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Abstract

Let B represent the ball of radius ρ in Rn and S its boundary; consider the map
M : C∞

0 (B) → C∞(S × [0,∞)) where

(Mf)(p, r) =
1

ωn−1

∫
|θ|=1

f(p + rθ) dθ

represents the mean value of f on a sphere of radius r centered at p. We summarize
and discuss the results concerning the injectivity of M, the characterization of the
range of M, and the inversion of M. There is a close connection between mean values
over spheres and solutions of initial value problems for the wave equation. We also
summarize the results for the corresponding wave equation problem.
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1 Introduction

Recovering a function from its mean values over a family of spheres has a long history. John
in [22] studied the case when the centers of the spheres are restricted to a plane; a very
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nice analysis of this problem was done by Bukhgeim and Kardakov in [9] and additional
results are available in [13], [7] and [33]. Cormack and Quinto in [10] and Yagle in [37]
studied the recovery of f from the mean values of f over spheres passing through a fixed
point. The problem of inverting the spherical means transform restricted to the variety of
spheres tangent to a hypersurface was approached by Goncharov in [20] using techniques
from D-module theory. A more detailed study of this problem can be found in the book [30]
by Palamodov. Recovering a function from its mean values over general families of surfaces
has also received a lot of attention and we direct the interested reader to [30] and [23].

Motivated by applications in thermoacoustic tomography, the problem of recovering a
function, supported in a ball, from its mean values over spheres centered on the boundary
of the ball, has attracted considerable attention in the last decade with results appearing
in various articles over this decade. Our goal in this article is to summarize and discuss
the main theoretical results for this problem. We leave it to more knowledgeable people to
review the results for the important issue of the design and implementation of numerical
schemes for the inversion.

For any integer n > 1 and positive real number ρ, Bρ will denote the origin centered
open ball of radius ρ in Rn and Sρ will denote its boundary; also ∂n will denote the (outward
pointing) normal derivative for a region. Let C∞

0 (Bρ) denote the set of smooth functions on
Rn with support in Bρ. Let C̃(Sρ × [0,∞)) denote the set of smooth functions F (p, t) on
Sρ × [0,∞) which are zero to infinite order in t at t = 0. Define the mean value operator

M : C∞
0 (Bρ) → C̃(Sρ × [0,∞))

(Mf)(p, t) =
1

ωn−1

∫
|θ|=1

f(p+ tθ) dθ, p ∈ Sρ, t ≥ 0,

where ωn−1 represents the surface area of the unit sphere in Rn. So (Mf)(p, t) represents
the mean value of f on a sphere of radius t centered at p ∈ Sρ. The definition makes sense
even if t is negative and (Mf)(p, t) is an even function of t with this extended definition.

For any f ∈ C∞
0 (Bρ), let v(x, t) be the solution of the following initial value problem for

the wave equation -

vtt −∆v = 0 (x, t) ∈ Rn ×R (1)

v(x, 0) = 0, vt(x, 0) = f(x), x ∈ Rn. (2)

Since this problem is well posed, the solution is smooth, and v is odd in t. We define a map

V : C∞
0 (Bρ) → C̃(Sρ × [0,∞))

(Vf)(p, t) = v(p, t), p ∈ Sρ, t ≥ 0.

In this article, we summarize the results regarding the injectivity, inversion and the range
of M and V . In the sections on inversion formulas, we have not attempted to state the
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minimum regularity of f required for the formulas to be valid. We have proved the inversion
formulas for the case when f is C∞ but the derivations clearly go through for less regular
f . Also, the trace identities in [17], which are equivalent to the inversion formulas, suggest
a much weaker regularity requirement on f for the inversion formulas to be valid.

M and V are closely related and results for one will imply results for the other. In fact
from page 682 in [11] we have

(Vf)(p, t) = v(p, t) =
1

(n− 2)!

(
∂

∂t

)n−2 ∫ t

0

(t2 − r2)(n−3)/2r (Mf)(p, r) dr. (3)

From (3) it is clear that knowledge of (Mf)(p, t) on a subset Γ × [0, T ] of Sρ × R will
determine (Vf)(p, t) on Γ× [0, T ] (and vice versa). Hence, to a large extent, the uniqueness
results for M and V are identical. The injectivity of M and V are consequences of several
more general results about solutions of the wave equation; we state one of them.

Theorem 1 (Injectivity). Suppose Γ is a relatively open subset of Sρ, T > 2ρ, f ∈ C∞
0 (Bρ)

and v is the solution of (1), (2). If v(p, t) is zero on Γ× [0, T ] then f = 0.

Theorem 1, for T = ∞ is a consequence of a general result in [3] about injectivity sets for
solutions of the wave equation - see also [26] and [4]. Theorem 1 was proved in [18] for T = ∞
(for any strictly convex domain) but the proof goes through for any T more than the diameter
of the domain. [18] has another uniqueness theorem which asserts that f ∈ C∞

0 (Bρ) may
be recovered from a knowledge of (Mf)(p, t) or (Vf)(p, t) for all (p, t) ∈ Sρ × [0, ρ] (instead
of [0, 2ρ]). There are many interesting results regarding injectivity sets for solutions of the
wave equation and [6] is an excellent reference for these results.

Norton in [27] derived an inversion formula for M, for the n = 2 case, involving a
series expansion in Bessel functions. Norton and Linzer in [28] give an inversion formula for
the n = 3 case for M and hence for V , again, as a series expansion in spherical harmonics.
Inversion formulas for M and V which do not involve series but are instead given as integrals
(and are of back projection type) were derived in [18] for all odd n and in [15] for all even n.
Kunyansky in [14] has also derived an inversion formula of back projection type for M, valid
for all n > 1, and the formula seems quite different from the inversion formulas in [18] and
[15]. For the n = 3 case, in [36], Xu and Wang give another inversion formula of the back
projection type (Kunyansky’s formula is equivalent to theirs for n = 3), and in [19] a formula
is stated to recover a function f from traces of the normal derivative ∂nv on Sρ × [0, 2ρ].

Some necessary conditions for the ranges of M and V are present in [24], [25], [2] (also
see [8]) and were explicitly formulated in [31] for n = 3. When n = 2, the range of M was
characterized in [5]; for odd n, the range of V (and implicitly the range of M - see section
4.3) was characterized in [16]. Guided by the results and some of the techniques in [5] and

3



[16], the range of M was explicitly characterized for all n in [1]. The explicit characterization
of the range of V , for even n, is still an open question.

We define the operator

D : C̃(Sρ × [0,∞)) → C̃(Sρ × [0,∞))

(DF )(p, t) =

(
1

2t

∂

∂t

)
F (p, t), p ∈ Sρ, t ≥ 0.

Relations more useful than (3) are (see page 682 in [11] and page 80 in [12])

(n odd) (Vf)(p, t) = v(p, t) =

√
π

2Γ(n/2)
D(n−3)/2tn−2(Mf)(p, t), (4)

(n even) (Vf)(p, t) = v(p, t) =
1

Γ(n/2)
D(n−2)/2

∫ t

0

rn−1(Mf)(p, r)√
t2 − r2

dr. (5)

Because of the relationship between V andM, it will be convenient to defineN = tn−2M,
that is

N : C∞
0 (Bρ) → C̃(Sρ × [0,∞))

(N f)(p, t) = tn−2(Mf)(p, t), p ∈ Sρ, t ≥ 0

whose formal L2 adjoint (see [18]) is

N ∗ : C̃(Sρ × [0,∞)) → C∞(Rn)

(N ∗F )(x) =
1

ωn−1

∫
|p|=ρ

F (p, |p− x|)
|p− x|

dSp.

Also, from chapter 4 in [34] we know that L2(S1) has an orthonormal basis {φm(.)}∞m=1

consisting of homogeneous harmonic polynomials - let k(m) be the degree of homogeneity of
φm(.).

2 Results for M

2.1 Inversion

The inversion formulas are different for the odd and even n cases and we state them sepa-
rately.
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Theorem 2 (Inversion for odd n). If n > 1 is odd and f ∈ C∞
0 (Bρ), then

f(x) =
cn
ρ

(N ∗ tD(n−3)/2 t−1 ∂2
t tD

(n−3)/2 tn−2Mf)(x), x ∈ Bρ,

f(x) =
cn
ρ

(N ∗ tD(n−3)/2 t−1 ∂t t ∂tD
(n−3)/2 tn−2Mf)(x), x ∈ Bρ,

f(x) =
cn
ρ

∆x (N ∗ tDn−3 tn−2Mf)(x), x ∈ Bρ,

where cn = (−1)(n−1)/2 π
2Γ(n/2)2

.

These were derived in [18] by an explicit computation when n = 3 and then the higher
n cases were deduced by the use of spherical harmonic expansions. Corollary 3.5 in [21]
discusses, for n = 3, some situations when the above inversion formulas are true for less
smoother f .

When n = 3 another interesting inversion formula was derived by Xu and Wang in [36].
A different derivation, based on the inversion formulas in Theorem 2, is given in subsection
4.1.

Theorem 3 (Inversion for n = 3). If n = 3 and f ∈ C∞
0 (Bρ) then

f(x) =
1

2πρ
∇x ·

∫
|p|=ρ

p
(∂t tMf)(p, |x− p|)

|x− p|
dSp, x ∈ Bρ.

When n is even, the inversion formulas are more complicated. For the odd n case,
inversion requires an integration only over the surface Sρ (but uses the values of Mf on
Sρ × [0, 2ρ]) where as even dimensional inversion formulas require an integration over Sρ ×
[0, 2ρ] and with a kernel different from the one used for the odd dimensional case.

Theorem 4 (Inversion for even n). If n is even and f ∈ C∞
0 (Bρ) then for all x ∈ Bρ

f(x) =
1

cnρ
∆x

∫
|p|=ρ

∫ 2ρ

0

log
∣∣t2 − |x− p|2

∣∣ (
tDn−2tn−2Mf

)
(p, t) dt dSp,

f(x) =
2

cnρ

∫
|p|=ρ

∫ 2ρ

0

log
∣∣t2 − |x− p|2

∣∣ (
tDn−1tn−1∂tMf

)
(p, t) dt dSp,

where
cn = (−1)(n−2)/2 2((n− 2)/2)! πn/2 = (−1)(n−2)/2 [((n− 2)/2)!]2 ωn−1.

These formulas may be simplified a little when n = 2.
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Theorem 5 (Inversion for n = 2). Suppose n = 2 and f ∈ C∞
0 (Bρ) and, for t < 0,

redefine (Mf)(p, t) to be an odd function of t. Then for all x ∈ Bρ

f(x) =
1

2πρ

∫
|p|=ρ

∫ 2ρ

−2ρ

(t ∂tMf)(p, t)

|x− p| − t
dt dsp,

f(x) =
1

2πρ

∫
|p|=ρ

|x− p|
∫ 2ρ

−2ρ

(∂tMf)(p, t)

|x− p| − t
dt dsp,

where the inner integrals are to be computed as principal values.

Theorems 4 and 5 were proved in [15] where first Theorem 4 was proved for n = 2 via
an integral identity, the higher n case was proved by a reduction using a spherical harmonic
expansion, and Theorem 5 was derived from Theorem 4.

Kunyansky in [14] has derived an inversion formula for M valid for all n > 1. Let
J(t) = t(2−n)/2J(n−2)/2(t) and N(t) = t(2−n)/2N(n−2)/2(t) where J(n−2)/2(t) and N(n−2)/2(t) are

the Bessel and Neumann functions of order (n− 2)/2. For any function F ∈ C̃(Sρ × [0,∞))
which is zero for large t, define

(LF )(p, t) =

∫ ∞

0

s2n−3

(
N(st)

∫ 2ρ

0

J(st′) t′n−1 F (p, t′) dt′ − J(st)

∫ 2ρ

0

N(st′) t′n−1 F (p, t′) dt′
)
ds.

Theorem 6 (Inversion for all n > 1). Suppose n > 1 and f ∈ C∞
0 (Bρ). Then

f(x) =
1

4(2π)n−1ρ
∇x ·

∫
|p|=ρ

p (LMf)(p, |x− p|) dSp, for all x ∈ Bρ.

2.2 Range descriptions

For any f in C∞
0 (Bρ), let F (x, t) be the mean value of f on a sphere of radius t, centered at

x, that is

F (x, t) =
1

ωn−1

∫
|θ|=1

f(x+ tθ) dθ, (x, t) ∈ Rn ×R.

Then Mf is the restriction of F (x, t) to Sρ × [0,∞). It is well known (see [11]) that F (x, t)
satisfies the Euler-Poisson-Darboux equation

Ftt +
n− 1

t
Ft = ∆xF, x ∈ Rn, t > 0.

Also, F (x, 0) = f(x), and because of the support of f , we have F (x, t) is zero for t ≥ 2ρ.
Finally, F (x, t) is even in t so Ft(x, 0) = 0 on Rn. These properties suggest the following
inversion scheme for M.
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For any function F (p, t) ∈ C̃(Sρ × [0,∞)) with F (., t) = 0 for t ≥ 2ρ, let u(x, t) be the
solution of the backward initial boundary value problem

utt +
n− 1

t
ut = ∆xu, (x, t) ∈ Bρ × (0, 2ρ], (6)

u(x, 2ρ) = 0, ut(x, 2ρ) = 0, x ∈ Bρ, (7)

u(x, t) = F (x, t), (x, t) ∈ Sρ × (0, 2ρ]. (8)

Since the problem is well posed, there is a unique smooth solution of (6)-(8) in Bρ × (0, 2ρ].

If F (p, t) = (Mf)(p, t) for some f ∈ C∞
0 (Bρ) then clearly F (x, t) - the mean value of

f for (x, t) ∈ Rn × R - is the solution of (6)-(8), and F (x, 0) = f(x) for x ∈ Bρ. Also
Ft(x, 0) = 0 for x ∈ Bρ because F (x, t) is even in t - this simple observation turns out to be
the key condition in the characterization of the range of M.

For a general F ∈ C̃(Sρ × [0,∞)), if u(x, t) is the solution of (6)-(8) then limt→0+ ut(x, 0)
may not be zero for x ∈ Bρ but it is zero if F is in the range of M. The surprising result is
that this condition, combined with a moment condition (not needed when n is odd), is also
sufficient for F to be in the range of M. A result similar to this was proved for the operator
V , for odd n, in [16]. This, combined with a range characterization of M in [5] for n = 2
and an observation in [31], suggested some of the tools and motivated the characterization
of the range of M for all n > 1 in [1].

Theorem 7 (Range description for odd n). Suppose n > 1 is an odd integer. A
function F (p, t) ∈ C̃(Sρ × [0,∞)) is in the range of M iff F (., t) = 0 for t ≥ 2ρ and one of
the following two conditions is satisfied.

1. For any Dirichlet eigenfunction ψ(x) of the Laplacian on Bρ,

lim
t→0+

∫
Bρ

ut(x, t)ψ(x) dx = 0.

2. F̂m(τ) = 0 for every m = 1, 2, · · · and every non-zero root τ of J(n+2k(m)−2)/2(ρτ) = 0,
where

F̂m(τ) =

∫ 2ρ

0

∫
|θ|=1

F (ρθ, t) tn/2 Jn/2−1(τt)φm(θ) dθ dt

represents the Hankel transform of the mth coefficient in the spherical harmonic ex-
pansion of F .

Functions in the range of M satisfy a moment condition observed by Patch for n = 3
(see [31]). When n is odd this condition is indirectly implied by the conditions in Theorem 7.
When n is even, it is not known whether the moment condition is implied by the conditions
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in Theorem 7 though it is believed that the moment condition is not implied. We state the
moment condition in a form equivalent to the one stated in [31] and [1].

A function F (p, t) ∈ C̃(Sρ × [0,∞)) which is zero for t ≥ 2ρ, is said to satisfy the
moment condition if ∫ 2ρ

0

∫
|θ|=1

t2l+n−1φm(θ)F (ρθ, t) dθ dt = 0 (9)

for all m = 1, 2, · · · and all non-negative integers l strictly less than k(m)/2.

Theorem 8 (Range description for even n). Suppose n is an even integer. A function
F (p, t) ∈ C̃(Sρ × [0,∞)) is in the range of M iff F (., t) = 0 for t ≥ 2ρ, F satisfies the
moment condition, and F satisfies one of the two conditions in Theorem 7.

Palamodov in [29] has given an interesting analysis of the range of M using the theory of
Fourier Integral Operators (FIO) - see Corollary 8.1 in [29]. Suppose K is a compact subset
of the open ball Bρ and f ∈ C∞

0 (Bρ) has support in K. Then for any (p, t) ∈ Sρ × (0,∞),

(Mf)(p, t) =
1

ωn−1 tn−1

∫
Rn

f(x) δ(t− |p− x|) dx (10)

may be written as a FIO; note that because f is supported in K b Bρ, (Mf)(p, t) = 0 for t
near zero. From the L2 theory of FIO, the fact that M∗M is a pseudodifferential operator,
and the injectivity of M, one may obtain an estimate

‖f‖Hα ≤ C1,α,K‖Mf‖Hα+(n−1)/2 ≤ C2,α,K‖f‖Hα

for all f ∈ C∞
0 (Bρ) with support in K and for all real α; here Hα represents the Sobolev

norm. This proves that for M defined on functions in Hα(Bρ) with support in K, the range
is a closed subset of Hα+(n−1)/2(Sρ × (0,∞)). Hence the range of M will be the orthogonal
complement of the kernel of M∗.

From (10), for any smooth function F (p, t) on Sρ × (0,∞) supported away from t = 0,
we have

(M∗F )(x) =
1

ωn−1

∫
|p|=ρ

∫ ∞

0

F (p, t)

tn−1
δ(t−|p−x|) dt dSp =

1

ωn−1

∫
|p|=ρ

F (p, |p− x|)
|p− x|n−1

dSp, x ∈ K.

This motivates the following result of Palamodov.

Theorem 9 (Range characterization). Suppose n > 1, α a real number, and K is a
compact subset of the open ball Bρ. Let M be restricted to functions in Hα(Bρ) with support
in K. Then the range of M is the set of functions in Hα+(n−1)/2(Sρ × (0,∞)) which are
supported away from t = 0 and which are orthogonal (in the L2(Sρ × (0,∞)) sense) to all
compactly supported functions F ∈ C∞(Sρ× (0,∞)) for which (M∗F )(x) = 0 for all x ∈ K.
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3 Results for V

3.1 Inversion

For n odd, the inversion formulas for V are closely related to the inversion formulas for M
because of the fairly simple relationship between V and M given in (4).

Theorem 10 (Inversion for odd n). If n > 1 is odd and f ∈ C∞
0 (Bρ), then

f(x) = cn (N ∗ D(n−3)/2 t−1 ∂2
t tVf)(x), x ∈ Bρ,

f(x) = cn (N ∗ tD(n−3)/2 t−1 ∂t t ∂t Vf)(x), x ∈ Bρ,

f(x) = cn ∆x (N ∗ tD(n−3)/2Vf)(x), x ∈ Bρ

where cn = (−1)(n−1)/2√π
ρ Γ(n/2)

.

For n = 3, the inversion formula of Theorem 3 may be expressed as the following result.

Theorem 11 (Inversion for n = 3). If n = 3 and f ∈ C∞
0 (Bρ) then

f(x) =
1

2πρ
∇x ·

∫
|p|=ρ

p
(∂tVf)(p, |x− p|)

|x− p|
dSp.

The above results recovered the initial data, f , from the trace of the solution v, of (1),
(2), on Sρ × [0, 2ρ]. [19] announced an interesting formula, in the n = 3 case, for recovering
f from the trace of the normal derivative of v on Sρ× [0, 2ρ]. We give a proof of this formula
in section 4.1.

Theorem 12 (Inversion for n = 3 from Neumann traces). If n = 3, f ∈ C∞
0 (Bρ) and

v(x, t) is the solution of (1), (2) then

|x| f(x) = − ρ

2π

∫ ρ

|x|

∫
|p|=ρ

(∂2
t ∂nv)(p, |σθ − p|) dSp dσ, ∀x ∈ Bρ, x 6= 0.

Here θ = x/|x| and ∂n stands for the (outward pointing) normal derivative.

When n is even, the inversion formulas take a slightly different form and because of the
more complicated nature of the relationship between V and M - see (5) - the connection
between the inversion formulas for V and M is not very direct. We state inversion formulas
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(derived in [15]) coming from trace identities for the wave equation. If fi, i = 1, 2 are in
C∞

0 (Bρ) and vi is the solution of (1), (2) with f = fi then∫
Bρ

f1(x) f2(x) dx =
−2

ρ

∫
Sρ

∫ ∞

0

tv1tt(p, t) v2(p, t) dt dSp =
2

ρ

∫
Sρ

∫ ∞

0

tv1t(p, t) v2t(p, t) dt dSp.

These lead to inversion formulas using V∗ - the formal L2 adjoint of V - where (see subsection
4.4)

(V∗F )(x) =
(−1)(n−2)/2

ωn−1 Γ(n/2)

∫
|p|=ρ

∫ ∞

|x−p|

1√
t2 − |x− p|2

(tD(n−2)/2t−1)(F (p, t)) dt dSp

for any F ∈ C̃(Sρ × [0,∞)) with adequate decay at infinity.

Theorem 13 (Inversion for even n). If n is even and f ∈ C∞
0 (Bρ), then

f(x) =
−2

ρ
(V∗t ∂2

t Vf)(x), x ∈ Bρ

f(x) =
−2

ρ
(V∗∂t t ∂t Vf)(x), x ∈ Bρ.

This formula is somewhat unsatisfactory since the computation of V∗ needs an integration
over an infinite interval. However, one may recover (Mf)(p, t) for (p, t) ∈ Sρ × [0, 2ρ] from
(Vf)(p, t) for (p, t) ∈ Sρ × [0, 2ρ] (see subsection 4.3), hence one may invert V using the
inversion formulas for M using only finite integration in t. We state such a formula for
n = 2 (obtained in [15]) and we leave it to reader to obtain a formula for even n > 2 using
the results in subsection 4.3.

Theorem 14 (Inversion for n = 2). If n = 2 and f ∈ C∞
0 (Bρ), then

f(x) =
1

ρπ2
∆x

∫
|p|=ρ

∫ 2ρ

0

(∂tVf)(p, t)K(t, |x− p|) dt dsp

where

K(t, s) =

∫ 2ρ

t

r√
r2 − t2

log |r2 − s2| dr.

3.2 Range descriptions

If n > 1 is odd, f ∈ C∞
0 (Bρ), and v(x, t) is the solution of (1), (2), then v(x, t) = 0 for

x ∈ Bρ if |t| ≥ 2ρ; of course the restriction of v to Sρ × [0,∞) is Vf . This suggests an
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inversion scheme for V . For any F ∈ C̃(Sρ × [0,∞)) which is zero for t ≥ 2ρ, let q(x, t) be
the solution of the initial boundary value problem

qtt −∆xq = 0 (x, t) ∈ Bρ × [0, 2ρ], (11)

q(x, 2ρ) = 0, qt(x, 2ρ) = 0 x ∈ Bρ, (12)

q(x, t) = F (x, t) (x, t) ∈ Sρ × [0, 2ρ]. (13)

If F = Vf for some f ∈ C∞
0 (Bρ) then one observes that q = v in Bρ×[0, T ]; hence q(x, 0) = 0

for x ∈ Bρ. This condition turns out, also, to be sufficient for F to be in the range of V . In
[16], we proved the following theorem.

Theorem 15 (Range description for odd n). Suppose n > 1 is an odd integer. A
function F (p, t) ∈ C̃(Sρ × [0,∞)) is in the range of V iff F (., t) = 0 for t ≥ 2ρ and one of
the following three conditions is satisfied.

1. q(x, 0) = 0 for all x ∈ Bρ.

2. F̂m(τ) = 0 for every m = 1, 2, · · · and every positive root τ of J(n+2k(m)−2)/2(τρ) = 0,
where

F̂m(τ) =

∫ 2ρ

0

∫
|θ|=1

F (ρθ, t)φm(θ) sin(τt) dθ dt

represents the sine transform of the mth coefficient in the spherical harmonic expansion
of F .

3. F is in the kernel of N ∗(D∗)(n−3)/2∂t or equivalently in the kernel of N ∗tD(n−1)/2 (see
Theorem 3 in [16]).

The range descriptions for V for even n are not known in any nice explicit manner.
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4 Proofs and other details

4.1 Proof of Theorem 11

We give a proof of Theorem 11, different from the one in [36]. When n = 3, the inversion
formulas of Theorem 10 take the form

f(x) =
−1

2πρ

∫
|p|=ρ

∂2
t (tv(p, t))t=|x−p|

|x− p|
dSp, (14)

f(x) =
−1

2πρ

∫
|p|=ρ

∂t(tvt(p, t))t=|x−p|

|x− p|
dSp, (15)

f(x) =
−1

2πρ
∆x

∫
|p|=ρ

v(p, |x− p|) dSp (16)

for every x ∈ Bρ. Taking the difference of (14), (15), we obtain

0 =

∫
|p|=ρ

vt(p, |x− p|)
|x− p|

dSp, x ∈ Bρ. (17)

Then from (16), for any x ∈ Bρ, we have

f(x) =
−1

2πρ
∇ ·

∫
|p|=ρ

∇x (v(p, |x− p|)) dSp =
−1

2πρ
∇ ·

∫
|p|=ρ

vt(p, |x− p|) x− p

|x− p|
dSp

=
−1

2πρ
∇ ·

(
x

∫
|p|=ρ

vt(p, |x− p|)
|x− p|

dSp −
∫
|p|=ρ

p
vt(p, |x− p|)
|x− p|

dSp

)
=

1

2πρ
∇ ·

∫
|p|=ρ

p
vt(p, |x− p|)
|x− p|

dSp, using (17).

4.2 Proof of Theorem 12

From (15) and (17), for every x ∈ Bρ, we have

f(x) =
−1

2πρ

∫
|p|=ρ

vtt(p, |x− p|) dSp (18)

=
−ρ
2π

∫
|θ|=1

vtt(ρθ, |x− ρθ|) dθ. (19)

12



Applying ρ2 ∂
∂ρ

yields

0 = ρ2

∫
|θ|=1

vtt(ρθ, |x− ρθ|) dθ + ρ3

∫
|θ|=1

(∂nvtt)(ρθ, |x− ρθ|) dθ

+ ρ3

∫
|θ|=1

vttt(ρθ, |x− ρθ|) 〈x− ρθ,−θ〉
|x− ρθ|

dθ.

Using (19), this may be rewritten as

0 = −2πρf(x) + ρ

∫
|p|=ρ

(∂nvtt)(p, |x− p|) dSp −
∫
|p|=ρ

vttt(p|x− p|)〈x− p, p〉
|x− p|

dSp. (20)

By differentiation under the integral in (18), we also have the relation

−2πρx · ∇f(x) =

∫
|p|=ρ

vttt(p, |x− p|)〈x, x− p〉
|x− p|

dSp. (21)

Subtracting (20) from (21) and noting that 〈x, x− p〉+ 〈x− p, p〉 = |x|2 − |p|2 gives

− 2πρx · ∇f(x) = 2πρf(x)− ρ

∫
|p|=ρ

(∂nvtt)(p, |x− p|) dSp

+ (|x|2 − ρ2)

∫
|p|=ρ

vttt(p, |x− p|)
|x− p|

dSp. (22)

Now w = vtt satisfies (1) with initial conditions w(·, t = 0) = 0 and wt(·, t = 0) = ∆f and so
by (17) satisfies

0 =

∫
|p|=ρ

vttt(p, |x− p|)
|x− p|

dSp.

Thus the last term in (22) is zero, and the equation may be rewritten as

x · ∇f(x) + f(x) =
ρ

2π

∫
|p|=ρ

(∂nvtt)(p, |x− p|) dSp.

This may be rewritten as

∂

∂r
(rf(rθ)) =

ρ

2π

∫
|p|=ρ

(∂nvtt)(p, |rθ − p|) dSp.

Integrating this over [r, ρ] and noting the support of f we have

rf(rθ) = − ρ

2π

∫ ρ

r

∫
|p|=ρ

(∂nvtt)(p, |σθ − p|) dSp dσ

which may be rewritten as

|x| f(x) = − ρ

2π

∫ ρ

|x|

∫
|p|=ρ

(∂2
t ∂nv)(p, |σθ − p|) dSp dσ, ∀x ∈ Bρ, x 6= 0.

Here θ = x/|x|.
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4.3 From Vf to Mf

In this subsection we

• suggest a relationship between the ranges of V and M for odd n;

• show, for even n, how Mf may be recovered from Vf on Sρ × [0, 2ρ], for any f ∈
C∞

0 (Bρ).

The map D : C̃(Sρ × [0,∞)) → C̃(Sρ × [0,∞)) is injective and its range is the subset of
C̃(Sρ × [0,∞)) consisting of functions F for which

∫∞
0
F (p, t) dt = 0 for all p ∈ Sρ. Further,

D maps functions which are zero for t > 2ρ to such functions. Define the operator I for any
smooth function on Sρ ×R via

(IF )(p, t) = 2

∫ t

0

sF (p, s) ds.

Then (IDF )(p, t) = F (p, t) for any smooth function F (p, t) on Sρ × R with F (p, 0) = 0 for
all p ∈ Sρ. So observing the relationship (4), one may obtain a relationship between the
ranges of V and M for odd n.

We now show, for even n, how to recover Mf on Sρ × [0, 2ρ] from a knowledge of Vf on
Sρ × [0, 2ρ]. For f ∈ C∞

0 (Bρ), and any p ∈ Sρ, (Mf)(p, t) is smooth and vanishes to infinite
order in t at t = 0, for p ∈ S, and hence so does the Abel transform of tn−2(Mf)(p, t). Thus,
from (5),

Γ(n/2)I(n−2)/2(Vf)(p, t) =

∫ t

0

rn−1

√
t2 − r2

(Mf)(p, r) dr.

The inverse of the Abel operator on the right is well-known. Indeed,

π

2

∫ r

0

σn−1Mf(p, σ) dσ, =

∫ r

0

1√
r2 − t2

∫ t

0

1√
t2 − σ2

σn−1Mf(p, σ) dσ dt

= Γ(n/2)

∫ r

0

1√
r2 − t2

I(n−2)/2(Vf)(p, t) dt

which implies

(Mf)(p, r) =
2Γ(n/2)

π rn−1

∂

∂r

∫ r

0

1√
r2 − t2

I(n−2)/2(Vf)(p, t) dt.

4.4 Computation of V∗ for even n

We note that the formal L2 adjoint of D is D∗ = −1

2

∂

∂t

1

t
and for any positive integer l,

(D∗)l = (−1)ltDlt−1.
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For even n, using (5), for F in the range of (D∗)(n−2)/2, we have

Γ(n/2) 〈Vf, F 〉 =

∫
Sρ

∫ ∞

0

F (p, t)D(n−2)/2
t

∫ t

0

rn−1

√
t2 − r2

(Mf)(p, r) dr dt dSp

=

∫
Sρ

∫ ∞

0

(D∗
t )

(n−2)/2F (p, t)

∫ t

0

rn−1

√
t2 − r2

(Mf)(p, r) dr dt dSp

=

∫
Sρ

∫ ∞

0

rn−1(Mf)(p, r)

∫ ∞

r

(t2 − r2)−1/2(D∗
t )

(n−2)/2F (p, t) dt dr dSp

=
1

ωn−1

∫
Sρ

∫
Rn

f(p+ y)

∫ ∞

|y|

1√
t2 − |y|2

(D∗
t )

(n−2)/2F (p, t) dt dy dSp

=
1

ωn−1

∫
Rn

f(x)

∫
Sρ

∫ ∞

|x−p|

1√
t2 − |x− p|2

(D∗
t )

(n−2)/2F (p, t) dt dSp dx.

Thus, for x ∈ Bρ,

(V∗F )(x) =
1

ωn−1 Γ(n/2)

∫
Sρ

∫ ∞

|x−p|

1√
t2 − |x− p|2

(D∗
t )

(n−2)/2F (p, t) dt dSp

=
(−1)(n−2)/2

ωn−1 Γ(n/2)

∫
Sρ

∫ ∞

|x−p|

1√
t2 − |x− p|2

(tDt
(n−2)/2t−1)(F (p, t)) dt dSp.

5 Open problems

We describe some open problems closely related to the ones considered in this article.

The characterization of the range of V when n is even is incomplete. While the ranges of
M and V are related and there is a complete characterization of the range of M for all n,
there isn’t a nice explicit characterization of the range of V for even n. Arguments similar
to those used in [29] for our Theorem 9 will probably lead to a characterization but they will
not be as explicit as the ones given in Theorem 8.

Sarah Patch has proposed an interesting question which remains open. Let Hρ be the
upper half of Bρ and let S ′ρ be the part of the boundary of Hρ which is in Sρ. If f is a
smooth function supported in Hρ then Patch proposed the recovery of f from (Mf)(p, t) for
(p, t) ∈ S ′ρ × [0,∞). Uniqueness follows from Theorem 1.

Suppose f and g are functions in C∞
0 (Bρ) and u(x, t) is the solution of the IVP

utt −∆xu = 0 (x, t) ∈ Rn ×R,

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ Rn.
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The problem of recovering f and g from the traces of u or ∂nu on Sρ × [0,∞) and a charac-
terization of the range of the map from (f, g) to traces are open problems. In particular, an
extension Theorem 12 to all n or to all odd n remains unsolved.
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vol. 98, Birkhäuser Verlag, Basel.

[31] Patch S K 2004 Thermoacoustic tomography - consistency conditions and the partial
scan problem, Physics in Medicine & Biology 49 No. 11, 2305-2315.

[32] Quinto E T 2006 Support theorems for the spherical Radon transform on manifolds,
Intl. Math. Res. Notices Article ID 67205, 1-17.

[33] Schuster T and Quinto E T 2005 On a regularization scheme for linear operators in
distribution spaces with an application to the spherical Radon transform, SIAM J. Appl.
Math. 65, no. 4, 1369-1387.

[34] Stein E M and Weiss G 1971 Introduction to Fourier analysis on euclidean spaces,
Princeton University Press, Princeton, NJ.

[35] Volchkov V V 1999 Injectivity sets for the radon transform over a sphere, Izvestiya
Math. 63, 481-493.

[36] Xu M and Wang L V 2005 Universal back-projection algorithm for photoacoustic com-
puted tomography, Physical Review E 71, 016706.

[37] Yagle A E 1992 Inversion of spherical means using geometric inversion and Radon
transforms, Inverse problems 8, 949-964.

18


