CH 335

First Midterm Exam

Thursday, January 30, 2014

Name_____

You may use model kits or drawing templates but no other material with chemical information without instructor approval.

Please do not use ipods or other music players.

	- 1872																2017 1	
hydrogen 1																		helium 2
L Ú L																		Lla
п																		пе
1.0079 lithium	beryllium											Î	horon	earbon	nitrogen	oxyden	fluorine	4.0026
3	4												5	6	7	8	9	10
1.1	Ro												D	C	N	0	E	No
Bart	De												D		IN	U	- F	INE
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 armon
11	12												13	14	15	16	17	18
Na	Ma												ΔL	Si	D	S	CL	٨r
INA	INIG												AI	31	F	3	GI	AI
potassium	24.305 calcium		scandium	titanium	vanadium	chromium	mandanese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fo	Co	Ni	CII	7n	Ga	Go	Δc	Se	Br	Kr
10.000	U C C		00	17.007	50.040		C4 000		00	F0 000	o cu		Ga	UC.	71.000	00	70.004	1 11
rubidium	40.078 strontium		vttrium	2irconium	niobium	molybdenum	54.938 technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	72.61 tin	antimony	78,96 tellurium	iodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rh	Sr		V	7r	Nh	Mo	Tc	Ru	Rh	Pd	Δa	Cd	In	Sn	Sh	Tο	Ĩ	Xo
			00.000					NU		100.40	Ay	u	444.00	011	00	107.00	400.00	AC
caesium	barium		lutetium	hafnium	tantalum	95.94 tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ra	×	Tur	Hf	Ta	W	Re	0s	Ir	Pt	Διι	Ha	TL	Ph	Ri	Po	Δt	Rn
00	407.00		474.07	170.40	100.05	402.04	100.04	000	400.00	105.00	400.07	ing	204.00	107.0	200.00	10001		10001
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.38	ununquadium	208.98	209	210	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Er	Ra	* *	Ir	Rf	Dh	Sa	Bh	Hs	Mt	llun	Unn	Uub		Illua				
[223]	12261		12621	12611	12621	12661	12641	12691	12691	12711	12721	12771		12801				
623	[220]		12.02	201	[202]	[200]	2.04	200	[200]	[271]	[212]	114		1203				

*Lanthanida carias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthannue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
service protection control and the	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

1. (30 points) Write the expected products for each of the following reactions. Specify stereochemistry where appropriate.

2. (24 points) Write (over the arrow) the reagents needed to accomplish the following transformations.

3. (20 points) Write mechanisms (using the correct electron-pushing formalism, and as many steps as needed) for each of the following transformations.

4. (14 points) Complete the multistep synthesis shown below. For each letter A-H, provide either a structure (for stable, isolated organic compounds) or the reagent(s) needed to accomplish the transformation. Note that I have given you names for structures A and D.

5. (12 points) Ethylene, as measured using its 1,2-dideuterio form (CHD=CHD) has a barrier to E/Z interconversion of 63.2 kcal/mol. This means that we would have to heat it to 500°C in order to see an appreciable rate of isomerization.

E-cyclooctene, in contrast, has a much lower barrier to isomerization: 46.2 kcal/mol. This means it will undergo isomerization at temperatures between 250-300°C—still a high temperature, but it shows that isomerization is easier than for most "normal" alkenes.

A. Describe what happens to the C=C bond during E/Z isomerization. You may wish to use an energy diagram and/or pictures of interacting orbitals in the bond. (You may use the back of the page if needed.)

B. Based on this description, why is the barrier to isomerization for E-cyclooctene so much lower? (There are, in fact two contributing effects; one is large and the other smaller.)

C. If the heat of hydrogenation of E-cyclooctene is -35.8 kcal/mol, and that for E-cycloheptene is -48.6 kcal/mol, what would you predict the barrier to isomerization of E-cycloheptene to be? Explain.

Bond strengths (kcal/mol):

F-F	38
Cl-Cl	58
Br-Br	46
I-I	36
H-F	136
H-Cl	103
H-Br	87
H-I	71
CH ₃ -H	105
CH_3CH_2-H	101
(CH ₃) ₂ CH-H	98.5
(CH₃)₃C-H	96.5
CH₃-F	110
CH₃-Cl	85
CH₃-Br	70
CH₃-I	57
$CH_3CH_2 - F$	111
CH₃CH₂-Cl	84
CH₃CH₂-Br	70
$CH_3CH_2 - I$	56
(CH ₃) ₂ CH-F	111
(CH ₃) ₂ CH-Cl	84
(CH ₃) ₂ CH-Br	71
(CH ₃) ₂ CH-I	56
(CH ₃) ₃ C-F	110
(CH₃)₃C-Cl	85
(CH₃)₃C-Br	71
(CH ₃) ₃ C-I	55

