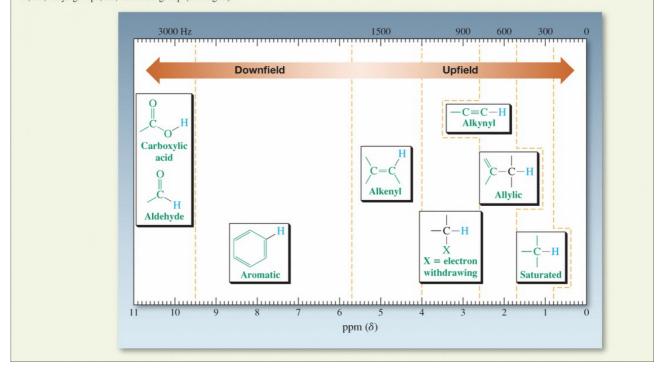
CH 336 Midterm Exam 1 Friday, April 22, 2016

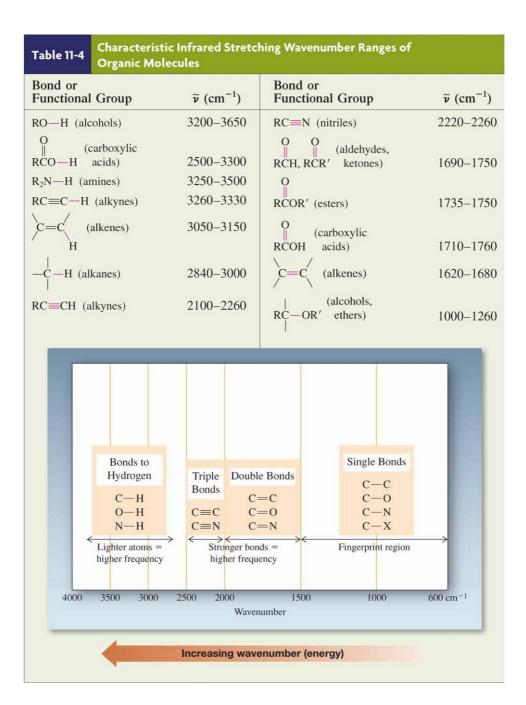
Name___KEY_____

Answers in RED.

You may use a molecular model kit, but no other notes or material with chemical information. Electronic gadgets (including but not limited to: calculators, phones, MP3 players, smart watches) are prohibited; we may ask you to leave electronic watches at the front of the room or in your backpack for the exam period.

Please ask questions if a question is not clear.

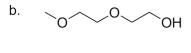

hydrogen 1																	WEGT 1	helium 2
1.0079 Ithium	handline											r	hanan	anthon	oltrogon	010100	fluorion	He
3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	С	Ν	0	F	Ne
6.941 sodium	9.0122 magnesium											-	10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												ΑΙ	Si	Ρ	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468 caesium	87.62 barium		88.906 Iutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercurv	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt		Uuu			Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				


*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Score Table:

Section I	/20
Section II	/25
Section III	/20
Section IV	/21
Srction V	/14
Total:	/100

Type of hydrogen ^a		Chemical shift δ in ppm
Primary alkyl, RCH ₃	0.8-1.0)	
Secondary alkyl, RCH ₂ R'	1.2-1.4	Alkane and alkane-like hydrogens
Tertiary alkyl, R ₃ CH	1.4–1.7 J	
CH ₃		
Allylic (next to a double bond), $R_2C = C$	1.6-1.9	
`R'	ļ	Hydrogens adjacent to unsaturated functional groups
Benzylic (next to a benzene ring), ArCH ₂ R	2.2–2.5	Tryurogens adjacent to unsaturated functional groups
Ketone, RCCH ₃	2.1–2.6 J	
Alkyne, RC=CH	1.7-3.1	
Chloroalkane, RCH ₂ Cl	3.6-3.8	
Bromoalkane, RCH ₂ Br	3.4-3.6	
Iodoalkane, RCH ₂ I	3.1–3.3	Hydrogens adjacent to electronegative atoms
Ether, RCH_2OR'	3.3-3.9	
Alcohol, RCH ₂ OH	3.3-4.0 J	
Terminal alkene, $R_2C = CH_2$	4.6-5.0	Alkene hydrogens
Internal alkene, $R_2C = CH$	5.2-5.7	This is a logon b
 R'		
Aromatic, ArH	6.0-9.5	
Aldehyde, RCH	9.5-9.9	
O Alcoholic hydroxy, ROH	0.5-5.0	(variable)
Thiol, RSH	0.5-5.0	(variable)
Amine, RNH ₂	0.5-5.0	(variable)

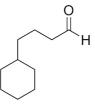


Section I (4 points each) Select the best answer among the possibilities given and circle it.

- 1. How does the dipole moment 3-pentanone compare with that of diethyl ether?
- a. 3-Pentanone > diethyl ether because the C=O double bond is more polarized.
- b. Diethyl ether > 3-pentanone because there are 2 C-O bonds.
- c. Both are equal, because each has a C-O bond.
- d. As neutral molecules, both lack a dipole moment.

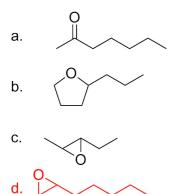
2. Select the structure that best matches the following spectroscopic data.						
IR (cm ⁻¹):	3200-3600, s, br; 2931 s; 2911 s; 2883 m; 2829 m;					
	1458 m; 1408 m; 1368 m; 1196 m; 1124 s; 1066 s;					
	1019 m; 891 m; 835 m.					
¹ H NMR (ppm):	3.71 t, 2H, J = 7 Hz					
	3.52 t, 2H, J = 7 Hz					
	3.40 s, 3H					
	3.21 br s, 1H (disappears on shaking with D_2O)					
13C NIMD (nnm), 74						

¹³C NMR (ppm): 74.21, 61.55, 58.91

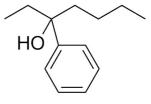

d. O OH

3. Select the best name for the following compound.

- a. 4-phenylbutanal
- b. 4-cyclohexylbutyl ketone hydride

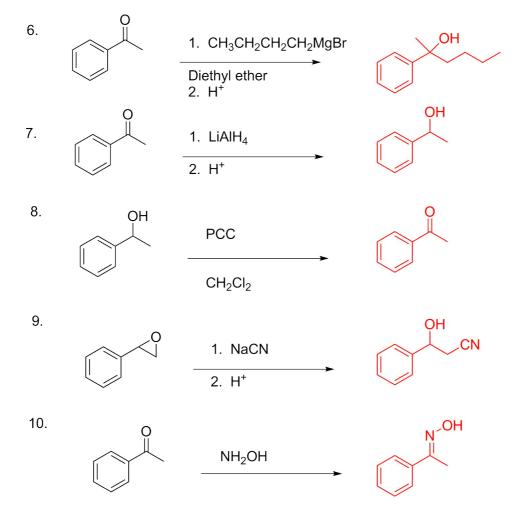

c. 4-cyclohexylbutanal

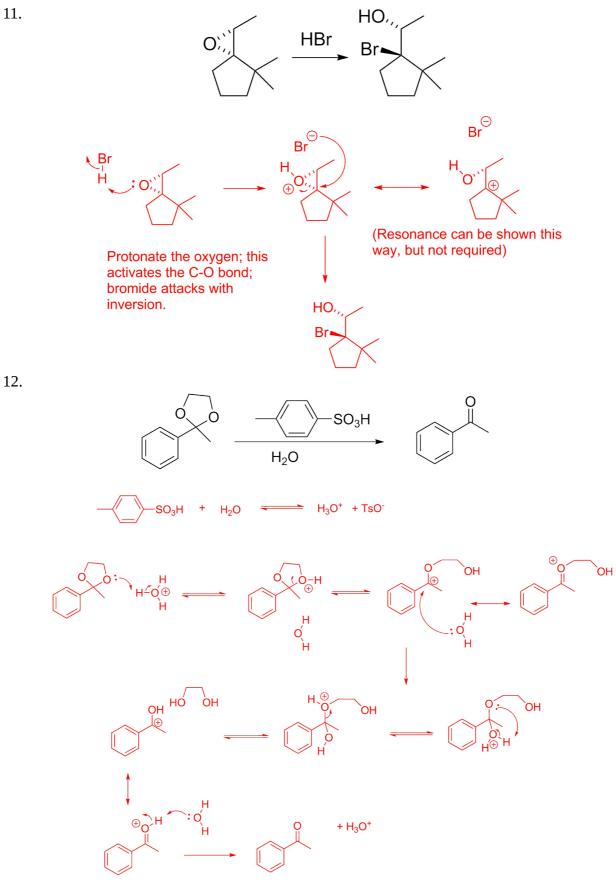
d. 4-cyclohexylbutanol


(all students get full credit because of exam error)

4. Select the structure whose name is both 2-pentyloxirane, or 1-heptene oxide.

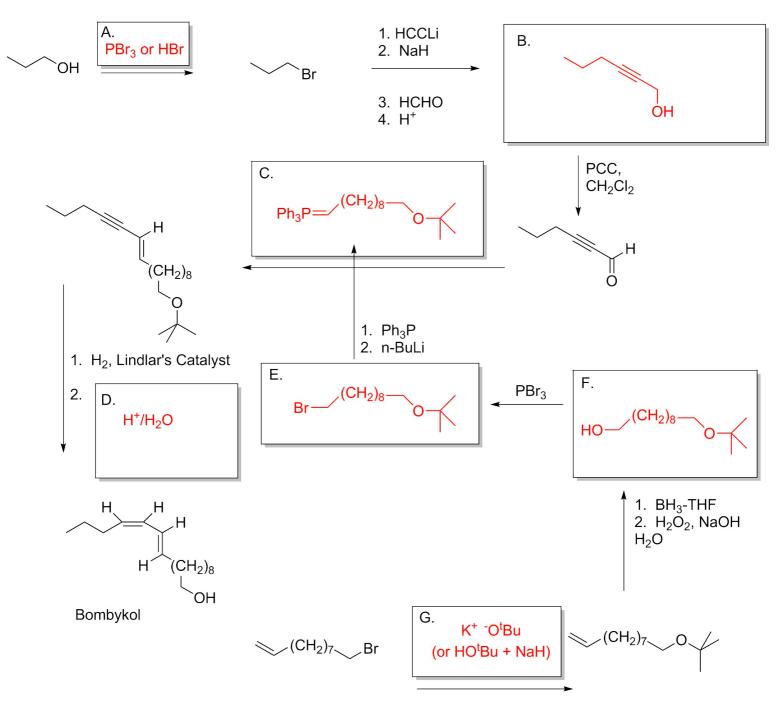
- 5. The best set of reactants to form 3-phenyl-3-heptanol (shown) are
- a. 3-heptanone plus $NaBH_4$ in one step, followed by H+.


b. 3-heptanone plus C₆H₅MgBr in one step, followed by H⁺.


c. Benzoic acid plus one mole of ethylmagnesium bromide, then one mole of butylmagnesium bromide.

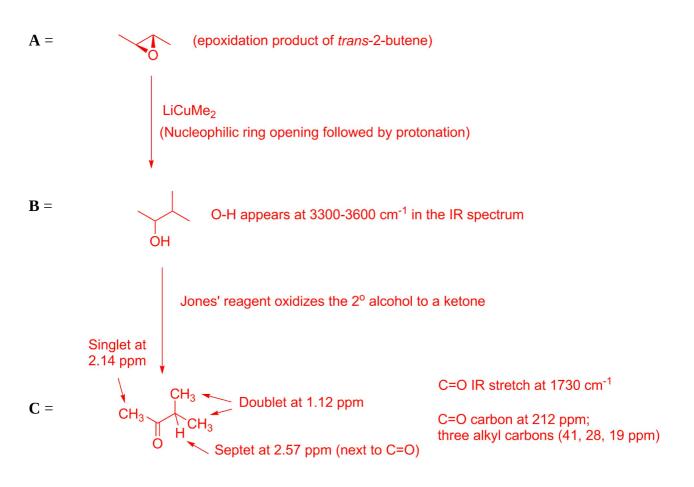
d. 3-phenylheptane plus Jones' reagent.

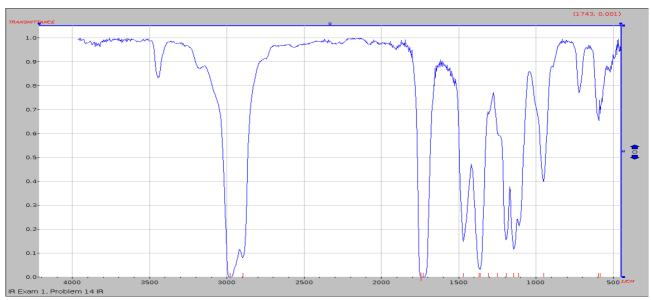
Section II. (5 points each) Draw the major organic product for each of the following reactions.

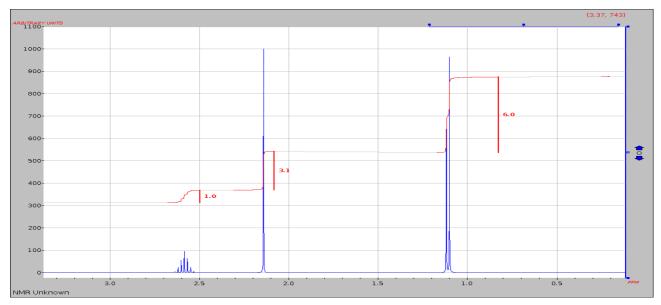

Section III. (10 points each) Write a mechanism for each of the following two transformations. Use electron-pushing arrows correctly, designate lone pairs where necessary, and make sure charges are correctly shown. If resonance is a stabilizing influence for any structure, show appropriate resonance forms.

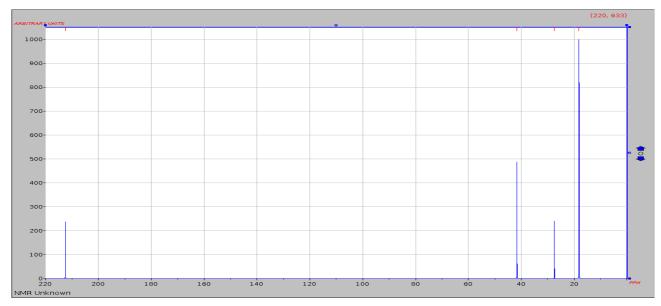
Section IV. (21 points)

13. Fill in the boxes with the correct organic structure or set of reagents/conditions to complete the following multistep synthesis of bambykol, an insect hormone secreted by the silk moth.


Answers A, C, D, and G are all reagents; answers B, E and F are intermediate isolated compounds.


Section V.


14. (14 points) *trans*-2-Butene is epoxidized with mCPBA to a product **A** which then reacts with LiCuMe₂ (followed by acid workup) to give a new product **B** having an IR spectrum that has a strong, broad peak between 3300-3600 cm⁻¹. Reaction of **B** with Jones' reagent gives a new compound **C** that shows the 3 spectra displayed on the following page; the mass spectrum has important peaks at m/z = 86, 71, 43 and 41.


Draw structures for **A**, **B** and **C**. Explain the reaction chemistry and/or the spectral assignment to allow assignment of partial credit.

Spectra for **C** (IR, ¹H NMR, ¹³C NMR):

