Final Exam Tuesday, March 15, 2022

Form A

Name \qquad KEY \qquad

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices other than calculators.

																		${ }^{\text {and }}$
Li	$\begin{gathered} \text { bexpuin } \\ \mathrm{Be} \end{gathered}$												cran	$\stackrel{c}{c}$	$\stackrel{\text { nicasen }}{\mathrm{N}}$	$\stackrel{\text { comen }}{\substack{\text { one }}}$	$\stackrel{\text { nameme }}{\text { nom }}$	$\begin{aligned} & \text { an } \\ & \mathrm{Ne} \end{aligned}$
coll	der																	Ar
Na	$\mathbf{M g}^{12}$												AI ${ }^{13}$	${ }^{14} \mathrm{i}$	${ }^{15}$	${ }_{\text {S }}{ }^{16}$	${ }^{17}$	${ }_{\text {Ar }}{ }^{18}$
							namame	${ }_{26}^{100}$	${ }_{\text {anden }}^{\text {and }}$	${ }^{\text {natasa }}$	${ }_{\text {anden }}^{\text {anper }}$	${ }_{30}^{2 m 0}$,	2	${ }^{33}$	-	358	
K	${ }^{20}$		Sc	Ti^{22}	${ }^{23}$	${ }^{24}$	Mn	$\stackrel{26}{\mathrm{Fe}}$	Co	${ }^{28}$	${ }_{\mathrm{Cu}}^{29}$	Zn	Ga	Ge^{32}	As	Se	${ }^{35}$	$\mathrm{Kr}^{\text {K }}$
									${ }_{\text {cosem }}^{\substack{\text { gaxis }}}$									
$\begin{aligned} & \begin{array}{c} \text { nidiam } \\ \text { R } \end{array} \end{aligned}$			$\begin{aligned} & \substack{\text { nimg } \\ 39} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { nanaim } \\ \mathrm{ZO} \end{array} \end{aligned}$	$\begin{aligned} & \text { nn in } \\ & \mathrm{A1} \end{aligned}$	Mo	Tc	$\begin{aligned} & \text { animemim } \\ & \text { Ru } \end{aligned}$	$\begin{aligned} & \text { nomis } \\ & \text { nhem } \end{aligned}$	$\begin{aligned} & \text { Pa } \\ & \hline 46 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { sef } \\ \text { An } \end{array}$	$\begin{gathered} \substack{\text { and } \\ C 8 \\ C 8} \end{gathered}$	$\begin{aligned} & \text { andumame } \\ & \text { In } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 100 \\ \text { Sn } \\ \text { Sn } \end{array}$	Sb	$\begin{aligned} & \text { andexim } \\ & \text { Te } \end{aligned}$	$\stackrel{18}{13}$	-
${ }^{\text {casamm }}$	${ }^{\text {usm }}$	57-70	\%	72	${ }^{3}$		${ }^{\text {manm }}$	${ }^{18}$	${ }^{7} 7$	${ }^{18}$	${ }^{\text {and }}$	${ }^{\text {masan }}$	${ }_{81}$	${ }^{182}$	${ }_{83}$	${ }_{84}$	${ }^{65}$	${ }^{86}$
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	${ }_{\text {amm }}$	89-102	${ }^{103}$	${ }^{\text {Natasim }}$	comem		107	${ }^{\text {nasum }}$	${ }^{\text {manamam }}$	comb	A114	come		${ }^{\text {cosmasamid }}$				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

*Lanthanide series	$\begin{aligned} & \text { anamian } \\ & \mathrm{La} \\ & \mathrm{La} \end{aligned}$	${ }_{\text {comm }}^{\text {cim }}$	${ }^{\text {Pr }}$	${ }_{\text {Nat }}$	Pm	${ }_{\text {Sm }}^{\text {Sma }}$				${ }^{\text {Dy }}$	come	${ }_{\text {Er }}^{\text {animm }}$	${ }_{\text {Tm }}^{\substack{\text { mumm }}}$	Yb
**Actinide series	come	cos	9			cis	St	${ }_{96}$	为	98	99	100	01	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.
A.

racemic
B.

C.

(all stereoisomers)
anti addition, racemic
D.

E.

F.

2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.
A.

B.

C.

(2 steps--list both reagents needed)

D.

Specify condition to get this as major product
E.

or

(2 compounds needed.)

3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.
A.

4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers.
A.

II
B.

III

> IR III: $>3000 \mathrm{~cm}^{-1}$ $1500-1600 \mathrm{~cm}^{-1}$
> IV: $2200 \mathrm{~cm}^{-1} \mathrm{C} \equiv \mathrm{C}$ $3300 \mathrm{~cm}^{-1} \mathrm{C}-\mathrm{H}$

IV

${ }^{13} \mathrm{C}$ NMR
I: C=O 200 ppm
II: C-O 50-60 ppm
${ }^{1} \mathrm{H}$ NMR
III: 3H s 1.8 ppm
IV: 1 H t 5.5 ,
1 H s $2.5-3 \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR
III: 5 carbons
IV: 7 carbons

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ${ }^{1} \mathrm{H}$ NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.
A. 2-Bromobutane

1.053 H t
1.703 H d
1.832 H quintet
4.12 1H sextet

. (4-chlorophenyl)-ethene

7.262 H d
7.242 H d
6.61 1H dd
5.67 1H dd
5.22 1H dd
(note: 2 d's expected in aromatic region;
they have nearly identical
 chemical shifts)
C. 3-ethylbenzoic acid

11.51 H br
7.89 1H dd
7.321 H t
7.301 H dd
7.90 1H t
$2.742 \mathrm{H} \mathrm{q}, 1.273 \mathrm{H} \mathrm{q}$

6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.
A. $M S$ parent ion $m / z=88 ; M+1$ peak is 5.5% of the M peak intensity.

IR: $3300-3600 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR: 0.902 d 3H 0.925 d 3 H 1.142 d 3H 1.62 sept 1H 2.0 br 1 H 3.55 quin 1 H

(Note: the "triplet" upfield is actually two different doublets that overlap.)

OH
MS: C_{5} (60 mass units) leaves 28 to be explained $=1 \mathrm{O}+12 \mathrm{H} . \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$. $\mathrm{DoU}=0$.

IR: OH .
${ }^{1} \mathrm{H}$ NMR:
3.5 quintet is the $\mathrm{CH}-\mathrm{O}$, coupled to 4 protons. Between CH_{3} and CH . 2.0 broad; OH.
1.7 actually an octet, but coupled to many H's ($2 \mathrm{CH}_{3}$ groups +CH$)$
$1.15 \mathrm{~d}, 3 \mathrm{H}$ coupled to one $\mathrm{H} . \mathrm{CH}_{3}-\mathrm{CHOH}$.
0.9: 2 different CH_{3} groups (6 H total), each coupled to one CH . The isopropyl methyls are diastereotopic.
B. $M S$: Parent ion $m / z=164 ; M+1$ peak is 11% of the parent ion.

IR: 1680, $1602 \mathrm{~cm}^{-1}$

6.6-8.3 ppm

1.0-3.2 ppm

MS: 10 carbons (120 mass units) leaves 44 to be explained. $20=32$; leaving $12 \mathrm{H} . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{DoU}=5$.

IR: $\mathrm{C}=\mathrm{O}$ at $1680 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR: Aromatic region: $2 \times 2 \mathrm{H} \mathrm{d}=$ para substituted benzene. Upfield $3 \mathrm{Ht}+2 \mathrm{H} \mathrm{q}=$ an ethyl group. 3 H s at $3.8 \mathrm{ppm}=\mathrm{CH}_{3}-\mathrm{O}$.

At this point the choice is between the structure shown and the ester p-ethyl methyl benzoate. The ${ }^{13} \mathrm{C}$ NMR clinches this with the $\mathrm{C}=\mathrm{O}$ at 199 ppm ; the ester would be $165-185 \mathrm{ppm}$.
7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

${ }^{13} \mathrm{C}$ NMR:
136.7
131.2
130.8
119.1
20.9

IR: 3400 (broad), $1736 \mathrm{~cm}^{-1}$;
UV: $\lambda_{\text {max }}=260 \mathrm{~nm}$
MS parent ion region:
210 100\%
211 11.96\%
212 1.36\%

Bond strengths (kcal/mol):	
F-F	38
$\mathrm{Cl}-\mathrm{Cl}$	58
$\mathrm{Br}-\mathrm{Br}$	46
I-I	36
H-F	136
$\mathrm{H}-\mathrm{Cl}$	103
$\mathrm{H}-\mathrm{Br}$	87
$\mathrm{H}-\mathrm{I}$	71
$\mathrm{CH}_{3}-\mathrm{H}$	105
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	101
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	98.5
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H}$	96.5
$\mathrm{CH}_{3}-\mathrm{F}$	110
$\mathrm{CH}_{3}-\mathrm{Cl}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70
$\mathrm{CH}_{3}-\mathrm{I}$	57
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	111
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	70
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	111
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	84
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{F}$	110
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$	85
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$	55

Typical Heats of Hydrogenation

Table 11-4

Characteristic Infrared Stretching Wavenumber Ranges of Organic Molecules

Table 10-2 Typical Hydrogen Chemical Shifts in Organic Molecules

Table 10-6 Typical ${ }^{13} \mathrm{C}$ NMR Chemical Shifts

