Final Exam	Tuesday, March 15, 2022
Form A	
NameKEY	

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices other than calculators.

hydrogen 1																	2005 X	helium 2
н																		He
1.0079 lithium	beryllium											i i	boron	carbon	nitrogen	000/200	fluorine	4.0026 neon
3	4												5	6	7	oxygen 8	9	10
Li	Be												В	С	Ν	0	F	Ne
6.941	9.0122												10.811	12.011 silicon	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												Â	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
					Ň										-			
K	Ca		Sc		V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956 vttrium	47.867	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845	58,933	58.693 palladium	63.546 silver	65.39	69.723 Indium	72.61	74.922 antimony	78.96 tellurium	79.904 lodine	83.80
rubidium 37	strontium 38		39	zirconium 40	41	42	43	ruthenium 44	rhodium 45	46	47	cadmium 48	49	tin 50	anumony 51	52	53	xenon 54
			V			117-00-S-8***	-	1000		8-5-67 VARS							1	
Rb	Sr		1 T	Zr	Nb	Мо	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
124,03638	12 22 22 22 22	*		Hf		W	10000			Pt	Δ	La	TI	Pb	Bi	100000		10000
Cs	Ba	~	Lu		Та		Re	Os	Ir		Au	Hg	11			Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt		Uuu			Uuq				
		$\Lambda \overline{\Lambda}$																
[223]	[226]		[262]	[261]	[262]	12661	[264]	[269]	[268]	[271]	12721	12771		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

CH 335

1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.

2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.

3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.

4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers.

Β.

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ¹H NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.

A. 2-Bromobutane

. (4-chlorophenyl)-ethene

C. 3-ethylbenzoic acid

6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.

A. MS parent ion m/z = 88; M+1 peak is 5.5% of the M peak intensity.

(Note: the "triplet" upfield is actually two different doublets that overlap.)

OH MS: C₅ (60 mass units) leaves 28 to be explained = 10 + 12 H. C₅H₁₂O. DoU = 0.
IR: OH.
¹H NMR:
3.5 quintet is the CH-O, coupled to 4 protons. Between CH₃ and CH. 2.0 broad; OH.
1.7 actually an octet, but coupled to many H's (2 CH₃ groups + CH)
1.15 d, 3H coupled to one H. CH₃-CHOH.
0.9: 2 different CH₃ groups (6H total), each coupled to one CH. The

isopropyl methyls are diastereotopic.

B. MS: Parent ion m/z = 164; M+1 peak is 11% of the parent ion.

At this point the choice is between the structure shown and the ester p-ethyl methyl benzoate. The ¹³C NMR clinches this with the C=O at 199 ppm; the ester would be 165-185 ppm.

7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

Bond strengths (kcal/mol):

F-F	38
CI-CI	58
Br-Br	46
1-1	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH₃-H	105
CH ₃ CH ₂ -H	101
(CH ₃) ₂ CH-H	98.5
(CH₃)₃C-H	96.5
CH₃-F	110
CH ₃ -Cl	85
CH₃-Br	70
CH₃-I	57
CH ₃ CH ₂ -F	111
CH₃CH₂-CI	84
CH₃CH₂-Br	70
CH ₃ CH ₂ -I	56
(CH ₃) ₂ CH-F	111
(CH ₃) ₂ CH-Cl	84
(CH₃)₂CH-Br	71
(CH ₃) ₂ CH-I	56
(CH₃)₃C-F	110
(CH₃)₃C-Cl	85
(CH₃)₃C-Br	71
(CH₃)₃C-I	55

Table 10-2 Typical Hydrogen Chemical Shifts in	Organic Molecules	
Type of hydrogen ^a		Chemical shift δ in ppm
Primary alkyl, RCH ₃	0.8–1.0	
Secondary alkyl, RCH ₂ R'	1.2–1.4	Alkane and alkane-like hydrogens
Tertiary alkyl, R ₃ CH	1.4–1.7 J	
CH ₃		
Allylic (next to a double bond), $R_2C = C$	1.6-1.9	
R'		
Benzylic (next to a benzene ring), ArCH ₂ R	2.2–2.5	Hydrogens adjacent to unsaturated functional groups
Ketone, RCCH ₃	2.1-2.6	
0		
Alkyne, $RC \equiv CH$	1.7-3.1	
Chloroalkane, RCH_2Cl	3.6-3.8	
Bromoalkane, RCH ₂ Br	3.4-3.6	
Iodoalkane, RCH ₂ I	3.1–3.3	Hydrogens adjacent to electronegative atoms
Ether, RCH_2OR'	3.3-3.9	
Alcohol, RCH_2OH	3.3–4.0 J	
Terminal alkene, $R_2C = CH_2$	4.6–5.0	Alkene hydrogens
Internal alkene, $R_2C = CH$	5.2-5.7	Thread by a Bene
R'		
Aromatic, ArH	6.0-9.5	
Aldehyde, RCH	9.5-9.9	
U O		
Alcoholic hydroxy, ROH	0.5 - 5.0	(variable)
Thiol, RSH	0.5-5.0	(variable)
Amine, RNH ₂	0.5 - 5.0	(variable)
⁴ P P ² alkyl groups: Ar aromatic group (not argon)		

 a R, R', alkyl groups; Ar, aromatic group (not argon).

