θ is the angle between **a** and **b**

Computing using Determinants

Def.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \equiv a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
So: $\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Examples

Mth 254H - Winter 2013

Equivalence of Definitions

Theorem: The two definitions of cross product are the same.

Proof:

Corollary: a and **b** are parallel if and only if $|\mathbf{a} \times \mathbf{b}| = \mathbf{0}$.

Mth 254H - Winter 2013

5/8

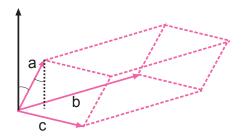
Cross Product Properties

Check:

Commutativity, Associativity

Note:

Note:


 $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k} \neq \mathbf{i} \times (\mathbf{i} \times \mathbf{k})$

Mth 254H - Winter 2013

6/8

Scalar Triple Product

Note: $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ is the volume of the solid parallelipiped determined by the three vectors.

