Form B

Name \qquad

You may use model kits but no other material with chemical information without instructor approval.

Please do not use ipods or other music players.

	-																	He
Li													B	C	$\stackrel{i n a m a n}{\sim}$	$\begin{gathered} \text { axmen } \\ 0 \end{gathered}$	$\begin{aligned} & \text { numme } \\ & \stackrel{\text { name }}{ } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { nom } \\ \text { nen } \\ \mathrm{Ne} \end{array} \end{aligned}$
cold	ander												aumbum					
Na	$\mathbf{M g}^{\mathbf{1 2}}$												${ }_{\text {Al }}$	${ }^{14} \mathrm{Si}$	${ }^{15}$	${ }^{16}$	${ }_{\text {Cl }}^{17}$	${ }^{18}$
								${ }_{26}^{100}$	${ }_{\text {alal }}^{\text {cil }}$	${ }^{\text {nased }}$	${ }_{29}^{\text {amam }}$	${ }_{30}^{210}$		32	${ }^{33}$	${ }^{\text {a }}$	$3{ }^{\circ}$	边
K	${ }_{\text {Ca }}$		Sc	Ti	${ }^{23}$	${ }^{24}$	Mn	Fe^{26}	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	cisime			${ }^{2}$	${ }^{\text {nowim }}$	${ }^{\text {man }}$	${ }^{\text {chemamm }}$		${ }_{\text {maim }}$	${ }^{46}$	${ }^{47}$	cemme	${ }_{49}$	${ }^{30}$	${ }_{\text {animony }}^{51}$	${ }^{\text {bentim }}$	${ }^{53}$	
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
\%		5770	(tays	${ }^{\text {andium }}$	${ }^{\text {andim }}$		${ }^{\text {man }}$	${ }^{\text {andim }}$	77	${ }^{\text {and }}$	${ }_{\text {cosa }}$	${ }_{80}{ }^{\text {maxam }}$	${ }^{11}$	82	${ }_{83}$	4	${ }^{6}$	${ }_{86}{ }^{86}$
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
										n10	${ }^{\text {minmamm }}$							
Fr	Ra	$\left\|\begin{array}{l} 89-102 \\ * * \end{array}\right\|$	$\begin{aligned} & 103 \\ & \mathrm{Lr} \end{aligned}$	$\begin{aligned} & 104 \\ & R f \end{aligned}$	Db	Sg	Bh	Hs	Mt^{1099}	Uun	Uuu	Uub		Uuq				

*Lanthanide series	$\begin{gathered} \text { aman } \\ \text { La } \\ \text { La } \end{gathered}$	${ }_{\text {cen }}^{\text {camm }}$	$\begin{aligned} & \text { nememem } \\ & \mathrm{Pr} \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & \text { neanamion } \\ & \mathrm{Nom} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { nomenem } \\ \mathrm{Pm} \end{gathered}\right.$	$\begin{aligned} & \text { semilum } \\ & \mathrm{Sm} \end{aligned}$	$\left[\begin{array}{c} \text { ancoum } \\ \text { Eu } \end{array}\right.$	$\left[\begin{array}{l} \text { axanduen } \\ \text { Gd } \end{array}\right.$		$\begin{aligned} & \text { वx midid } \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \substack{\begin{subarray}{c}{n \\ \text { nof } \\ \text { Ho }} }} \end{aligned}$	Er	$\begin{aligned} & \begin{array}{l} \text { numm } \\ \text { Tmom } \end{array} \end{aligned}$	Yb
**Actinide series			Patain							$\begin{gathered} \text { aidianion } \\ \mathrm{Cf} \end{gathered}$	Es	$\begin{array}{\|l\|l\|} \substack{\text { namion } \\ \text { Fom }} \end{array}$	Md	
												Fmb		No

1. (30 points) Write the expected product(s) for each of the following reactions. Specify stereochemistry where appropriate, and include all expected organic products.
A.

B.

C.

D.

E.

F.

2. (25 points) Write (over the arrow) the reagents and/or conditions needed to accomplish the following transformations.
A.

B.

C.

D.

E.

3. (20 points) Write multistep mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. Be sure to draw resonance structures for any intermediate so stabilized.
$\xrightarrow{\text { A. }}$
B.

4. (16 points) Using multistep synthesis, show how to make 3-ethylphenol, a compound with two o/p-directors arranges meta to each other.

 Note: O_{2} is both
a radical initiator and a
free radical reactant

5. (9 points) The reaction of ozone with an alkene is thought to be a concerted pericyclic reaction like the Diels-Alder reaction.
A. Sketch the two HOMO-LUMO interactions between ozone and an alkene. Fill in the correct wavefunction phases by shading the appropriate parts of the p orbitals. (If the particular p orbital is on a node, leave it completely blank.)

HOMO

LUMO

B. Given that thermodynamically, ozone is an oxidant and thus electron poor, explain which alkene in the following molecule would react faster (or if they are expected to react at the same rate) in an ozonolysis and why.

Bond strengths (kcal/mol):

F-F	38
$\mathrm{Cl}-\mathrm{Cl}$	58
$\mathrm{Br}-\mathrm{Br}$	46
I-I	36
H-F	136
$\mathrm{H}-\mathrm{Cl}$	103
$\mathrm{H}-\mathrm{Br}$	87
H-I	71
CH_{3} - H	105
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	101
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	98.5
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H}$	96.5
CH_{3} - F	110
$\mathrm{CH}_{3}-\mathrm{Cl}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70
CH_{3}-I	57
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	111
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	70
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	111
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	84
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	56
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{F}$	110
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$	85
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$	71
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$	55

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ 55

Typical Heats of Hydrogenation

