13.4 - Triple Integrals

Read Lesson 21 in the Study Guide and Section 13.4 in the text.

- triple integrals over rectangular regions
- triple integrals over general regions

Suggested Homework:

Try 7, 11, 15-37 odd numbered, 41

Mth 254H - Winter 2013

1/10

Existence and Properties

Notes:

- The sum in the definition is a triple Riemann sum.
- If f is continuous, the triple integral exists and does not depend on the choice of $(x_{iik}^*, y_{iik}^*, y_{iik}^*)$
- Same properties as double integrals

Definition of Triple Integral

Def: The triple integral of f(x, y, z) over a rectangular box $B = [a, b] \times [c, d] \times [r, s]$ is

$$\iiint\limits_B f(x,y,z)dz =$$

$$\lim_{\ell,m,n\to\infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

provided the limit exists.

Mth 254H – Winter 2013 2/10

Evaluating

Fubini's Theorem:

If f(x, y, z) is continuous on $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint\limits_R f(x,y,z)dV = \int_r^s \left(\int_c^d \left(\int_a^b f(x,y,z) dx \right) dy \right) dz$$

Note: Also equal to iterated integrals in the other 5 orders.

4/10

Examples

$$\iiint\limits_R f(x,y,z)dV \text{ where } f(x,y,z) = x\sin(x+y+z) \text{ and }$$
 where

$$R = [0,1] \times [0,2] \times [0,3]$$

Mth 254H - Winter 2013

5/10

Special 3-dimensional regions

Def: A z-simple region is a region $\mathbf{E} =$

$$\{(x,y,z)|(x,y)\in D, u_1(x,y)\leq z\leq u_2(x,y)\}$$

Other simple regions are similarly defined.

General Regions

If E is a bounded region, contained in a box B, and f(x, y, z) is defined on E, Then

$$\iiint\limits_E f(x,y,z)dV = \iiint\limits_B F(x,y,z)dV$$

where F(x, y, z) = f(x, y, z) if $(x, y, z) \in E$ and = 0 otherwise.

Mth 254H – Winter 2013 6/10

Evaluating on Special Regions

If f is continuous on a z-simple region,

$$\iiint\limits_E f(x,y,z)dV = \iint\limits_D \left(\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z)dz \right) dA$$

Similarly for other simple regions.

Mth 254H – Winter 2013 7/10

Mth 254H - Winter 2013

8/10

Examples

• Evaluate $\iiint_E f(x, y, z) dV$ where f(x, y, z) = xyz and where E is the solid region bounded by the coordinate planes and 2x + y + 3z = 6

More Examples

• Set up iterated integrals for the volume of the region bounded by the planes $z=0,\ x=0,\ y=0,\ y=1-x$ and the surface $z=1-x^2$

Mth 254H – Winter 2013 9/10

Mth 254H – Winter 2013 10/10