CH 335

First Midterm Exam

Monday, January 24, 2022

Form B

Name_____

You may use model kits but no other material with chemical information without instructor approval.

Please do not use any electronic gadgets.

hydrogen	-		1070	171	15	5	1985	5	100	201	6171	200	6073	797	670	7(7)	100 C	helium
Ĥ.																		Н́е
1.0079																		4.0026
Ithium 3	beryllium A												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
ľ.	Po												Ď	Č	Ň	Ô	Ĕ	No
1.1	Бе												D		IN	0	F	ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mq												AI	Si	Ρ	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium 21	titanium 22	vanadium 22	chromium	manganese 25	iron	cobalt 27	nickel	copper 20	zinc	gallium 21	germanium	arsenic	selenium 24	bromine 2E	krypton 26
19	20				23	24	25	20	21	20	2.9	30	0	32	33	04	55	30
ĸ	Ca		SC		V	Cr	wn	Fe	Co	NI	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	2irconium 40	41	42	43	1000 rutnenium 1000	45	46	47	28 cadmium	49	50	51	52	53	54
Dh	C.		V	7-	NIL	Mo	To	Du	Dh	Dd	Aa	Cd	lin.	Cn.	Ch	To	ï	Va
RD	31		T	21	UND	INIO	IC	ĸи	KII	гu	Ag	Cu	III	311	30	re		ve
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tunasten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ce	Ra	¥	L u	Нf	Ta	۱۸/	Ro	Oc	Ir	Dt	Διι	Ha	TL	Dh	Ri	Po	Δŧ	Rn
03	107.00	~	474.07	170.40	100.05	102.04	1100.04	03	400.00	105.00	AU	ing	004.00	10		1000		10001
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.38	ununquadium	208.98	209	[210]	222
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanida sorios	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthannue Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

1. (30 points) Write the expected products for each of the following reactions. Specify stereochemistry where appropriate (you may write "racemic" in place of drawing a second enantiomer).

2. (25 points) Write (over the arrow) the reagents needed to accomplish the following transformations.

3. (20 points) Write mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations. A.

4. (16 points) Long-chain fatty alcohols are often observed to be chemical signaling agents in insect biochemistry. Fill in the boxes for intermediate structures or reagents in the following synthesis of (8S, 9S)-1,8,9-hexadecanetriol. (You may abbreviate using the $(CH_2)_n$ formalism.)

5. (9 points) The heat of hydrogenation for norbornene ([2.2.1]-bicyclo-hept-2-ene, shown at the right) is -32.8 kcal/mol.

Explain why this is different from that for Z-2-butene (-28.3 kcal/mol).

 $\Delta H^{o} = -28.3 \text{ kcal/mol}$

destabilization energy is released in addition to

the C-H bond formation energy on rehybridization, and leads to an extra 4.5 kcal/mol of hydrogenation energy.

Bond strengths (kcal/mol):

F-F	38
Cl-Cl	58
Br-Br	46
I-I	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH₃-H	105
$CH_3CH_2 - H$	101
(CH ₃) ₂ CH-H	98.5
(CH ₃) ₃ C-H	96.5
CH₃-F	110
CH₃-Cl	85
CH₃-Br	70
CH₃-I	57
CH ₃ CH ₂ − F	111
CH₃CH₂-Cl	84
CH₃CH₂-Br	70
$CH_3CH_2 - I$	56
(CH ₃) ₂ CH-F	111
(CH₃)₂CH-Cl	84
(CH₃)₂CH-Br	71
$(CH_3)_2CH - I$	56
(CH₃)₃C-F	110
(CH₃)₃C-Cl	85
(CH₃)₃C-Br	71
(CH ₃) ₃ C-I	55

