Final Exam Tuesday, March 15, 2022

Form A

Name \qquad

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic devices other than calculators.

*Lanthanide series	$\begin{array}{\|c} \substack{\text { mamaum } \\ \mathrm{sym} \\ \mathrm{La} \\ \hline} \end{array}$	cenm	$\stackrel{59}{\mathrm{Pr}}$	${ }^{\text {Na }}$	Pm	${ }_{\text {Sm }}$	Eu		${ }^{65}$	${ }^{66}$	no	${ }_{\text {athmi }}^{\text {Er }}$	Tm ${ }_{\text {mamm }}^{\text {mam }}$	Yb
**Actinide series			Pa							Cl^{98}	$\begin{aligned} & \text { en } \\ & \text { Es } \end{aligned}$		Md	No
						${ }_{\text {Pu }}$				${ }_{\text {prsi }}$	ES	Fmb	$\underset{\text { cras }}{ }$	Nos9

1. (5 points each; 30 total) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected products.
A.

\square
B.

C.

$\mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{OH}$
D.

E.

2. (5 points each; 25 total) Write (in the box provided) the reagents and/or conditions needed to accomplish the following transformations.
A.

B.

C.

(2 steps--list both reagents needed)

Specify condition to get this as major product
E.

(2 compounds needed.)

3. (10 points each; 30 total) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.
A.

B.

C.

4. (6 points each box; 36 total) Indicate in the box a characteristic spectral peak for one compound whose presence will distinguish each pair of isomers.
A.

B.

III

IV

5 (10 points each; 30 total) Draw each structure with hydrogens, and predict the ${ }^{1} \mathrm{H}$ NMR spectrum (sketch clearly, or list peaks) of each of the following compounds. Include the spin-spin coupling patterns, but you need not specify J values. Estimate chemical shift to within 1 ppm.
A. 2-Bromobutane
B. (4-chlorophenyl)-ethene
C. 3-ethylbenzoic acid
6. (11 points each, 22 points total) Identify each compound based on the spectroscopic information provided. For partial credit, include as much of your analysis (DoU, fragments or functional groups) that you can provide.
A. $M S$ parent ion $m / z=88 ; M+1$ peak is 5.5% of the M peak intensity.

IR: $3300-3600 \mathrm{~cm}^{-1}$.

(Note: the "triplet" upfield is actually two different doublets that overlap.)
B. $M S$: Parent ion $m / z=164 ; M+1$ peak is 11% of the parent ion.

IR: 1680, $1602 \mathrm{~cm}^{-1}$

7. (9 points per box, 27 points total) Provide structures for each empty box. Use your understanding of both reaction chemistry and spectroscopic behavior to arrive at the answers. Include stereochemistry.

130.8
119.1
20.9

IR: 3400 (broad), $1736 \mathrm{~cm}^{-1}$;
UV: $\lambda_{\text {max }}=260 \mathrm{~nm}$
MS parent ion region:
210 100\%
211 11.96\%
212 1.36\%

Bond strengths (kcal/mol):	
F-F	38
$\mathrm{Cl}-\mathrm{Cl}$	58
$\mathrm{Br}-\mathrm{Br}$	46
I-I	36
H-F	136
$\mathrm{H}-\mathrm{Cl}$	103
$\mathrm{H}-\mathrm{Br}$	87
$\mathrm{H}-\mathrm{I}$	71
$\mathrm{CH}_{3}-\mathrm{H}$	105
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	101
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	98.5
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H}$	96.5
$\mathrm{CH}_{3}-\mathrm{F}$	110
$\mathrm{CH}_{3}-\mathrm{Cl}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70
$\mathrm{CH}_{3}-\mathrm{I}$	57
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	111
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	70
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	111
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	84
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{F}$	110
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$	85
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$	55

Typical Heats of Hydrogenation

Table 11-4

Characteristic Infrared Stretching Wavenumber Ranges of Organic Molecules

Table 10-2 Typical Hydrogen Chemical Shifts in Organic Molecules

Table 10-6 Typical ${ }^{13} \mathrm{C}$ NMR Chemical Shifts

