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Abstract

Suppose u is the solution of the initial value problem

utt −∆xu = 0, (x, t) ∈ Rn × [0,∞);
u(x, t=0) = f(x), ut(x, t=0) = g(x), x ∈ Rn.

Suppose n ≥ 1 is odd, f and g are supported in a ball B with boundary S, and one of f or g is
zero. We derive identities relating the norm of f or g to the norm of the trace of u on S× [0,∞).
These identities are derived using integral geometric and multiplier methods.

1 Introduction

Let Bρ represent the 0 centered open ball of radius ρ, Bρ its closure, Sρ its boundary, Rn
+ the half

space xn ≥ 0 in Rn, and H its boundary (the hyperplane xn = 0 in Rn). Below, all functions will
be real valued.

Suppose u is the solution of the wave equation with initial data supported in Bρ. Our goal is
the derivation of identities which relate the norm of the initial data to the norm of the trace of u
on Sρ × [0,∞). Specifically, we prove the following two theorems.

Theorem 1 Suppose n ≥ 1 is an odd integer and v(x, t) is the solution of the initial value problem

�v ≡ vtt −∆v = 0, x ∈ Rn, t ∈ R (1)

v(x, t=0) = f(x), vt(x, t=0) = 0 x ∈ Rn. (2)
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If f ∈ C∞
0 (Bρ) then

ρ

2

∫
Rn

|f(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t v(p, t)2 dSp dt , (3)

ρ

2

∫
Rn

|∇f(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t vt(p, t)2 dSp dt , (4)

ρ

2

∫
Rn

|∇f(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t |∇v(p, t)|2 dSp dt . (5)

Theorem 2 Suppose n ≥ 1 is an odd integer and w(x, t) is the solution of the initial value problem

wtt −∆w = 0, x ∈ Rn, t ∈ R (6)

w(x, t=0) = 0, wt(x, t=0) = g(x) x ∈ Rn. (7)

If g ∈ C∞
0 (Bρ) then

ρ

2

∫
Rn

|g(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t wt(p, t)2 dSp dt , (8)

ρ

2

∫
Rn

|g(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t |∇w(p, t)|2 dSp dt . (9)

In Thermoacoustic Tomography, one is interested in recovering a function supported inside a
ball B, from the mean values of the function on spheres, of all possible radii, which are centered
on the boundary of B. In [4] we studied this question and derived an inversion formula. It is well
known (see [4]) that the mean values of a function f over families of spheres are related to the
solution of the wave equation with initial data f . In [4] we derived the inversion formula from a
trace identity similar to the ones listed in Theorems 1 and 2; in fact all but (9) follow fairly quickly
from the identity derived in [4]. However deriving (9) takes quite a bit of work and its proof is the
significant part of this article. The proof uses integral geometric and multiplier techniques and we
do not know a proof of these identities using only multiplier techniques. The identities have been
proved only when n is odd; we do not know whether they are valid when n is even.

Theorem 1 and Theorem 2 may be used to obtain a similar identity for solutions of the wave
equation with arbitrary initial data which is supported in a ball. Suppose u(x, t) is the solution of

utt −∆u = 0, x ∈ Rn, t ∈ R (10)
u(x, t=0) = f(x), ut(x, t=0) = g(x), x ∈ Rn, (11)

with f and g in C∞
0 (Bρ). Then noting that u(x, t) = v(x, t)+w(x, t); v(x, t) is even in t and w(x, t)

is odd in t, for n odd, applying Theorems 1 and 2, one may show that

1
2

∫
Rn

(|∇f(x)|2 + |g(x)|2) dx =
1
2ρ

∫ ∞

−∞

∫
|p|=ρ

|t| ut(p, t)2 dSp dt. (12)
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(12) is also an isometry of the initial data space similar to a basic isometry in scattering theory,
but “at a finite place” rather than asymptotic in space and time. Taking the left hand side of (12)
to define the square of the HE norm (n ≥ 3), we can derive1 the isometry in the following result of
Friedlander, in [6], as a corollary of Theorems 1, 2, and Theorem 6 in [4].

Corollary 1 (Friedlander) Suppose n is an odd integer, n ≥ 3, and f and g are compactly
supported smooth functions on Rn. If u(x, t) is the solution of the initial value problem (10), (11),
then lim

r→∞
(r(n−1)/2ut(rθ, r + τ)) ≡ q(θ, τ) exists and ‖q‖L2(Sn−1×R) = ‖(f, g)‖HE

.

From standard Sobolev space theory one knows that taking traces results in a loss of regularity
of degree 1/2. From the standard well posedness theory for IVP for hyperbolic PDEs one knows
that if f ∈ H1

loc(R
n) and g ∈ L2

loc(R
n) then v and w are in H1

loc(R
n × [0,∞) and hence have H1/2

traces on Sρ × [0,∞). Our identities show that if f and g are supported in Bρ then in fact the
traces are in H1 and that there is no loss of regularity. One minor application of our identities is
that this improved trace regularity carries over to the case when we replace the wave operator by
any first order perturbation of it and allow a non-zero forcing function. Trace regularity theorems
are useful in control theory of hyperbolic PDE and also in studying inverse problems for hyperbolic
PDEs.

Theorem 3 (Spherical Case) Suppose 0 < ρ1 < ρ, n ≥ 1 an odd integer, and

• ai(x, t), b(x, t) are bounded, measurable functions on Rn × [0, T ] with ai and b supported in
Bρ1 × [0, T ],

• f ∈ H1(Rn), g ∈ L2(Rn) with f, g supported in Bρ,

• F ∈ L2(Rn × [0, T ]) with F supported in Bρ1 × [0, T ].

Suppose ε > 0 and u(x, t) is the solution of the IVP

Lu := �u +
n∑

i=1

aiuxi + bu = F, Rn × [0, T ] (13)

u(x, t=0) = f(x), ut(x, t=0) = g(x), x ∈ Rn. (14)

Then u has an H1 trace, ∇u has L2 trace, and ut has L2 trace on Sρ × [ε, T ], for all ε > 0, and∫ T

ε

∫
|p|=ρ

|u(p, t)|2 + |∇u(p, t)|2 + |ut(p, t)|2 dSp dt ≤ C

(
‖f‖2

1 + ‖g‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt

)
(15)

with C independent of f, g, F .
1We assume that the limit defining q exists in a manner which permits the interchange of the limit and the integral

- this is a consequence of the results in ([6]).
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Note that we do not make any claims about improved regularity in a neighborhood of t=0. This
could be proved if f and g were supported away from Sρ.

Using a trace identity of Bukhgeim and Kardakov in [3] for the solution of IVPs for the wave
equation with initial data supported in a half plane, using standard arguments, one may also derive
an optimal trace regularity for initial data supported in the half plane.

Theorem 4 (Hyperplane Case) Suppose δ > 0, n ≥ 1 is an integer, and

• ai(x, t), b(x, t) are locally bounded, measurable functions on Rn× [0, T ] with ai and b supported
in {x : |xn| ≥ δ} × [0, T ],

• f ∈ H1(Rn), g ∈ L2(Rn), and f and g supported in |xn| ≥ δ,

• F ∈ L2(Rn × [0, T ]) with F supported in {x : |xn| ≥ δ} × [0, T ].

Suppose u(x, t) is the solution of the IVP

Lu = F, on Rn × [0, T ], (16)

u(x, t=0) = f(x), ut(x, t=0) = g(x), x ∈ Rn. (17)

Then has an H1
loc trace, ∇u has L2

loc trace, and ut has L2
loc trace on H × [0, T ] and∫ T

0

∫
H

(
|u(p, t)|2 + |ut(p, t)|2 + |∇u(p, t)|2

)
dSp dt ≤ C

(
‖f‖2

1 + ‖g‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt

)
, (18)

with C independent of f, g, F .

Note, here we do assert optimal regularity even near t = 0 but then we require that f, g, F (., t) be
supported away from xn = 0.

The main results of this article are the trace identities in Theorems 1 and 2 which are new.
A simple application of this combined with some standard inequalities for solutions of hyperbolic
PDE give us Theorems 3 and 4. Even though Theorems 3 and 4 are special cases of more general
results of Bao and Symes in [1] and [2], we have chosen to include these theorems and their proofs
because the proof is much simpler than the microlocal analysis based proofs in [1] and [2]; but then
the Bao and Symes result is a more general result. They showed, for fairly general operators, with
weak regularity assumptions, that singularities in the solution are generated by the propagation
of the singularities, in the initial data or the forcing term (the RHS of the PDE), along the null
bicharacteristics of the differential operator. They conjectured that the weaker regularity in the
traces results from bicharacteristics which graze the cylindrical surface S × [0, T ] and they showed
that in the absence of such bicharacteristics the trace has optimal regularity, that is there is no
loss of regularity in taking the trace. According to them it is hard to prove such trace results
for time-like surfaces S × [0, T ] because it is difficult to obtain energy estimates where one wishes
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to relate the energy on a time-like surface to the energy on a space-like surface (the initial data
surface). They prove their result by modifying the wave operator so that there are no characteristic
surfaces (presumably by taking microlocal cutoffs of the differential operator) and then modifying
the energy type estimate.

Symes in [11], has a different proof of Theorem 4, and also constructed an example to show that
the result is violated if the restrictions on the support are removed. Lasiecka and Triggiani in [7]
also obtained results similar to Theorem 4 for the wave operator using Laplace Transforms and in
[8] they gave a sharp characterization of the regularity of the traces if the support restrictions are
dropped; Tataru in [12] has studied this sharp regularity problem (without the support conditions)
in a fairly general situation.

2 Proof of Theorems 1, 2, and Corollary 1

2.1 Proof of Theorems 1 and 2

If n = 1 then

v(x, t) =
f(x + t) + f(x− t)

2
, w(x, t) =

1
2

∫ x+t

x−t
g(s) ds .

If we interpret
∫
|p|=ρ h(p) dSp to mean h(ρ) + h(−ρ), then we may verify by a straight-forward

calculation that Theorem 1 and Theorem 2 are valid when n = 1.

For odd n ≥ 3, the theorems will be proved in parallel and the proofs are based on an identity
stated in Theorem 6 of [4]. There we showed that if wi, i = 1, 2 are solutions of the IVP (6), (7),
with g = gi, where gi are smooth functions supported in Bρ then

1
2

∫
Rn

g1(x) g2(x) dx =
−1
ρ

∫ ∞

0

∫
|p|=ρ

t w1(p, t) w2tt(p, t) dSp dt . (19)

Taking g1 = g2 = g in this equation, integrating by parts, and noting that w is zero on Sρ(0) for
t = 0 and for t large (note n is odd), we obtain

1
2

∫
Rn

|g(x)|2 dx =
−1
ρ

∫ ∞

0

∫
|p|=ρ

t w(p, t) wtt(p, t) dSp dt

=
1
ρ

∫ ∞

0

∫
|p|=ρ

t |wt(p, t)|2 dSp dt +
1
ρ

∫ ∞

0

∫
|p|=ρ

w(p, t) wt(p, t) dSp dt

=
1
ρ

∫ ∞

0

∫
|p|=ρ

t |wt(p, t)|2 dSp dt, +
1
2ρ

∫ ∞

0

∫
|p|=ρ

d

dt

(
w(p, t)2

)
dSp dt

=
1
ρ

∫ ∞

0

∫
|p|=ρ

t |wt(p, t)|2 dSp dt,

proving (8).
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We note that wt is a solution of (1), (2) with f replaced by g, hence (3) follows from (8). If we
define v1 = ∂jv then v1 also satisfies the wave equation (1) except its initial conditions are

v1(., t=0) = ∂jv(., t=0) = ∂jf, v1t(., t=0) = (∂j∂tv)(., t=0) = 0 .

Hence, (3) applied to v1 implies

ρ

2

∫
Rn

|∂jf(x)|2 dx =
∫ ∞

0

∫
|p|=ρ

t |v1(p, t)|2 dSp dt =
∫ ∞

0

∫
|p|=ρ

t |∂jv(p, t)|2 dSp dt, .

Adding these for all j = 1, 2, · · · , n we obtain (5).

Now we prove (4). Take w1(., t) =
∫ t
0 v(., s) ds and w2 = vt. Then w1 and w2 are solutions of

(6), except their ICs are w1(., t=0) = 0, w1t(., t=0) = v(., t=0) = f ; w2(., t=0) = vt(., t=0) = 0, and
w2t(., t=0) = vtt(., t=0) = ∆v(., t=0) = ∆f . Hence, from the bilinear form of (8), we have

1
2

∫
Rn

f(x) (∆f)(x) dx =
1
ρ

∫ ∞

0

∫
|p|=ρ

t w1t(p, t) w2t(p, t) dSp dt

=
1
ρ

∫ ∞

0

∫
|p|=ρ

t v(p, t) vtt(p, t) dSp dt .

Integrating by parts both sides of the equation and noting that f has compact support, and v is
zero on Sρ for t = 0 and for t large, one obtains (4).

It remains to prove (9) whose long proof will take up the rest of the section.

Suppose r ≥ ρ. Then,

0 =
∫ ∞

0

∫
|p|≤r

tw(wtt −∆w)(p, t) dp dt

=
∫ ∞

0

∫
|p|≤r

twwtt dp dt−
∫ ∞

0

∫
|p|≤r

t∇ · (w∇w) dp dt +
∫ ∞

0

∫
|p|≤r

t|∇w|2 dp dt

=
∫ ∞

0

∫
|p|≤r

twwtt dp dt−
∫ ∞

0

∫
|p|=r

tw(p, t)wr(p, t) dSp dt +
∫ ∞

0

∫
|p|≤r

t|(∇w)(p, t)|2 dp dt,

where wr(p, t) represents the radial derivative of w, i.e. wr(x, t) = x · ∇w(x, t)/|x|. Hence∫ ∞

0

∫
|p|=r

tw(p, t)wr(p, t) dSp dt =
∫ ∞

0

∫
|p|≤r

tw(p, t)wtt(p, t) dp dt +
∫ ∞

0

∫
|p|≤r

t|(∇w)(p, t)|2 dp dt .

Differentiating this with respect to r, we obtain

dA(r)
dr

=
∫ ∞

0

∫
|p|=r

tw(p, t)wtt(p, t) dSp dt +
∫ ∞

0

∫
|p|=r

t|(∇w)(p, t)|2 dSp dt, (20)

where
A(r) :=

∫ ∞

0

∫
|p|=r

t w(p, t) wr(p, t) dSp dt . (21)
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If we can show that A(r) is independent of r for r ≥ ρ, then (9) will follow from (20) if we take
g1 = g2 = g in (19).

To prove that A(r) is independent of r for r ≥ ρ, we will need some of the ideas used in [4] and
the details may be found there. Let {φm}∞m=1 be spherical harmonics which form an orthonormal
basis for L2(S1(0)) - see Chapter 4 of [10]. These are restrictions to S1(0) of some harmonic
homogeneous polynomials on Rn. If φm is the restriction of a homogeneous polynomial of degree
k(m) then that homogeneous harmonic polynomial is rk(m)φm(θ) where r = |x| and θ = x/|x|.

Suppose g is a smooth function on Rn supported in Bρ(0). We have a decomposition of g of
the form (convergence in L2)

g(rθ) =
∞∑

m=1

gm(r) rk(m) φm(θ), r ≥ 0, |θ| = 1

with
rk(m)gm(r) =

∫
|θ|=1

g(rθ) φm(θ) dθ . (22)

One may show that gm(r) is a smooth, even function, supported in [−ρ, ρ]. One may also show
that

w(rθ, t) =
∞∑

m=1

am(r, t)rk(m) φm(θ), r ≥ 0, |θ| = 1

where am(r, t) is the solution of the Darboux equation

amtt − amrr −
ν(m)− 1

r
amr = 0, r ∈ (−∞,∞), t ≥ 0,

am(., t=0) = 0, amt(., t=0) = gm(.) ,

with ν(m) = n + 2k(m).

Substituting the above expansion for w into (21), the definition of A(r), and using the orthonor-
mality of the φm, we have (here p = rθ)

A(r) =
∫ ∞

0

∫
|p|=r

t

( ∞∑
m=1

am(r, t)rk(m) φm(θ)

) ( ∞∑
m=1

(
am(r, t)rk(m)

)
r

φm(θ)

)
dSp dt

=
∫ ∞

0

∫
|θ|=1

t rn−1

( ∞∑
m=1

am(r, t)rk(m) φm(θ)

) ( ∞∑
m=1

(
am(r, t)rk(m)

)
r

φm(θ)

)
dθ dt

=
∞∑

m=1

∫ ∞

0
t rn−1+k(m) am(r, t)

(
am(r, t)rk(m)

)
r

dt

=
∞∑

m=1

∫ ∞

0
t rn−2+2k(m) am(r, t) (r amr(r, t) + k(m)am(r, t)) dt

=
∞∑

m=1

∫ ∞

0
t
(
rν(m)−1 am(r, t) amr(r, t) + k(m)rν(m)−2a2

m(r, t)
)

dt .
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Suppose g(r) is a smooth even function supported in [−ρ, ρ], ν an integer, and a(r, t) is the
solution of the Darboux equation

att − arr −
ν − 1

r
ar = 0, r ∈ (−∞,∞), t ≥ 0, (23)

a(., t=0) = 0, at(., t=0) = g(r) . (24)

Define

B(r, ν, g) ≡ rν−1

∫ ∞

0
t a(r, t) ar(r, t) dt, C(r, ν, g) ≡ rν−2

∫ ∞

0
t a2(r, t) dt . (25)

Then A(r) will be independent of r for all r ≥ ρ if we can show that B(r, ν, g) and
C(r, ν, g) are independent of r for all r ≥ ρ, for all smooth even g supported in [−ρ, ρ],
for all odd integers ν ≥ 3.

However, note that

d

dr
(rC(r, ν, g)) = 2rν−1

∫ ∞

0
t a(r, t) ar(r, t) dt, + (ν − 1) rν−2

∫ ∞

0
t a2(r, t) dt

= 2B(r, ν, g) + (ν − 1)C(r, ν, g) . (26)

So, if we could show that C(r, ν, g) is independent of r for r ≥ ρ, then from (26) we would have
B(r, ν, g) = (2− ν)C(r, ν, g)/2 and B(r, ν, g) would also be independent of r for r ≥ ρ.

Let us also define
D(r, ν, g) ≡ rν−2

∫ ∞

0
t |ar(r, t)|2 dt . (27)

Given a smooth, even function g(r) which is supported in [−ρ, ρ], we define

h(r) =
∫ r

−∞
s g(s) ds .

Then h(r) is also a smooth, even function of r and is also supported in [−ρ, ρ]. Let b(r, t) be the
solution of

btt − brr −
ν − 3

r
br = 0, r ∈ (−∞,∞), t ≥ 0,

b(., t=0) = 0, bt(., t=0) = h(.) .

Then one may verify that br/r is a solution of (23), (24). Hence a = br/r. So

C(r, ν, g) = rν−4

∫ ∞

0
t |br(r, t)|2 dt = D(r, ν − 2, h) . (28)

We will prove that C(r, ν, g) is independent of r ≥ ρ by induction on ν. The proof will be based
on the following Lemma.

Lemma 1 Suppose g is a smooth, even function, supported in [−ρ, ρ], and ν ≥ 1 is odd.
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(a) If D(r, ν, g) is independent of r for r ≥ ρ then

D(r, ν, g) =
1
2

∫ ∞

0
sν−1|g(s)|2 ds.

(b) For r ≥ ρ,

Br(r, ν, g) = r

(
D(r, ν, g)− 1

2

∫ ∞

0
sν−1|g(s)|2 ds

)
.

So from (a), for r ≥ ρ, B(r, ν, g) is independent of r iff D(r, ν, g) is independent of r.

We now complete the proof of the independence of C(r, ν, g) from r. When ν = 1, (23) is the
one dimensional wave equation and

a(r, t) =
1
2

∫ r+t

r−t
g(s) ds .

Hence, using the support of g, for r ≥ ρ,

ar(r, t) =
g(r + t)− g(r − t)

2
=
−g(r − t)

2

if t ≥ 0. Hence, using the support of g and that g is even, we have

D(r, ν=1, g) =
1
r

∫ ∞

0
t |ar(r, t)|2 dt

=
1
4r

∫ ∞

0
t |g(r − t)|2 dt =

1
4r

∫ r

−∞
(r − s) |g(s)|2 ds

=
1
4r

∫ r

−r
(r − s) |g(s)|2 ds =

1
4

∫ r

−r
|g(s)|2 ds

=
1
2

∫ r

0
|g(s)|2 ds =

1
2

∫ ρ

0
|g(s)|2 ds .

So D(r, ν=1, g) is independent of r for all g which are smooth, even and supported in [−ρ, ρ].
Applying this to h and using (28), we obtain that C(r, ν=3, g) is independent of r, for all smooth,
even g which are supported in [−ρ, ρ].

Next, using (26), we conclude that B(r, ν=3, g) is independent of r. Then from Lemma 1 we
conclude that D(r, ν = 3, g) is independent of r, for all appropriate g. Then using (28) we conclude
that C(r, ν = 5, g) is independent of r. In this fashion, by induction on ν, we may show that
C(r, ν, g) is independent of r for all odd ν ≥ 3.

End of Proof of Theorems 1 and 2
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2.1.1 Proof of Lemma 1

The proof of Lemma 1 uses three identities.

Lemma 2 Suppose ν ≥ 3 is odd, g and gi, i = 1, 2 are smooth even function with support in
[−ρ, ρ], and a(r, t), ai(r, t) are the corresponding solutions of the Darboux equations (23), (24).
Then for all r ≥ ρ,

1
2

∫ ∞

0
sν−1g1(s) g2(s) ds = − rν−2

∫ ∞

0
t a1(r, t) a2tt(r, t) dt . (29)

1
2

∫ ∞

0
sν−1|g(s)|2 ds = rν−2

∫ ∞

0
t |at(r, t)|2 dt, (30)

1
2

∫ ∞

0
sν−1|g(s)|2 ds = −rν−1

∫ ∞

0
at(r, t) ar(r, t) dt . (31)

Note that there is no t term in the RHS of (31).

Proof of Lemma 2
We will prove the three identities when r = ρ - the general r ≥ ρ case will then follow because if g
is supported in [−ρ, ρ] then it is also supported in [−r, r].

To prove (29), take k = (ν − 3)/2 - note k is a non-negative integer because ν is odd. Choose
rkφ(θ) a homogeneous, harmonic polynomial of degree k in R3 with the L2 norm of φ being one.
Then wi(x, t) = ai(|x|)|x|kφ(θ) are solutions of (6), (7) with g(x) = gi(|x|) and n = 3. Hence (19)
is valid and we rewrite it as it applies to our situation. We obtain

LHS of (19) =
1
2

∫
R3

g1(r) rk φ(θ) g2(r) rk φ(θ) dx (x = rθ)

=
1
2

∫ ∞

0
r3−1r2kg1(r) g2(r) dr =

1
2

∫ ∞

0
r2k+2g1(r) g2(r) dr =

1
2

∫ ∞

0
rν−1g1(r) g2(r) dr ,

RHS of (19) =
−1
ρ

∫ ∞

0

∫
|p|=ρ

t w1(p, t) w2tt(p, t) dSp dt

=
−1
ρ

∫ ∞

0

∫
|θ|=1

t ρ3−1 ρ2k a1(ρ, t) a2tt(ρ, t) φ2(θ) dθ dt

= − ρν−2

∫ ∞

0
t a1(ρ, t) a2tt(ρ, t) dt,

which proves (29).

(30) follows from (29) if we take g1 = g2 = g and integrate by parts the RHS of (29) - note
strong Huygen’s principle is valid for a for odd ν ≥ 3. The proof of (31) is an imitation of the
proof of the standard energy identity for the wave equation. In fact (31) is just the energy identity

10



rewritten. To prove (31), note that

0 = 2rν−1 at

(
att − arr −

ν − 1
r

ar

)
= 2rν−1atatt − 2at

(
rν−1 ar

)
r

= rν−1
(
a2

t

)
t
− 2

(
rν−1 at ar

)
r
+ 2rν−1 art ar

= rν−1
(
a2

t + a2
r

)
t
− 2

(
rν−1 at ar

)
r

.

Integrating this over the region [−ρ, ρ] × [0,∞) and noting that a(., t) = 0 on [−ρ, ρ] for large t
(ν ≥ 3 is odd),

0 =
∫ ∞

0

∫ ρ

0
rν−1

(
a2

t + a2
r

)
t
− 2

(
rν−1 at ar

)
r

dr dt

= −
∫ ρ

0
rν−1

(
a2

t + a2
r

)
(r, t=0) dr − 2ρν−1

∫ ∞

0
at(ρ, t) ar(ρ, t) dt

= −
∫ ρ

0
rν−1|g(r)|2 dr − 2ρν−1

∫ ∞

0
at(ρ, t) ar(ρ, t) dt

proving (31).

End of proof of Lemma 2

Proof of Lemma 1(a)
We define

P (ν, g) :=
1
2

∫ ∞

0
sν−1|g(s)|2 ds .

From Lemma 2, the RHS of (30) is independent of r ≥ ρ. So differentiating the RHS of (30) we
have

0 = (ν − 2)rν−3

∫ ∞

0
t|at(r, t)|2 dt + 2rν−2

∫ ∞

0
tatatr dt

=
ν − 2

r
P + 2rν−2

∫ ∞

0
tat(ar)t dt, using (30).

Multiplying by r, and integrating by parts the second integral, we obtain

0 = (ν − 2)P + 2rν−1

(
tatar|∞t=0 −

∫ ∞

0
(at + tatt)ar dt

)
= (ν − 2)P − 2rν−1

∫ ∞

0
atar dt− 2rν−1

∫ ∞

0
t(arr +

ν − 1
r

ar)ar dt, using (23)

= νP − rν−1

∫ ∞

0
t(a2

r)r dt− 2(ν − 1)rν−2

∫ ∞

0
ta2

r dt, using (31)

= νP − d

dr
(rD(r))− (ν − 1)D(r) .

Hence
D′ +

ν

r
D =

ν

r
P

11



or
(rνD)′ = νrν−1P .

Since P is independent of r, integrating we have

D(r) = P + cr−ν , r ≥ ρ .

Thus, D(r) is independent of r iff c = 0.

QED

Proof of Lemma 1(b)
Differentiating the expression for B(r, ν, g), for r ≥ ρ, we have

B′(r) = (ν − 1)rν−2

∫ ∞

0
taar dt + rν−1

∫ ∞

0
t(a2

r + aarr) dt

= (ν − 1)rν−2

∫ ∞

0
taar dt + rν−1

∫ ∞

0
ta2

r dt + rν−1

∫ ∞

0
ta(att −

ν − 1
r

ar) dt using (23)

= rν−1

∫ ∞

0
ta2

r dt + rν−1

∫ ∞

0
taatt dt

= r(D(r)− P ) using (29) .

QED

2.2 Proof of Corollary 1

The corollary is a consequence of Theorems 1, 2, and Theorem 6 in [4]. To see this, we need to
show that

lim
ρ→∞

1
ρ

∫ ∞

0

∫
|p|=ρ

tvtwtdSp dt = 0, (32)

for v and w as in Theorems 1 and 2. Accepting this, as the initial data has compact support, by
Huygens’ principle (in odd dimensions) the solution u(p, t) is supported in a fixed t-intervals about
t = ρ when |p| = ρ, and so |t|/ρ = 1 + O(1/ρ) on the support of the solution.

So it remains to prove (32). By Theorem 6 of [4]

−
∫ ∞

0

∫
|p|=ρ

tω1ω2ttdSpdt =
∫ ∞

0

∫
|p|=ρ

tω1tω2tdSpdt

when the ωi, i = 1, 2 are solutions of �ωi = 0, ω(·, t = 0) = 0, ωit(·, t = 0) = hi for smooth
functions hi supported in the ball of radius R, and ρ ≥ R. Performing the integration by parts on
the left, and observing that the boundary terms contribute nothing, we obtain that

0 =
∫ ∞

0

∫
|p|=ρ

ω1ω2tdSρdt.

12



Now ω1 = vt, for v as in (2), satisfies �ω1 = 0, ω(·, t = 0) = 0, ωt(·, t = 0) = 4f and with ω2 = w
we then have that

0 =
∫ ∞

0

∫
|p|=ρ

vtwtdSpdt.

Applying this, we obtain∫ ∞

0

∫
|p|=ρ

tvtwtdSpdt =
∫ ∞

0

∫
|p|=ρ

(t− ρ)vtwtdSpdt + ρ

∫ ∞

0

∫
|p|=ρ

vtwtdSpdt

=
∫ ∞

0

∫
|p|=ρ

(t− ρ)vtwtdSpdt.

Then using that vt and wt have support near t = ρ, after dividing by ρ, the limit, as ρ → ∞, is
equal to zero.

End of Proof of Corollary 1.

3 Proof of Theorem 3

The existence of a solution u in H1(Rn× [0, T ]) to the IVP (13), (14), is guaranteed by the standard
theory for initial value problems for hyperbolic PDE. Bringing the first and zeroth order terms in
the LHS of (13) to the RHS and absorbing it in F will still keep F in L2. Further, standard energy
estimates bound the H1 norm of u on Rn × [0, T ] by the RHS of (15). So it is enough to prove
Theorem 3 for the special case when ai = 0 and b = 0.

We next show that Theorem 3 follows if we prove (15) for all smooth f, g, F satisfying the
hypothesis of Theorem 3. Given f, g, F satisfying the hypothesis of the theorem, we can find a
sequence of smooth functions fk, gk, Fk which also satisfy the hypothesis of the theorem so that
‖fk−f‖H1 → 0, ‖gk−g‖L2 → 0, and ‖Fk−F‖L2 → 0. Let uk be the unique solution corresponding
to fk, gk, Fk and u the unique solution corresponding to f, g, F - note that the uk are smooth, u is
in H1(Rn× [0, T ]), and uk converges to u in the H1 norm (from standard energy estimates). Hence
the trace of uk converges to the trace of u on Sρ × [0, T ] in the L2 norm (at least).

Now applying (15) to the functions fk − fm, gk − gm, and Fk − Fm, we may conclude that the
traces of uk on Sρ × [ε, T ] form a Cauchy sequence in H1(Sρ × [ε, T ]). Hence it is convergent to an
H1 function on Sρ × [ε, T ]. But the traces of uk on Sρ × [ε, T ] converge to the trace of u in the L2

norm. Hence the trace of u on Sρ × [ε, T ] is in H1(Sρ × [ε, T ]). Now applying the standard theory
for the well posedness of the IBVP for hyperbolic PDE with Dirichlet boundary conditions (see
[9]) to the region Bρ × [ε, T ], and noting that the trace of u on Sρ × [ε, T ] is in H1, we have that
the normal derivative of u has L2 trace on Sρ × [ε, T ] and the normal derivative of uk approaches
the normal derivative of u in L2(Sρ × [ε, T ]). Finally, since (15) is valid for uk, letting k approach
infinity proves (15) for u.

So it remains to prove (15) when f, g, F are smooth and satisfy the support hypoth-
esis of the theorem. There is no loss of generality in assuming that F (., t) vanishes to infinite
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order at t = T , and hence is still a smooth function when F is defined to be zero for t ≥ T . We will
take u(x, t) to be the solution of (13) and (14) over the region Rn × [0,∞). Noting that t ≥ ε for
all t ∈ [ε, T ], from Theorems 1 and 2, and the standard trace theory (to estimate the L2 norm of
the trace of u), one may easily derive (15) when F = 0. So from linearity, we must now establish
(15) when f = 0, g = 0, and L is just the wave operator.

So suppose u is the solution of

�u = F Rn × [0, T ], (33)

u(., t=0) = 0, ut(., t=0) = 0 (34)

with F ∈ C∞(Rn× [0, T ]) and F (., t) supported in Bρ1 for all t. For each s ≥ 0, define w(x, t; s) to
be the solution of the IVP

�x,tw(x, t; s) = 0 Rn × [s,∞), (35)

w(., t=s; s) = 0, wt(., t=s; s) = F (., s) . (36)

Then, from Duhamel’s principle we know that

u(x, t) =
∫ t

0
w(x, t; s) ds . (37)

Now, from the hypothesis about the support of F and the speed of propagation, we have w(., .; s)
is zero on a neighborhood of Sρ × [s, s + ρ− ρ1). So, from Theorem 2 applied to w(x, t; s) we have
(note the t−s term below instead of the t term in Theorem 2 because w(., .; s) starts at t=s instead
of t=0)

ρ

2

∫
Rn

|F (x, s)|2 dx =
∫ ∞

s

∫
|p|=ρ

(t− s)|wt(p, t; s)|2 dSp dt ≥ (ρ− ρ1)
∫ T

s

∫
|p|=ρ

|wt(p, t; s)|2 dSp dt

ρ

2

∫
Rn

|F (x, s)|2 dx =
∫ ∞

s

∫
|p|=ρ

(t− s)|∇w(p, t; s)|2 dSp dt ≥ (ρ− ρ1)
∫ T

s

∫
|p|=ρ

|∇w(p, t; s)|2 dSp dt .

Integrating these over the interval [0, T ], we have∫ T

0

∫ T

s

∫
|p|=ρ

|wt(p, t; s)|2 dSp dt ds ≤ C

∫ T

0

∫
Rn

|F (x, s)|2 dx ds (38)∫ T

0

∫ T

s

∫
|p|=ρ

|∇w(p, t; s)|2 dSp dt ds ≤ C

∫ T

0

∫
Rn

|F (x, s)|2 dx ds . (39)
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From (37), (38), (39), and using w(p, t; t)=0, we have∫ T

0

∫
|p|=ρ

(
|ut(p, t)|2 + |∇u(p, t)|2

)
dSp dt

=
∫
|p|=ρ

∫ T

0

(∣∣∣∣∫ t

0
wt(p, t; s) ds

∣∣∣∣2 +
∣∣∣∣∫ t

0
∇w(p, t; s) ds

∣∣∣∣2
)

dt dSp

≤ T

∫
|p|=ρ

∫ T

0

∫ t

0

(
|wt(p, t; s)|2 + |∇w(p, t; s)|2

)
ds dt dSp (Cauchy-Schwarz inequality)

= T

∫
|p|=ρ

∫ T

0

∫ T

s

(
|wt(p, t; s)|2 + |∇w(p, t; s)|2

)
dt ds dSp (reversing order of integration)

≤ C

∫ T

0

∫
Rn

|F (x, s)|2 dx ds .

The |u(p, t)|2 term on the LHS of (15) is bounded by the standard trace theorem and we have
proved (15).

QED

4 Proof of Theorem 4

Below, ui will represent the partial derivative of u with respect to xi. In the n = 1 case
∫
H×[0,T ] f(x, t)dSx

will just mean
∫ T
0 f(0, t) dt . Arguing as in the case of Theorem 3, to prove Theorem 4 it is enough

to establish (18) for smooth f, g, F which satisfy the hypothesis of the theorem and when L is the
wave operator. Since the solution u of (13), (14) depends linearly on f, g, F , it is enough to prove
(18) in the three separate cases when two out of the three of f, g, F are zero.

As in the case of Theorem 3, a crucial role is played by trace identities for the halfplane, similar
to Theorems 1 and 2. For the halfplane case the important trace identity was derived by Bukhgeim
and Kardakov in [3]. The following crucial proposition follows quickly from their trace identity.

Proposition 1 Suppose δ > 0, n is an odd integer, n ≥ 1, and w(x, t) is the solution of

�w = 0, on Rn × [0, T ],

w(., t=0) = f, wt(., t=0) = 0

where f ∈ C∞
0 (Rn), f even in xn, and f supported in |xn| ≥ δ. Then∫ T

0

∫
H

w2(p, t) dSp dt ≤ T

2δ
‖f‖2

0 . (40)
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Proof of Proposition 1
Extending the solution past t = T , we have w(x, t) is the solution of the IVP

�w = 0, on Rn × [0,∞),

w(., t=0) = f, wt(., t=0) = 0

where f is even. Hence w is even in xn and so wn = 0 on H × [0,∞). For odd n ≥ 3, in [3], it is
shown that ∫ ∞

0

∫
H

w2(p, t)
t

dSp dt =
∫

Rn
+

f2(x)
xn

dx .

This is also valid when n = 1 as may be verified by using the explicit solution - here
∫
H h(p) dSp is

to mean h(0). Since f is supported in |xn| ≥ δ, we have∫ T

0

∫
H

w2(p, t) dSp dt ≤ T

∫ T

0

∫
H

w2(p, t)
t

dSp dt ≤ T

∫ ∞

0

∫
H

w2(p, t)
t

dSp dt

= T

∫
Rn

+

f2(x)
xn

dx ≤ T

δ

∫
Rn

+

f2(x) dx =
T

2δ
‖f‖2

0,

proving the proposition. QED

We will need some energy identities for solutions of IBVP for the wave equation in the region
Rn

+× [0, T ]. These estimate the L2 norm of ut and un on H × [0, T ] in terms of all other boundary
and initial data, and the L2 norm of ui, i 6= n, in terms of all other boundary and initial data. The
proof uses the multipliers ui and ut and may be found in standard books dealing with IBVP for
the wave equation.

Proposition 2 Suppose n ≥ 1, f, g ∈ C∞
0 (Rn), F ∈ C∞

0 (Rn × [0, T ]), and u is the solution of the
IVP

�u = F Rn × [0, T ],

u(., t=0) = f, ut(., t=0) = g .

Then∫
H×[0,T ]

u2
1 + · · ·+ u2

n−1 dSp dt ≤ C

(
‖f‖2

1 + ‖g‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt +
∫

H×[0,T ]
u2

t + u2
n dSp dt

)
,

(41)∫
H×[0,T ]

u2
t + u2

n dSp dt ≤ C

(
‖f‖2

1 + ‖g‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt +
∫

H×[0,T ]
u2

1 + · · ·+ u2
n−1 dSp dt

)
,

(42)

with C independent of f, g, F .
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Consider the three cases where L = � and two of the three functions f, g, F are zero. If f, g, F
were odd functions of xn, then u(x, t) would also be an odd function of xn. Hence u, ut, and ui,
i 6= n, would be zero on H × [0, T ] and (18) follows right away from (42). Since every function may
be written as the sum of an odd and even function in a unique way with the norms of the even and
odd parts bounded by the corresponding norms of the original function, we need only deal with
the case where f, g, F are even in xn and only one of the f, g, F is non-zero.

If f , g, and F are even, then u is even and hence un = 0 on S × [0, T ]. So to prove (18) it is
enough to estimate the ut and ui, i 6= n terms on the LHS of (18). Because of (42), it is actually
enough to estimate just the ui, i 6= n terms on the LHS of (18).

We also note that the |u|2 term on the LHS of (18) may be estimated by the RHS using standard
estimates for the solutions of the wave operator and the estimates for the trace of an H1 function
on a hypersurface. So below we will focus on estimating the other terms on the LHS of (18).

Next, we show, using the method of descent, that the n even case follows from the n odd case.
Suppose Theorem 4 is valid for all odd n ≥ 1. Now, suppose n ≥ 2 is an even integer and the
hypothesis of Theorem 4 is valid and u(x, t) is the solution of (16), (17). Choose χ(z) ∈ C∞

0 (R)
with χ(z) = 1 for |z| ≤ T + 1. Let v(x, z, t) be the solution of the IVP

vtt −∆xv − vzz = F (x, t)χ(z) (x, z) ∈ Rn+1, t ∈ [0, T ] (43)

v(x, z, t=0) = f(x)χ(z), vt(x, z, t=0) = g(x)χ(z) . (44)

Since the initial data and the RHS are smooth and have compact support, and n + 1 is odd, we
have from Theorem 4 for the odd dimensional case∫ T

0

∫ ∞

−∞

∫
H

(
|v(p, z, t)|2 + |vt(p, z, t)|2 + |∇xv(p, z, t)|2 + |vz(p, z, t)|2

)
dSp dz dt

≤ C

∫ ∞

−∞

(
‖f(.)χ(z)‖2

1 + ‖g(.)χ(z)‖2
0 +

∫ T

0
‖F (., t)χ(z)‖2

0 dt

)
dz

≤ C1

(
‖f(.)‖2

1 + ‖g(.)‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt

)
. (45)

Now the distance of the subset |z| ≤ 1 of Rn+1
x,z from the subset |z| ≥ T +1 of Rn+1

x,z is T . Hence,
from a domain of dependence argument, v(x, z, t) for |z| ≤ 1, x ∈ Rn, and t ∈ [0, T ], would not
change if χ(z) = 1 for all z ∈ R. So v(x, z, t) = u(x, t) for |z| ≤ 1, x ∈ Rn, and t ∈ [0, T ]. Hence,
if, on the LHS of (45), the z integral is taken only over the interval [−1, 1], we obtain

2
∫ T

0

∫
H

(
|u(p, t)|2 + |ut(p, t)|2 + |∇xu(p, t)|2

)
dSp dt ≤ C1

(
‖f(.)‖2

1 + ‖g(.)‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt

)
.

So Theorem 4 is valid in the n even case.

Summarizing, to prove Theorem 4, we may assume that n is odd, L = �, only one of f, g, F is
non-zero, and f , g, F are smooth and even in xn. Further, we only need to establish the inequality∫ T

0

∫
H

u1(p, t)2 + · · ·+ un−1(p, t)2 dSp dt ≤ C

(
‖f‖2

1 + ‖g‖2
0 +

∫ T

0
‖F (., t)‖2

0 dt

)
, (46)
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with C independent of f, g, F , where u is the solution of the IVP (16), (17).

4.1 Case where f even and only f 6= 0

Now ui, i 6= n is also the solution of the wave equation except its initial data is

ui(., t=0) = fi, uit(., t=0) = 0 .

Further, fi, i 6= n is also even in xn because f is. Hence, Proposition 1 applied to ui gives∫ T

0

∫
H
|ui|2(p, t) dSp dt ≤ C‖fi‖2

0, i 6= n . (47)

Since un = 0 on H (u is even in xn), using (42) and (47), we obtain (18) for the case where only f
is non-zero.

4.2 Case where g even and only g 6= 0

So u(x, t) is the solution of the IVP

�u = 0, on Rn × [0, T ]

u(., t=0) = 0, ut(., t=0) = g

where g is assumed to be even and supported in |xn| ≥ δ. Define w = ut. Then w satisfies the
wave equation and further the IC for w are

w(., t=0) = ut(., t=0) = g, wt(., t=0) = utt(., t=0) = ∆u(., t=0) = 0 .

Hence Proposition 1 applied to this w gives us∫ T

0

∫
H
|ut(p, t)|2 dSp dt ≤ C‖g‖2

0 .

Since g is even, then u is even in xn and hence un = 0 on H × [0,∞). So the above inequality
combined with (41) allows us to estimate ui, i 6= n, and hence proves (18) in the special case under
consideration.

4.3 Case where F is even and only F 6= 0

So u(x, t) is the solution of
�u = F (x, t) x ∈ Rn, t ∈ [0, T ]

u(., t=0) = 0, ut(., t=0) = 0 .
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where F (x, t) is even in xn and F (., t) is supported in |xn| ≥ δ for all t ∈ [0, T ]. Then ut is the
solution of the IVP

�ut = Ft(x, t) x ∈ Rn, t ∈ [0, T ]

ut(., t=0) = 0, (ut)t(., t=0) = F (., t=0) .

One may verify that

ut(x, t) =
∫ t

0
w(x, t; s) ds (48)

where w(x, t; s), t ≥ s ≥ 0, is the solution of the IVP

�x,tw = 0 x ∈ Rn, t ∈ [s, T ],

w(., s; s) = F (., s), wt(., s; s) = 0 .

Note that F (., s) is even in xn and supported in |xn| ≥ δ. Hence Proposition 1 applied to w(x, t; s)
gives us ∫ T

s

∫
H
|w(p, t; s)|2 dSp dt ≤ T − s

2δ
‖F (., s)‖2

0 ≤
T

2δ
‖F (., s)‖2

0 . (49)

Hence from (48), the Cauchy-Schwartz inequality, and (49)∫
H

∫ T

0
|ut(p, t)|2 dt dSp =

∫
H

∫ T

0

∣∣∣∣∫ t

0
w(p, t; s) ds

∣∣∣∣2 dt dSp

≤
∫

H

∫ T

0
t

∫ t

0
|w(p, t; s)|2 ds dt dSp

≤ T

∫
H

∫ T

0

∫ t

0
|w(p, t; s)|2 ds dt dSp

= T 2

∫
H

∫ T

0

∫ T

s
|w(p, t; s)|2 dt ds dSp

≤ T 3

2δ

∫ T

0
‖F (., s)‖2

0 ds .

So we have estimated the ut term in the LHS of (18); further un is zero on H × [0, T ]. Hence, using
(41), we may estimate all the terms on the LHS of (18) thus proving Theorem 4.
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