CH 336 Midterm Exam 2 Monday, May 16, 2016

Name___KEY_____

You may use a molecular model kit, but no other notes or material with chemical information. Electronic gadgets (including but not limited to: calculators, phones, MP3 players, smart watches) are prohibited; we may ask you to leave electronic watches at the front of the room or in your backpack for the exam period.

Please ask questions if a question is not clear.

hydrogen	1 2500																10.5	helium
ц,																		Ηo
1.0079																		4.0026
lithium 2	beryllium 4												boron	carbon	nitrogen	oxygen	fluorine	neon 10
ľ.	D _o												Ď	ĉ	Ń	Ô	F	No
	Бе												D	C	IN	U	Г	ne
5.941 sodium	9.0122 magnesium												aluminium	12.011 silicon	14.007 phosphorus	sulfur	chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Ma												A	Si	P	S	CI	Ar
22,990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 10	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 20	zinc 30	gallium 31	germanium	arsenic 33	selenium 3/	bromine 35	krypton 36
	Co		6	T :	V	C.,	N/I to	Ē	Co	NI:	C	7.0	Ca	Co	A.0	S.	D	V.
n	Ca		30	11	V	Cr	IVIN	ге	CO	INI	Cu	Zn	Ga	Ge	AS	Se	ы	nr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	- T -	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	57 70	lutetium 74	hafnium	tantalum	tungsten	rhenium 75	osmium 76	iridium	platinum 79	gold	mercury	thallium 94	lead	bismuth	polonium o A	astatine	radon
35	50	57-70	1.	116	T -	14	D -	0		DA	19	80	T		D :	04 D-	05 A 1	D
US	ва	*	LU	HI	Ia	VV	Ke	US	Ir	Ρτ	Au	нg		PD	В	PO	Ατ	Rn
132.91	137.33		174.97	178.49	180.95	183.84 cooborgium	186.21 hobdum	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	l r	Rf	Dh	Sa	Bh	Hs	Mt	Hun	Unit	Uub		Uua				
[223]	12261		[262]	12611	12621	1266	[264]	12691	12681	12711	12721	12771		1289				
[[22.0]	[[sZ0]		[6.02]	[60]]	[AUZ]	[200]	[2:04]	[4:00]	[200]	L lest il	[6.72]	[677]		[1:03]				

*Lanthanida sorias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthaniue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Score Table:

 Section I
 /24

 Section II
 /30

 Section III
 /22

 Section IV
 /24

 Total:
 /100

Table 10-2 Typical Hydrogen Chemical Shifts in C	Organic Molecules					
Type of hydrogen ^a		Chemical shift δ in ppm				
Primary alkyl, RCH ₃	0.8-1.0					
Secondary alkyl, RCH ₂ R'	1.2-1.4	Alkane and alkane-like hydrogens				
Tertiary alkyl, R ₃ CH	1.4–1.7 J					
CH ₃						
Allylic (next to a double bond), $R_2C = C$	1.6-1.9					
R'						
Benzylic (next to a benzene ring), ArCH ₂ R	2.2-2.5	rydrogens adjacent to unsaturated functional groups				
Ketone, RCCH ₃	2.1-2.6					
Alkyne, RC≡CH	1.7-3.1					
Chloroalkane, RCH ₂ Cl	3.6-3.8					
Bromoalkane, RCH ₂ Br	3.4-3.6					
Iodoalkane, RCH ₂ I	3.1-3.3	Hydrogens adjacent to electronegative atoms				
Ether, RCH ₂ OR'	3.3-3.9					
Alcohol, RCH ₂ OH	3.3-4.0					
Terminal alkene, $R_2C = CH_2$	4.6-5.0	Allrana hudragana				
Internal alkene, $R_2C = CH$	5.2-5.7	Aikene hydrogens				
~ P'						
Aromatic, ArH	6.0-9.5					
Aldehyde, RCH	9.5-9.9					
Ö						
Alcoholic hydroxy, ROH	0.5-5.0	(variable)				
Thiol, RSH	0.5-5.0	(variable)				
Amine, RNH ₂	0.5-5.0	(variable)				
^a P P ' alkyl groups: Ar aromatic group (not argon)						

Section I (4 points each) Select the best answer among the possibilities given and circle it.

- 1. Select the strongest Brønsted base.
- a. H_2O
- b. CH₃CO₂⁻
- c. NH_3
- d. cyclo-C₆H₁₁NH₂
- 2. Select the strongest Brønsted acid.
- a. H_2O
- b. CF₃COOH
- c. CH₃COOH
- d. cyclo-C₆H₁₁NH₃⁺
- 3. Select the best name for the following compound:
- a. Pentyl ethylaminoketone
- b. *N*-ethylhexanamide
- c. Ethyl hexanoyl amine
- d. Ethyl hexanoyl lactam
- 4. Select the structure whose name is cyclopentanecarboxylic acid.

5. Select the structure best fitting the following spectroscopic data:

Molecular formula $C_{10}H_{12}O_2$

IR: 1741, 1280, 1111, 747 cm⁻¹. ¹H NMR: 7.77 2H d, J = 8 Hz 7.13 2H d, J = 8 Hz 4.20 2H q, J = 7 Hz 2.40 3H s 1.10 3H t, J = 7 Hz

(IR = ester; q at 4.2 must be on CH_2 - CH_3 bonded to O; aromatic pair of d indicates para substitution)

6. Select the reaction below that would proceed to completion most readily (without application of heat or additional reagents).

Section II. (5 points each) Draw (above the arrow) the reagents/conditions required for each of the following reactions. If you need sequential application of different reagents, indicate the numerical order (1. ...2. ...3. etc.) Include aqueous acid as a last step when necessary.

Section III. (22 points)

13. Write a mechanism for each step in the following transformation. Use electron-pushing arrows correctly, designate lone pairs where necessary, and make sure charges are correctly shown. If resonance is a stabilizing influence for any structure, show appropriate resonance forms. (Hint: write out the reaction occurring in each step first.) Continue on the back of the page if you need more space.

Section IV. (24 points: 3 points per structure; 3 points per rationale)

14. Historically, degradation of an unknown to a compound with a known structure has been a method of identifying new compounds. The following sequence of reactions was applied to the alkaloid skytanthine, isolated from a Chilean plant that makes a range of bioactive compounds. Partial NMR data is given for each compound in the sequence; IR spectra with frequencies (in cm⁻¹) of strong peaks noted are on the following page.

Identify each structure represented by an empty box (A-D). For each, provide a rationale for structure based on either chemistry or IR/NMR data for the new compound created. (If you cannot provide a complete structure, show as much as you can figure out for partial credit.)

