Assignment

Read: Section 11.1, 11.2 – Vectors in the Plane and in 3-space

Lesson 2 in Study Guide

We will introduce 2 and 3-dimensional vectors at the same time .

Try:

 $\S11.1$ 17 - 35 odd numbered, 39, 45, 51 $\S11.2$ 11, 13, 19, 23, 27, 29, 31, 33, 37, 39, 45, 47 Start work on assignments 3 and 4 on MyMathLab

Mth 254H - Winter 2013

1/7

3/7

Terminology, Length of a vector

- representation of a vector
- position vector of P(a, b, c)
- vector with representation \overrightarrow{AB}
- 0 vector, **0**
 - **Def.** The length of a vector $\mathbf{v} = \langle a, b, c \rangle$ is $\sqrt{a^2 + b^2 + c^2}$

Vectors

- Informally:
 - magnitude and direction
 - directed line segment.
- Formally: a 2-dimensional vector is an ordered pair a = ⟨a₁, a₂⟩ of real numbers.
- A 3-dimensional vector is an ordered triple
 a = (a₁, a₂, a₃) of real numbers.

Examples:

Mth 254H - Winter 2013

2/7

Vector Addition and Scalar Mult.

Def. (Vector Addition):

 $\langle a_1, a_2, a_3
angle + \langle b_1, b_2, b_3
angle \equiv \langle a_1 + b_1, a_2 + b_2, a_3 + b_3
angle$

Graphical Interpretation:

(Triangle Law or Parallelogram Law)

Def: Scalar Multiplication

$$c\left\langle \textit{a}_{1},\textit{a}_{2},\textit{a}_{3}
ight
angle \equiv\left\langle \textit{c}\cdot\textit{a}_{1},\textit{c}\cdot\textit{a}_{2},\textit{c}\cdot\textit{a}_{3}
ight
angle$$

Mth 254H - Winter 2013

Properties of Vectors

Def: V_n is the set of *n*-dimensional vectors,

$$\{\langle a_1, a_2, a_3, \cdots, a_n \rangle | a_i \in R\}$$

+ c

Def: $-\mathbf{a} \equiv -1 \cdot \mathbf{a}$

Properties of Vectors Read in text

Equations of Balls and Spheres

Mth 254H - Winter 2013

5/7

Standard basis vectors

Def. i = $\langle 1, 0, 0 \rangle$, j = $\langle 0, 1, 0 \rangle$, k = $\langle 0, 0, 1 \rangle$

Note:

Every vector can be written as a *linear combination* of the standard basis vectors.

Terminology:

unit vector unit vector in direction of **a** Resultant Force

Examples

Mth 254H - Winter 2013

6/7