rııaı ⊏xaıı	Final	Exam
-------------	-------	------

Tuesday, March 15, 2022

Form B

Name		
Name		

You may use model kits but no other material with chemical information without instructor approval.

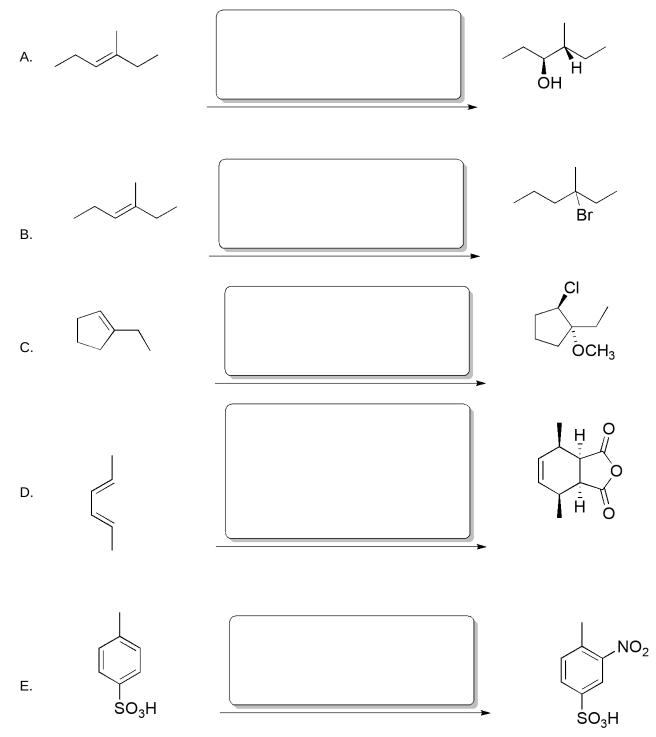
Please do not use any electronic devices except calculators.

hydrogen 1 H 1.0079												99990	\$9655X	5928	West	6992	MANUT OF	helium 2 He 4.0026
lithium 3	beryllium 4												boron 5	earbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												B	Č	N	Ô	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26,982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,098 rubidium	40,078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58,933 rhodium	58,693 palladium	63,546 silver	65.39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 lodine	83.80 xenon
37	38																	
			39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	53	Xe
85.468	Sr 87.62		Y 88.906	Zr 91.224	Nb	Mo 95.94	Tc	Ru 101.07	Rh 102.91	46 Pd 106.42	47 Ag	Cd	49 In	Sn	51 Sb 121.76	Te 127.60	53 126.90	54 Xe
85.468 caesium	Sr 87.62 barium	57-70	88.906 lutetium	Zr 91.224 hafnium	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	53	54 Xe 131.29 radon
85.468 caesium 55 Cs	Sr 87.62 barium 56 Ba	57-70 X	88.906 lutetium 71	Zr 91.224 hafnium 72 Hf	Nb 92.906 tantalum 73 Ta	Mo 95.94 tungsten 74	Tc [98] rhenium 75 Re	Ru 101.07 osmium 76 Os	Rh 102.91 iridium 77 Ir	Pd 106.42 platinum 78 Pt	47 Ag 107.87 gold 79 Au	Cd 112.41 mercury 80 Hg	In 114.82 thallium 81	Sn 118.71 lead 82 Pb	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 Po	53 1 126.90 astatine 85 At	Xe 131.29 radon 86 Rn
85.468 caesium 55 CS 132.91	\$r 87.62 barium 56 Ba 137.33		88.906 lutetium 71 Lu 174.97	Zr 91.224 hafnium 72 Hf 178.49	Nb 92.906 tantalum 73 Ta 180.95	95.94 tungsten 74 W 183.84	Tc [98] rhenium 75 Re 186.21	Ru 101.07 osmium 76 Os 190.23	Rh 102.91 iridium 77 Ir 192.22	46 Pd 106.42 platinum 78 Pt 195.08	47 Ag 107.87 gold 79 Au 196.97	Cd 112.41 mercury 80 Hg 200.59	49 In 114.82 thallium 81	Sn 118.71 lead 82 Pb 207.2	51 Sb 121.76 bismuth 83	52 Te 127.60 polonium 84	53 1 126.90 astatine 85	54 Xe 131.29 radon 86
85.468 caesium 55 Cs	Sr 87.62 barium 56 Ba		88.906 lutetium 71	Zr 91.224 hafnium 72 Hf	Nb 92.906 tantalum 73 Ta	Mo 95.94 tungsten 74	Tc [98] rhenium 75 Re	Ru 101.07 osmium 76 Os	Rh 102.91 iridium 77 Ir	Pd 106.42 platinum 78 Pt	47 Ag 107.87 gold 79 Au	Cd 112.41 mercury 80 Hg	In 114.82 thallium 81	Sn 118.71 lead 82 Pb 207.2 ununquadium	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 Po	53 1 126.90 astatine 85 At	Xe 131.29 radon 86 Rn
85.468 caesium 55 CS 132.91 francium 87	\$r 87.62 barium 56 Ba 137.33 radium 88	89-102	88.906 lutetium 71 Lu 174.97 lawrencium 103	2r 91.224 hafnium 72 Hf 178.49 rutherfordium 104	Nb 92,906 tantalum 73 Ta 180,95 dubnium 105	95,94 tungsten 74 W 183.84 seaborgium 106	Tc [98] Thenium 75 Re 186.21 bohnium 107	Ru 101.07 osmium 76 Os 190.23 hassium 108	Rh 102.91 iridium 77 Ir 192.22 meitnerium 109	Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	47 Ag 107.87 gold 79 Au 196.97 unununium 111	nercury 80 Hg 200.59 ununbium	In 114.82 thallium 81	Sn 118.71 lead 82 Pb 207.2 ununquadium 114	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 Po	53 1 126.90 astatine 85 At	Xe 131.29 radon 86 Rn
85.468 caesium 55 CS 132.91 francium	87.62 barium 56 Ba 137.33 radium	*	88.906 lutetium 71 Lu 174.97 lawrencium	Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	Nb 92,906 tantalum 73 Ta 180,95 dubnium	95.94 tungsten 74 W 183.84 seaborgium	Tc [98] rhenium 75 Re 186.21 bohrium	Ru 101.07 osmium 76 Os 190.23 hassium	Rh 102.91 Iridium 77 Ir 192.22 meitnerium	Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	47 Ag 107.87 gold 79 Au 196.97 unununium	nercury 80 Hg 200.59 ununbium	In 114.82 thallium 81	Sn 118.71 lead 82 Pb 207.2 ununquadium	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 Po	53 1 126.90 astatine 85 At	Xe 131.29 radon 86 Rn

*Lanthanide series

* * Actinide series

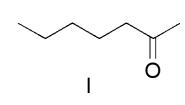
	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
0	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]


1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.

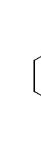
1. O₃

D.
$$\frac{\Delta}{0}$$

2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.


3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.

A.
$$\frac{\mathsf{Br}_2}{\mathsf{CH}_2\mathsf{Cl}_2} \qquad \frac{\mathsf{Br}_1}{\mathsf{Br}_2}$$


C.
$$HN$$
 H_2SO_4
 SO_3H

4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers. For each spectrum (IR, 1H NMR, 13C NMR), you need only list ONE peak for ONE of the two compounds that would be absent in the other

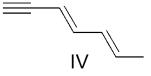
A.

IR

OH

Ш

¹H NMR

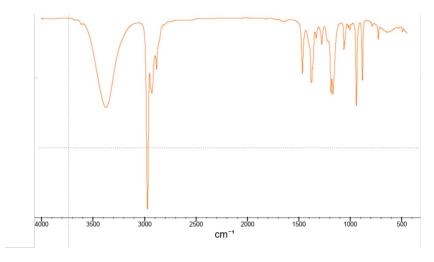

¹³C NMR

В.

Ш

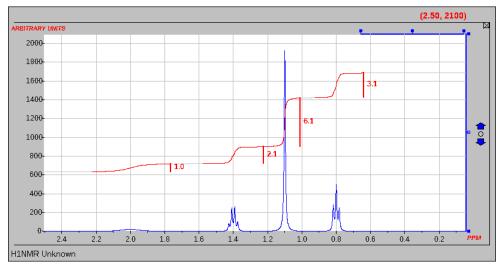
IR

¹H NMR


¹³C NMR

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ¹ H NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.
A. 1-Bromobutane
D. (4 nitrophonyl) othogo
B. (4-nitrophenyl)-ethane
C. 2-ethylbenzoic acid

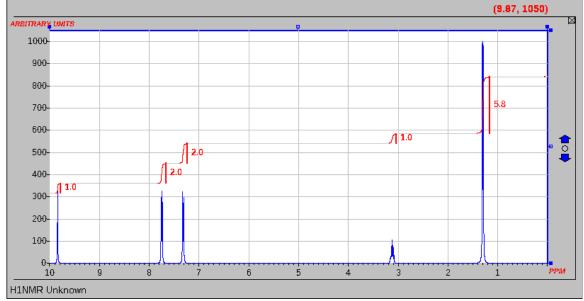
6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.


A.MS parent ion m/z = 88; M+1 peak is 5.5% of the M peak intensity.

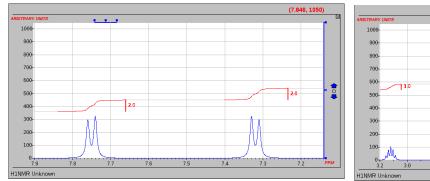
IR: 3300-3600 cm⁻¹.

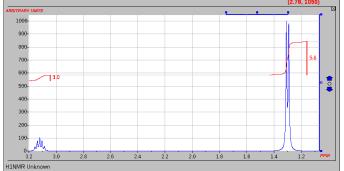
¹H NMR: 2.0 s, 1H 1.4 q, 2H 1.1 s, 6H

0.8 t, 3H



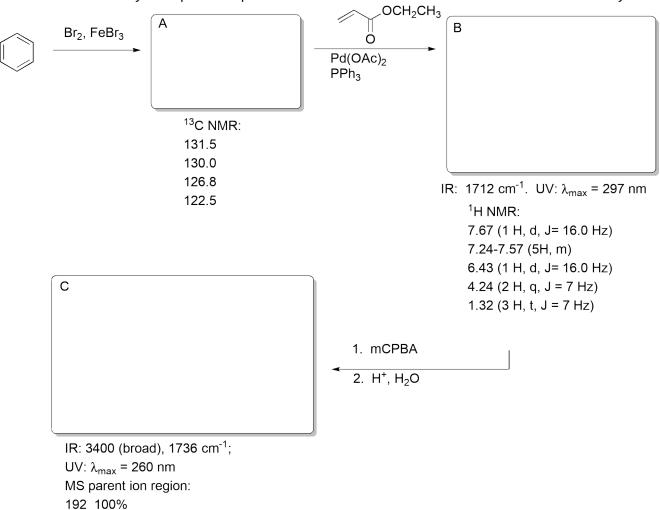
(No signals are further downfield.)


B. MS parent ion: m/z = 148. M+1 peak is 11% of the M peak intensity.


¹H NMR:

1.30 d, 6H; 3.12 septet, 1H; 7.32 d, 2H; 7.75 d, 2H; 9.84 s, 1H.

Expansions:

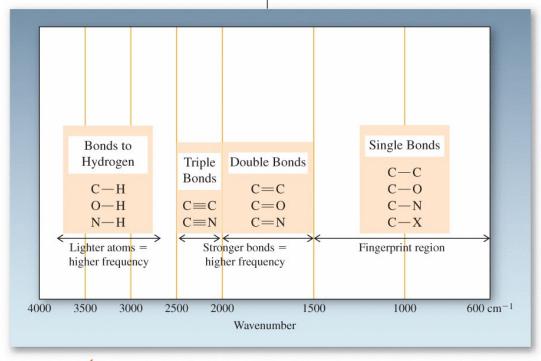


7.1-7.9 ppm 1.1-3.2 ppm

¹³C NMR: 24.0, 36.2, 127.0, 129.8, 134.0, 155.0, 191.5 ppm.

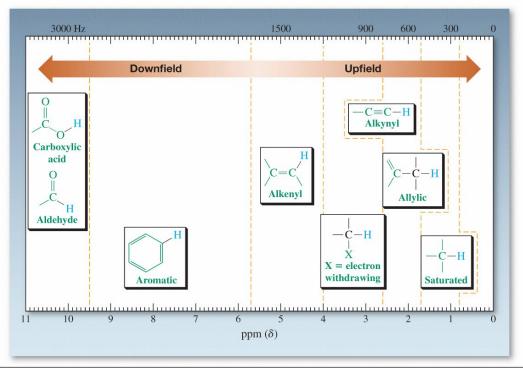
7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

193 11.96%194 1.36%


Bond strengths (kcal/mol):

F-F	38
CI-CI	58
Br-Br	46
I-I	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH₃-H	105
CH ₃ CH ₂ -H	101
(CH ₃) ₂ CH-H	98.5
(CH₃)₃C-H	96.5
CH₃-F	110
CH ₃ -CI	85
CH₃-Br	70
CH ₃ -I	57
CH ₃ CH ₂ -F	111
CH ₃ CH ₂ -Cl	84
CH ₃ CH ₂ -Br	70
CH ₃ CH ₂ -I	56
(CH ₃) ₂ CH-F	111
(CH ₃) ₂ CH-Cl	84
(CH ₃) ₂ CH-Br	71
(CH ₃) ₂ CH-I	56
(CH₃)₃C-F	110
(CH₃)₃C-CI	85
(CH₃)₃C-Br	71
(CH₃)₃C-I	55

Typical Heats of Hydrogenation


Table 11-4	Characteristic Infrared Stretching Wavenumber Ranges of
Table 11-4	Organic Molecules

Bond or Functional Group	$\tilde{\nu}$ (cm ⁻¹)	Bond or Functional Group	$\tilde{\nu}$ (cm ⁻¹)
RO—H (alcohols)	3200-3650	RC≡N (nitriles)	2220-2260
O (carboxylic RCO—H acids)	2500-3300	O O (aldehydes, RCH, RCR' ketones)	1690–1750
R ₂ N—H (amines)	3250-3500	0	
RC≡C—H (alkynes)	3260-3330	RCOR' (esters)	1735-1750
C=C (alkenes)	3050-3150	O (carboxylic RCOH acids)	1710–1760
—C—H (alkanes)	2840-3000	C=C (alkenes)	1620–1680
RC≡CH (alkynes)	2100-2260	(alcohols, RC—OR' ethers)	1000-1260

Increasing wavenumber (energy)

Table 10-2 Typical Hydrogen Chemical Shifts in C	Organic Molecules	
Type of hydrogen ^a		Chemical shift δ in ppm
Primary alkyl, RCH ₃ Secondary alkyl, RCH ₂ R' Tertiary alkyl, R ₃ CH	$ \begin{array}{c} 0.8-1.0 \\ 1.2-1.4 \\ 1.4-1.7 \end{array} $	Alkane and alkane-like hydrogens
Allylic (next to a double bond), R ₂ C=C R' Benzylic (next to a benzene ring), ArCH ₂ R Ketone, RCCH ₃	1.6–1.9 2.2–2.5 2.1–2.6	Hydrogens adjacent to unsaturated functional groups
O Alkyne, RC≡CH Chloroalkane, RCH₂Cl Bromoalkane, RCH₂Br Iodoalkane, RCH₂I Ether, RCH₂OR' Alcohol, RCH₂OH Terminal alkene, R₂C≡CH₂ Internal alkene, R₂C≡CH	1.7–3.1 3.6–3.8 3.4–3.6 3.1–3.3 3.3–3.9 3.3–4.0 4.6–5.0 5.2–5.7	Hydrogens adjacent to electronegative atoms Alkene hydrogens
Aromatic, ArH Aldehyde, RCH O Alcoholic hydroxy, ROH Thiol, RSH Amine, RNH2	6.0–9.5 9.5–9.9 0.5–5.0 0.5–5.0 0.5–5.0	(variable) (variable) (variable)
^a R, R', alkyl groups; Ar, aromatic group (not argon).		

	Chemical shift δ (ppm)
Primary alkyl, RCH ₃	5–20
Secondary alkyl, RCH ₂ R'	20–30
Tertiary alkyl, R ₃ CH	30-50
Quaternary alkyl, R ₄ C	30–45
Allylic, $R_2C = CCH_2R'$ R''	20–40
Chloroalkane, RCH ₂ Cl	25–50
Bromoalkane, RCH ₂ Br	20–40
Ether or alcohol, RCH ₂ OR' or RCH ₂ OH	50-90
Carboxylic acids, RCOOH	170–180
Aldehyde or ketone, RCH or RCR' Alkene, aromatic, $R_2C = CR_2$ Alkyne, RC $ \equiv CR$	190–210 100–160 65–95
$RCOOH$ O O $R_2C = CR_2$ $RCH \text{ or } RCR'$	$\begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & & $
220 210 200 190 180 170 160 150 140 130 120 110 100	90 80 70 60 50 40 30 20 10 0