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Abstract

In this paper we present a method for deriving approximate inversion formulae for the
divergent beam x-ray transform in three-space when the source set is a curve. When the
source set is a planar convex curve, we obtain new approximate inversion formulae which
are quasi-local. Finally we compare these methods with existing convolution- backprojec-
tion algorithms for 3-D reconstruction.
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1. Introduction

Several authors have studied reconstruction algorithms for the divergent beam x-ray trans-
form in R3 when the set of sources comprises a curve. Feldkamp et. al. [FDK] have pre-
sented a reconstruction method for source set a plane circle, but acknowledge that their
formula is not the result of a rigorous development. Nonetheless, they obtain fairly good
reconstructions and their method has been adopted by other workers as well, e.g. Webb
et. al. [WSBH]. P. Grangeat [Gr] presents an approximate inversion formula using a new
relation between the divergent beam transform and the Radon transform. His method has
been implemented, but it appears that to compute the reconstruction at any point in space
requires the use of all the data. B. D. Smith [Sm] has shown that if a source curve satisfies
some strong geometric conditions, then there is an exact reconstruction formula in which
the reconstruction at some point x requires for each source γ only those line integrals over
lines through γ lying in the plane determined by γ, x, and the tangent to the curve at
γ. Unfortunately, as we show in an appendix, there are no bounded curves satisfying his
geometric hypotheses. When the source set is a circle, Smith also suggests an approximate
reconstruction method based on his full derivation. This approximate method inherits the
quasi- local nature of his exact formula. This approximate method coincides with that of
Feldkamp et. al., although that connection is not made in the paper by Smith.

In this paper we study a different class of approximate reconstruction formulae. For
certain space curves, these are mathematically exact, in that as the radius of the point
spread function tends to zero, the approximate reconstruction converges to the true func-
tion. For convex planar curves, we produce approximations which have nearly as good
localization properties as the methods of Feldkamp et. al. and B. D. Smith.

In section II, we present a formula, found first by P. Grangeat relating the divergent
beam transform and the Radon transform. We also review the method of deriving ap-
proximate inversion formulae for the Radon transform due to Leahy, Smith, Solmon, and
Wagner [LSSW]. In section III we show how the two results of section II may be combined
to provide an approximate inversion formula for the divergent beam x-ray transform with
sources on a Tuy-Kirillov curve. In section IV we show that for the more severely ill-posed
problem of 3-D reconstruction from sources lying on a plane curve a class of computa-
tionally tractable formulae arise from applying the methods of section III. In section V
we compare the algorithm of Feldkamp et. al. and those proposed in section IV. Both are
theoretically equivalent (although perhaps not in numerical implementation) to limited
data inversion for the 3-D Radon transform. In the appendix we show that no bounded
curve exists which satisfies the geometric hypotheses of B. Smith.

Notation: We will be concerned with reconstruction of a function f supported in a
bounded open set Ω in R3. We will usually take Ω to be the unit ball. Γ is a piecewise C1

curve lying outside of Ω. When h is a distribution and g lies in an appropriate space of
testing functions we may use ∫ hg for 〈h, g〉. We use the Fourier transform convention of

f̂(ξ) = (2π)
−n
2

∫
e−i〈x,ξ〉 f(x)dx.

The divergent beam x-ray transform of a function f on Rn in the direction θ ∈ Sn−1 is
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defined by

Df(a, θ) = Daf(θ) =

∞∫
0

f(a + tθ) dt.

The Radon transform of a function f in direction θ is defined by

Rf(t, θ) = Rθf(t) =
∫
〈x,θ〉=t

f(x)dx.

If η ∈ Sn−1 we denote by η⊥ the subspace of Rn orthogonal to η. We will use Eη to
denote the orthogonal projection on η⊥ and πη to denote the orthogonal projection on the
subspace spanned by η.

2. Review

Proposition 1.1. Suppose that f ∈ C1
0 (Ω), a ∈ R3, and θ ∈ S2. Then∫

S2
Daf(η) δ′(〈η, θ〉)dη = −(Rθf)′(〈a, θ〉). (1.1)

Proof. Choose spherical coordinates on the unit sphere so that ϕ is the polar angle
measured from direction θ and ω is longitude measured from any ray in θ⊥ ∩ S2. We
suppose also that a Cartesian frame is chosen so that the z-axis coincides with the ray
through θ. Then

∫
S2

Daf(η)δ′(〈η, θ〉)dη = −
∫ 2π

0

− ∂

∂ϕ
Daf

 cosωsinϕ
sinωsinϕ

cosϕ

∣∣∣∣∣
ϕ= π

2

dω

=
∫ 2π

0

∂

∂ϕ

∫ ∞

0

f(a + t

 cosωsinϕ
sinωsinϕ

cosϕ

)dt

∣∣∣∣∣
ϕ= π

2

dω

= −
∫ 2π

0

∫ ∞

0

fz(a + t

 cosω
sinω

0

) tdtdω

= −
∫ ∫

fz(a +

 x
y
0

) dxdy

= −(Rθf)′(〈a, θ〉).

We also use the approach to approximate reconstruction formulae emphasized by
K. T. Smith and coworkers. Let e be an approximate δ-function in Rn; that is, e is a
smooth function with integral equal to unity, and let eρ(x) = ρ−ne(x

ρ ). Then eρ → δ as ρ
tends to zero, with convergence as distributions. We shall also require that e, and thus eρ

2



be compactly supported. (Point spread functions which are not approximate δ-functions
are treated by Smith and Keinert in [SK].)

We shall need the following formula from Leahy, Smith, Solmon, and Wagner [LSSW]
(see also K. T. Smith [S]). If eρ is an approximate δ-function in Rn and R is the Radon
transform, then

eρ ∗ f(x) =
∫

Sn−1

∫ ∞

−∞
Rθf(t)kθ(〈x, θ〉 − t)dtdθ (1.3)

where

kθ(t) =
1
2
(2π)1−nΛn−1Rθe(t). (1.4)

Here Λ is the square root of the Laplacian on R1 defined via Fourier transform by

(Λg)∧(τ) = |τ |ĝ(τ). (1.5)

We shall need (1.3) and (1.4) for n=3.

3. Approximate Inversion for Kirillov-Tuy Curves

In an earlier paper [Fi], the author showed that the degree of ill-posedness for recon-
struction from divergent beam data for sources on a curve depends on geometric properties
of the curve. We recall that Γ is called a Kirillov-Tuy curve if every hyperplane which meets
Ω intersects Γ transversely in at least one point. In this section we use the approximate
inversion formula (1.3) and formula (1.2) relating the Radon transform and the divergent
beam x-ray transform to produce an approximate inversion formula for the divergent beam
transform when the source set is a Kirillov-Tuy curve.

We suppose throughout this section that Ω is the unit ball in R3, f ∈ C1
0 (Ω), and

that Γ is a Kirillov-Tuy curve lying in R3\Ω.
First we show that integration over S2×I can be pulled back to integration over S2×Γ.

Let π : Γ× S2 → R× S2 be given by π(γ, θ) = (〈γ, θ〉, θ). Now each point (t, θ) ∈ I × S2

determines a hyperplane, 〈x, θ〉 = t, which meets Γ transversely in at least one point. Let
γ0 be such a point. By the inverse function theorem, a neighborhood of (γ0, θ) is mapped
diffeomorphically onto a neighborhood of (t, θ) which we denote V(t,θ). The family of open
sets V(t,θ) provides an open cover of I × S2 which admits a locally finite refinement {Vj}
where each Vj is diffeomorphic to an open Uj in Γ × S2, the diffeomorphism given by
the restriction of π to Uj . Let {ϕj} be a partition of unity subordinate to {Vj} and let
κj = ϕj ◦ (π|Uj

). Let m(γ, θ) =
∑

j κj(γ, θ). Then for any integrable g on S2 × I

∫
S2

∫
I

g(t, θ) dθdt =
∫

S2

∫
Γ

g ◦ π J(γ, θ) dγdθ (3.1)

where J(γ, θ) = m(γ, θ)|〈γ′, θ〉|, γ′ being the unit tangent to Γ at γ.
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Theorem 3.2. Let e be an approximate δ-function. Then for x ∈ Ω

e ∗ f(x) =
1

8π2

∫
S2

∫
Γ

Dγf(η)K(η, x, γ, γ′) dγdη (3.3)

where

K(η, x, γ, γ′) =
∫

S2
J(θ, γ)(Rθe)′(〈x− γ, θ〉)δ′(〈η, θ〉) dθ. (3.4)

Proof. By (1.3) and (1.4)

e ∗ f(x) = − 1
8π2

∫
S2

∫
R

Rθf(t)(Rθe)′′(〈x, θ〉 − t) dtdθ

= − 1
8π2

∫
S2

∫
R

(Rθf)′(t)(Rθe)′(〈x, θ〉 − t) dtdθ.

(3.5)

Since
supp

(
(Rθf)′

)
⊆ supp(Rθf) ⊆ πθ(supp(f)) ⊆ πθ(Ω) = [−1, 1]

we have, also using (3.1),

e ∗ f(x) = − 1
8π2

∫
S2

∫
I

(Rθf)′(t)(Rθe)′(〈x, θ〉 − t) dtdθ

= − 1
8π2

∫
S2

∫
Γ

(Rθf)′(〈γ, θ〉)(Rθe)′(〈x− γ, θ〉)J(γ, θ) dγdθ

=
1

8π2

∫
S2

∫
Γ

(∫
S2
Dγf(η)δ′(〈η, θ〉)dη

)
(Rθe)′(〈x− γ, θ〉)J(γ, θ〉)dγdθ

=
1

8π2

∫
S2

∫
Γ

Dγf(η)
∫

S2
(Rθe)′(〈x− γ, θ〉)J(γ, θ)δ′(〈η, θ〉) dθdγdη

using Fubini’s theorem and the self-adjointness of the operator with kernel δ′(〈η, θ〉).

It would be desirable for efficiency of computation if K(·, x, ·, ·) were to have small
support for each x. (If reconstruction were actually local, then K would be supported in
just those points (η, x, γ, γ′) for which x lies on the line through γ in direction η.) This
does not appear to be the case. Since K does not appear to be ”sparse” the computational
burden of implementing this formula would seem to be high. Reconstruction on a n3 lattice
from data sampled at O(n3) points would require O(n6) evaluations of K, each of which
would require an exact (or numerical) integration.
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4. Approximate Reconstruction From Plane Curves

Convex planar curves are clearly not Kirillov-Tuy curves, and for such curves the recon-
struction problem is strongly ill-posed [Fi]. Nevertheless, we show in this section that the
’approximate reconstruction’ obtained applying the method of the preceding section where
data is available (and ignoring or setting missing data to zero) has several computationally
desirable features.

We suppose that Γ is a plane convex curve in the x-y plane lying outside the unit
disk and that f and Ω are as in section 3. Let Iθ denote the orthogonal projection of Γ
on Rθ. For θ near the equatorial plane (x-y plane), I ⊂ Iθ, but as θ → ±e3, Iθ → [0].
We note that integration over

⋃
θ∈S2(Iθ × {θ}) may be pulled back to Γ× S2 in a fashion

analogous to (3.1). The convexity of Γ affords the additional simplification that, except
for a set of planes of measure zero, every plane wich meets Γ meets transversely in two
points. (Compare this with the discussion in the appendix about B. Smith’s condition.
The important difference is that this only holds for those planes which meet Γ.) Thus
we may take the function m(γ, θ) appearing in the definition of J(γ, θ) (immediately after
(3.1)) to be the constant function 1

2 . Recalling (3.5) we have

e ∗ f(x) = − 1
8π2

∫
S2

∫
R

(Rθf)′(t)(Rθe)′(〈x, θ〉 − t) dtdθ

= − 1
8π2

∫
S2

∫
Iθ

(Rθf)′(t)(Rθe)′(〈x, θ〉 − t) dtdθ

− 1
8π2

∫
S2

∫
R\Iθ

(Rθf)′(t)(Rθe)′(〈x, θ〉 − t) dtdθ

= Af(x) + Bf(x)

(4.1)

Af is computable from known information, whereas Bf can not be directly computed.
We now study the approximate reconstruction provided by Af . By the remarks preceding
(4.1) we have

Af(x) = − 1
16π2

∫
S2

∫
Γ

(Rθf)′(〈γ, θ〉)(Rθe)′(〈x− γ, θ〉)|〈γ′, θ〉| dγdθ

= − 1
16π2

∫
S2

∫
Γ

Dγf(η)
∫

S2
(Rθe)′(〈x− γ, θ〉)|〈γ′, θ〉|δ′(〈η, θ〉) dθdγdη

(4.2)

where the last step results from the same argument used to prove Theorem 3.2. Let h be
the reconstruction kernel in (4.2).

h(x, γ, γ′, η) =
∫

S2
(Rθe)′(〈x− γ, θ〉)|〈γ′, θ〉|δ′(〈η, θ〉) dθ (4.3)

Theorem 4.4. Let e = eρ be a radial approximate δ-function with support in the ball of
radius ρ centered at the origin. Then h(x, γ, γ′, ·) has support in the set of η obtained by
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intersecting the unit sphere with those planes parallel to γ′ whose distance from x − γ is
not greater than ρ.

Proof. The proof is computational. Let gρ = (Rθeρ)′. Since eρ is radial, Rθeρ is even
and thus gρ is odd and independent of θ. Carrying out the differentiation in (4.3)

h(x, γ, γ′, η) = −
∫

S2
∇η

[
gρ(〈x− γ, θ〉)|〈γ′, θ|

]
δ(〈η, θ〉) dθ

= −〈γ′, η〉
∫

S2
gρ(〈x− γ, θ〉) sgn(〈γ′, θ〉)δ(〈η, θ〉)dθ

− 〈x− γ, η〉
∫

S2
g′ρ(〈x− γ, θ〉)|〈γ′, θ〉|δ(〈η, θ〉)dθ

= −〈γ′, η〉
∫

S2∩η⊥
gρ(〈x− γ, ϕ〉)sgn(〈γ′, ϕ〉) dϕ

− 〈x− γ, η〉
∫

S2∩η⊥
g′ρ(〈x− γ, ϕ〉)|〈γ′, ϕ〉|dϕ

(4.5)

Let I denote the first integral on the right hand side of (4.5) and II the second. We will
simplify these integrals using angular coordinates in η⊥ measured from the rays containing
the orthogonal projections of γ′ and (x−γ). Since Γ is convex and exterior to Ω, it is clear
that no η for which Dγf(η) is non-zero can be parallel to γ′. If x− γ is parallel to η then
〈x− γ, ϕ〉 = 0 for all ϕ ∈ η⊥. In this case, since gρ is odd, gρ(0) = 0 and the first integral
vanishes, whereas the second evaluates to −4‖x− γ‖g′ρ(0)[1− 〈γ′, η〉2] 1

2 . In I, both terms
are odd in ϕ, so

I = 2
∫

H

gρ(〈x− γ, ϕ〉) dϕ

where H = (S2 ∩ η⊥) ∩ {〈γ′, ϕ〉 ≥ 0}. Let ν be the intersection of the line generated by
Eη(x− γ) with H, and let α0 be the acute angle between ν and Eηγ′. Then using that gρ

is odd, it is easy to show that H decomposes into two sectors, each subtending an angle
of π

2 − α0, which contribute equally to I and two sectors, each subtending an angle of α0,
whose contributions to I cancel one another.

I = 4sgn〈Eηγ′, Eη(x− γ)〉
∫ π

2−α0

0

gρ(b cosσ) dσ

where b = ‖Eη(x− γ)‖. To study II we use the evenness of the integrand to write

II = 2‖Eηγ′‖
∫

H

g′ρ(〈x− γ, ϕ〉)
∣∣〈 Eηγ′

‖Eηγ′‖
, ϕ

〉∣∣ dϕ

where H is now (S2 ∩η⊥)∩{〈Eη(x−γ, ϕ)〉 ≥ 0}. Now if ν = (cosα0, sinα0), α0 ∈ (−π
2 , π

2 )
is the point of intersection of H and the line generated by Eηγ′ we have

II = 2‖Eηγ′‖
∫ π

2

−π
2

g′ρ(b cosα) cos(α− α0) dα
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where again b = ‖Eη(x − γ)‖. Breaking the integral into pieces according to the sign of
cos(α − α0), using cosine addition, integrating one of the resulting terms, and observing
some cancellation of terms, there results

II = 4‖Eηγ′‖
{
cos(α0)

∫ π
2−|α0|

0

g′ρ(b cosα) cosα dα +
|sinα0|

b
gρ(b |sinα0|)

}
.

Combining I and II and changing variable (α → π
2 − α) give

h(x, γ, γ′, η) = −4sgn〈Eηγ′, Eη(x− γ)〉〈γ′, η〉
∫ π

2

α0

gρ(b sinα) dα

− 4〈x− γ, η〉‖Eηγ′‖
{
cosα0

∫ π
2

α0

g′ρ(b sinα)sinα dα +
sinα0

b
gρ(b sinα0)

}
(4.6)

where α0 is here the acute angle between Eηγ′ and Eη(x− γ) and b = ‖Eη(x− γ)‖. Now
recalling that gρ and g′ρ have support in [−ρ, ρ] we see that h vanishes if b sinα0 ≥ ρ,
or, equivalently, if the distance from x − γ to the plane through γ parallel to η and γ′ is
greater than ρ.

A first consequence of Theorem(4.4) is that the computation of Af using a radial
approximate δ-function on an n3 grid from n × n2 data points on Γ × S2 is at most an
order O(n5) computation. This results from the quasi-local nature of the reconstruction
kernel h. To reconstruct at x requires for each source γ only the data from directions near
the plane containing x − γ and the tangent to Γ at γ. If the kernel is pre-computed and
stored, it will require also O(n5) storage locations. However, if Γ is a circle and if the
reconstruction grid and sources are invariant under a group of rotations about the axis
of the circle, then the storage requirements for h may be reduced to O(n4), since h will
transform covariantly under the group of rotations.

More importantly, the quasi-local nature of h means that the reconstruction algorithm
can be parallelized. The data and kernel values needed to reconstruct at x from a given
source γ are independent from those needed to reconstruct at y, if the distance from x to
the plane through γ and y parallel to γ′ exceeds the diameter of the point spread function.
Finding what parallel architecture is best suited to this algorithm is a question which
deserves study.

Finally, there is an approximation to Af , when the source set is a circle, which can
be calculated more effectively than what is presented above. A sequel to this paper will
discuss this approximation, which involves an O(n4) computation, and some numerical
results.
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5. Discussion and Comparison

From the derivation in section 4, the algorithm proposed in this paper is manifestly equiva-
lent to a limited data reconstruction for the Radon transform (see eqs.(4.1) and (4.2)). The
algorithm of Grangeat is similarly based, as he computes the derivative of the Radon trans-
form as an intermediate step. In effect, the algorithm of Feldkamp et. al. also amounts
to a limited data reconstruction for the Radon transform. Indeed, their method is an
implementation of the approximate reconstruction given by

f ](x) = c

∫
S2

Λ(ΛRθf · χθ)(〈x, θ〉) dθ (5.1)

where Λ is the operator defined by eq. (1.5) and χθ is the characteristic function of Iθ.
Here the outer Λ is filtered and the inner Λ results from an identity relating the Fourier
transform of the extension, homogeneous of degree -1, of the even part of the cone beam
transform and Λ applied to the Radon transform. This result is the basis of B. Smith’s
paper. Indeed, the formal derivation of sections 8 and 9 and appendix D of Smith’s paper
applied when the source set is a circle yields formula (5.1). (There is a small caveat to
be mentioned. The computations rely upon homogeneity of certain distributions which is
no longer exact after filtering. Similarly, Feldkamp et. al. arrive at their formulae making
homogeneity assumptions. In the context of fan beam reconstruction, these amount to the
trick of Lakshminarayanan [L]. Thus the filtered version of (5.1) and the filtered version
of the algorithm of Feldkamp et. al. may not be identical.)

Only extensive numerical testing can decide in any particular context whether the
algorithm of section 4 or that of Feldkamp et. al. is superior. Several comments of a theo-
retical flavor can be made about their respective Radon transform equivalents. The author
sees several advantages for the limited data reconstruction given by Af over that given by
(5.1). The operator Λ and its filtered version are non-local. Thus the reconstruction given
by (5.1) will be strongly dependent on cancellation in the integral, since Λ(ΛRθf · χθ)
will be non-zero well outside the support of Rθf . Since the (truncated) convolution in
Af of (4.1) does not spread the support of Rθf by more than ρ, the reconstruction so
obtained may have fewer artifacts. Even for such a simple function as the characteristic
function of a ball, ΛRθf is unbounded (Rθf ′ is discontinuous, but bounded) so one may
expect further numerical difficulties in the filtering and stronger edge effects. Thirdly, the
approximate reconstruction provided by Af is more explicit in what is reconstructed, and
so is more amenable to error analysis or to systematic variation in the pointspread function
by variation of e. On the other side, the chief argument for the method of Feldkamp et. al.
(not its Radon equivalent) is ease of implementation and computational efficiency. This
still holds even when the method of Feldkamp et. al. is compared to the approximation to
Af alluded to at the end of section 4.
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Appendix

In this appendix we examine the question of when it is possible for a curve Γ to satisfy the
condition that there exist an integer M so that almost every hyperplane meeting Ω meets
Γ in M points. This is one of the conditions assumed by B. D. Smith [Sm] in developing
an inversion formula for the cone beam transform. We show that if one assumes one order
of differentiability greater than does Smith, then there are no compact curves satisfying
this condition. (The author believes that the additional smoothness is only a technical
condition which can be weakened.)

We assume that Ω is a compact convex subset in R3 with non-empty interior and that
Γ is a compact, connected, embedded, piecewise C2 curve lying in R3\Ω. We assume two
conditions on Γ which are weakened versions of conditions C3 and C4 of Smith [Sm].
1. For almost every θ ∈ S2, πθ : Γ → R, πθ(γ) = 〈γ, θ〉, has only a finite number of critical
points. (Smith assumes this for every direction.)
2. There is an integer M so that almost every hyperplane which intersects both Γ and Ω
meets Γ in M points.

Theorem A.1. Let Γ satisfy conditions 1) and 2). Then either M = 1 and Γ is a straight
line segment or M = 2, and in either case there is a non-empty open set of planes which
intersect Ω but do not intersect Γ. If some chord of Γ meets Ω then Γ is a planar convex
curve.

Proof. The gist of the argument is to show that if Γ has non-vanishing curvature at some
point, then a plane P and a point γ0 ∈ Γ may be found so that P meets Ω, P is tangent
to Γ at γ0, Γ locally lies to one side of P , and so that every other intersection of P with Γ
is transverse. Then a small movement of P towards the center of curvature produces two
intersections while a movement away breaks the intersection. Since the other intersections
are transverse, the intersection number for the rest of Γ does not change. This gives two
open sets of planes where the intersection number differs by two. By condition 2) this can
only occur if M = 2 and one of the open sets of planes does not meet Γ. If Γ has zero
curvature at every smooth point, then Γ is a union of straight line segments. A simple
perturbation argument like that outlined above shows that if Γ has a vertex then M = 2,
otherwise Γ is a straight line segment and M = 1, and in either case there is an open set
of planes which meet Ω but do not meet Γ.

We now present a series of lemmas to show that a plane P and point γ0 can be found
which meet the conditions stated above.

Lemma A.2. If A is an open subset of Rm, B ⊂ A, Y is a normed vector space, f : A →
Y is a Ck mapping, k ≥ 1, and if there is an integer ν with 0 ≤ ν < m so that for every
x ∈ B rank(Df(x)) ≤ ν then Hν+(m−ν)/k(f(B)) = 0, where Hα is Hausdorff α-measure.

Proof. This is Theorem 3.4.3 in Federer [Fe].

At a point of non-zero curvature, any tangent plane other than the osculating plane
will have the property that Γ locally lies on one side. Thus we have to show that we can
find a point and a plane so that the only point of tangency between Γ and the plane is
at the given point. If the tangent line to Γ at γ is tangent to Γ at some other point(s)
(bitangent case) then no plane tangent at γ will satisfy the conditions. We will show that
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the directions of bitangents are rare among tangent directions. Assume that γ0 is point
such that the tangent line is not a bitangent. Let γ′0 be the unit tangent to Γ at γ0. The
planes tangent at γ0 are parametrized by S2 ∩ (γ′0)

⊥ which can be identified with S1.
Under this identification we define ρ : Γ\{γ0} → S1 by

ρ(γ) =
(γ − γ0)× γ′0
‖(γ − γ0)× γ′0‖

.

Computing the differential of ρ, it is readily seen that γ is a critical point exactly when the
tangent at γ is parallel to the plane spanned by γ′0 and (γ− γ0): that is, exactly when the
plane tangent at γ0 is not tranverse to Γ at γ. By Lemma A.2 the image of the critical set
has H 1

2 measure zero. (H1 measure zero if Γ is only C1.) Thus almost every (in the sense
of Hausdorff or Lebesgue measure) plane tangent to Γ at γ0 is everywhere else transverse
to Γ. We summarize this in a lemma.

Lemma A.3. If γ0 is a point on Γ such that the tangent line is nowhere else tangent then
almost every plane tangent to Γ at γ0 is everywhere else transverse to Γ.

Finally it must be shown that bitangents are rare. Since ’almost all’ in assumptions
1) and 2) does not exclude that Γ contains a straight line segment, rare will mean that the
set of directions of bitangents is a thin subset of the set of tangent directions. Applying
Theorem 3.2.3 of Federer [Fe] near a point where the curvature is non-zero, one sees that
the image of Γ in S2 under the unit tangent mapping has H1 measure greater than zero.

Let s be an arc-length parameter on Γ, and define g : I × I → S2 by g(s, t) =
[γ(s) − γ(t)]/‖γ(s) − γ(t)‖, t 6= s. Computing the differential of g one finds that Dg has
rank zero precisely when the tangent line at γ(s) coincides with the tangent line at γ(t).
Applying Lemma A.2. with k = 2, ν = 0,m = 2 we see that if B is the set where the rank
of Dg is zero, then H1(g(B)) = 0. But g(B) is precisely the set of directions of bitangents.
This proves the following lemma.

Lemma A.4. If Γ is C2 then for almost every tangent direction, any tangent line having
that direction is tangent at only one point.

Finally we show that if we think of Γ as ’lying around’ Ω then Γ is a planar convex
curve.

Lemma A.5. Suppose that Γ satisfies conditions 1) and 2) and further that some chord
of Γ meets Ω. Then Γ is a planar convex curve.

Proof. By what we have already proved, M = 1 or M = 2. If M = 1 then Γ is a straight
line segment exterior to Ω, so no chord meets Ω. Thus M = 2. If Γ is not planar then there
is some third point so that the plane determined by the two endpoints of the chord and
this third point is transverse to Γ at these three points. But then M ≥ 3 contradicting
M = 2. If Γ is not convex then one can make a similar argument with three collinear
points.
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