Assignment

Read: Section 11.3 – Dot Products Lesson 3 in Study Guide

Try:

§11.3 #9, 11, 15, 21, 23, 25, 27, 29, 33 Begin work on assignment 5 in My Mathlab

Mth 254H - Winter 2013

1/8

Properties of Dot Products

Read in text

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

$$a \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

$$\mathbf{0} \cdot \mathbf{a} = \mathbf{0}$$

Why these hold:

Dot Product of Vectors

Def: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, the dot product of \mathbf{a} and $\mathbf{b}, \mathbf{a} \cdot \mathbf{b}$ is

$$a_1b_1 + a_2b_2 + a_3b_3$$

Note: Result is a scalar !!

Similar definition for n-dimensional vectors.

Examples

Mth 254H - Winter 2013

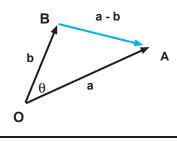
2/8

Angle between vectors:

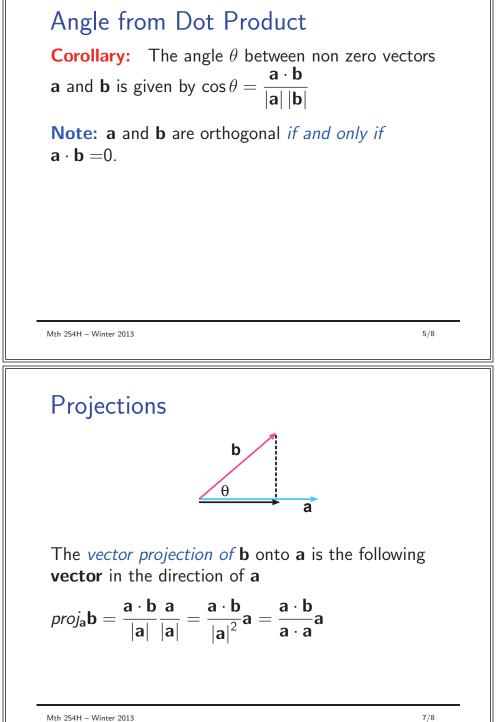
Def: The angle θ between **a** and **b** is the angle between the representations of these vectors starting at the origin, and is restricted: $0 \le \theta \le \pi$

Theorem: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$

Proof:



Mth 254H - Winter 2013



Direction Angles

Def. The *direction angles* of a nonzero **a** are the angles α , β , and γ in $[0, \pi]$ that **a** makes with the positive x, y, and z axes.

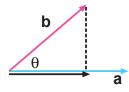
The cosines of these angles are called the *direction* cosines of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$.

Note: $\cos \alpha = \frac{a_1}{|\mathbf{a}|}$ $\cos \beta = \frac{a_2}{|\mathbf{a}|}$ $\cos \gamma = \frac{a_3}{|\mathbf{a}|}$ $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ and $\mathbf{a} = |\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$

Mth 254H - Winter 2013

6/8

Scalar Projection



The scalar projection of **b** onto **a** is the following scalar:

$$\operatorname{scal}_{\mathbf{a}}\mathbf{b} = |\mathbf{b}|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|}$$

Example: (work done by force)