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Abstract. This paper surveys several settings where distributions associated

to paired Lagrangians appear in inverse problems. We make a closer study of
a particular case: the microlocal analysis of the X-ray transform with sources

on a curve.

1. Introduction

As it was mentioned in the preface to this book microlocal analysis (MA) is very
useful in inverse problems in determining singularities of the medium parameters.
In this chapter we survey several such applications, including an elaboration of
some applications of MA to tomography that were already mentioned in Faridani’s
chapter, section 5. We recall below the general setting.

While in two-dimensional tomography it is often possible to irradiate an unknown
object from all directions, in three dimensions it is usually not practical to obtain
this many data. Moreover, since the manifold of lines in R3 is four dimensional,
while the object under investigation is a function of three variables, it should suffice
to restrict the measurements to a three-dimensional submanifold of lines. Of course,
in practice one has only finitely many measurements, but the considerations of
the continuous case can be used to guide the design of algorithms and sampling
geometries.

Reconstruction from line integral data is never local. That is, to reconstruct a
function f at a point x ∈ Rn requires more than the data of the line integrals of f
over all lines passing through a neighborhood of x. However, if the full line integral
transform is composed with its adjoint, the resulting operator is an elliptic pseudo-
differential operator, which preserves singular supports. Moreover, to compute this
composition at a point x only requires line integrals for lines which pass through
a neighborhood of x, and so useful information can be determined about the un-
known function from just local data. In the planar setting, these observations have
been elaborated upon and built into a useful tool for microtomography (see the
discussion and references in section 6 of Faridani’s chapter). In three dimensions,
the observation is less useful since it still involves X-rays from all directions, and
it is natural to wonder what might be done for local reconstruction of the singular
support, or more refined information about the singularities of the object under
consideration, when only those lines in a three-dimensional family which also pass
through an arbitrarily small neighborhood of the point x are used. That is, what
may be reconstructed when the data is local, in the sense of this paragraph, and
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restricted in the sense of the preceding paragraph? The first tools to handle the
restricted X-ray transform were developed in [GrU1], where the setting was the
more general geodesic transform on a Riemannian manifold. This will be further
discussed below. The theory of paired Lagrangian distributions plays an important
role in the analysis.

In this chapter we also describe other situations in inverse problems where the
theory of paired Lagrangian distributions is important. These distributions, whose
wave front set consists of two cleanly intersecting conic Lagrangian manifolds, were
initially defined in [MU], and further developed in the papers [GuU], [AU], [GrU],
[GrU2]. For a summary of some of the results see §2.

The forward fundamental solution for the wave equation �−1 is an operator
whose wave front set consists of two cleanly intersecting conic Lagrangian manifolds
One is the diagonal and the other is the forward flowout by the Hamiltonian vector
field Hp of the characteristic variety, {p = 0}, of the wave equation. In fact, as it is
shown in [MU], this is valid for any operator of real-principal type, (see §3). The
diagonal part preserves singularities while the flowout moves them.

This fact was used in [GrU] to show that from the singularities of the backscat-
tering data one can determine the singularities of a conormal potential with some
restrictions on the type of singularity but including bounded potentials. A conor-
mal potential has wave front set contained in the normal bundle of a submanifold.
A fundamental step in the proof of this result is the construction of geometrical
optics solutions for the wave equation plus the conormal potential q with data a
plane wave in the far past,{(

� + q(x)
)
u(x, t, ω) = 0 on Rn−1 × Sn−1

u(x, t, ω) = δ(t− x · ω), t << 0,

where � = ∂2

∂t2 −∆Rn is the wave operator on Rn+1 acting independently of ω.
The solution is constructed in the form

u = δ(t− x · ω) + u1 + u2

where

u1 = �−1(qδ(t− x · ω))

and u2 is a smoother distribution.
In [GrU] a detailed study of the singularities of u1 was made, using the fact that

we know exactly how �−1 propagates singularities. This is reviewed in §4.
Another inverse problem where the theory of paired Lagrangian distributions

appears naturally is Calderón’s problem [C]. The question is whether one can de-
termine a conductivity γ > 0 by making voltage and current measurements at the
boundary. This information is encoded in the so-called Dirichlet-to-Neumann map.

An important technique in the study of this inverse problem has been the con-
struction of complex geometrical optics solutions for the conductivity equation
div γ∇u = 0. Let ρ ∈ Cn\0 satisfy ρ · ρ = 0. For |ρ| large these solutions have the

form

uρ(x) = ex·ργ−
1
2 (1 + ψ1(x, ρ) + ψ2(x, ρ))
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Furthermore ψ1 decays in |ρ| for |ρ| large uniformly in compact sets and ψ2 decays
in |ρ| faster than ψ1. See [U] for a recent survey and further developments and
references.

The term ψ1 is constructed by solving

∆ρψ = q

where q = ∆
√
γ√
γ and

∆ρu = (∆ + 2ρ∇)u.

As we show in §5, by taking the inverse Fourier transform in ρ, the operator ∆ρ

can be viewed as an operator of complex principal type and its inverse is in the
class of operators associated to two intersecting Lagrangian manifolds, one being the
diagonal and the other a flowout of a codimension two characteristic variety. The
use of this fact to study Calderón’s problem for conormal bounded conductivities
is investigated in [GrLU1]. The case of conormal potentials has been considered in
[GrLU].

In §6 we review the microlocal approach of [GuS], [G] to invert a class of gen-
eralized Radon transforms R. In particular under the Bolker condition Rt ◦R is
an elliptic pseudodifferential operator and preserves singularities. Here Rt denotes
the transpose of R. For an application of this to seismic imaging see the chapter
by de Hoop in this volume. Guillemin and Sternberg showed that the range of a
generalized Radon transform satisfying the Bolker condition can be characterized
as the solution set of a system of pseudodifferential equations. A left parametrix
for this system is another example of a paired Lagrangian distribution.

In §7 we describe in more detail the setting of restricted Radon transforms stud-
ied in [GrU1] that were already mentioned above. If C is a geodesic complex sat-
isfying certain geometric conditions, and RC is the restricted Radon (geodesic)
transform for C, then RC is a Fourier integral operator and Rt

C◦RC , microlocalized
away from certain bad points, falls in the class of operators associated to the diag-
onal and a flowout Lagrangian. The symbol of this operator is calculated on the
diagonal and a relative left parametrix is constructed.

In §8, we specialize the discussion of §7 to the complex of lines meeting a space
curve in R3 : this is motivated by the tomographic scanner design wherein an X-
ray source moves on a trajectory in space and for each source point measurements
are made on a two-dimensional detector. One of the results of the analysis of the
operators RC and Rt

C in [GrU1] is the relation of the wave front set of a distribution
µ and those of RCµ and Rt

C ◦RCµ. (This was used by Quinto [Q1], who gave a
more elementary presentation of the relation of the first two. His work is better
known in the tomography community.) At about the same time, Louis and Maass
proposed Rt

C ◦∆◦RC as a local tomography operator and made some experimental
reconstructions, [LoM]. (The operator ∆ was the Laplacian on the sphere. Their
weighting in the adjoint is different, but that is immaterial to the analysis.) They
wrote down an integral which gave the symbol for their operator. Subsequently,
A. Katsevich [Ka] studied the mapping properties of Rt

C ◦RC (with the adjoint
weighting of Louis and Maass) on wave front sets, found an expression for the
principal symbol, and computed some asymptotic expansions of Rt

C ◦RCµ near
the additional geometric singularities, in the case where µ is a piecewise smooth
function. At the same time, and independently, the second author studied Rt

C ◦
RC in his thesis, [La]. He computed the symbol of Rt

C ◦RC on the diagonal and
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on the flowout Lagrangian, and the symbol for Rt
C ◦RCµ, when µ is a conormal

distribution (satisfying certain geometric hypotheses on its wave front set). These
results, somewhat reworked, are presented here for the first time, along with a few
subsequent developments. A microlocal analysis of the restricted Doppler transform
has been done recently in [R].

We would like to thank Karthik Ramaseshan for his very useful comments on an
earlier version of the paper.

2. Spaces of Paired Lagrangian Distributions

In this section we recall the spaces of conormal distributions and distributions
associated with either a single Lagrangian manifold or two cleanly intersecting
Lagrangian manifolds.

LetX be an n-dimensional smooth manifold, and Λ ⊂ T ∗X\0 a conic Lagrangian
manifold. The Hörmander space Im(Λ) of Lagrangian distributions onX associated
with Λ consists [H] of all locally finite sums of distributions of the form

u(x) =
∫

RN

eiφ(x,θ)a(x, θ)dθ ,

where φ(x, θ) is a nondegenerate phase function parametrizing Λ and

a ∈ Sm+ n
4−

N
2
(
X × (RN\0)

)
= {a ∈ C∞(

X × (RN\0)
)
:

|∂αx ∂
β
θ a(x, θ)| ≤ CαβK〈θ〉m+ n

4−
N
2 −|α|,∀α ∈ ZN+ , β ∈ Zn+, x ∈ KbX} .

(Here we use the standard notation 〈θ〉 = (1 + |θ|2) 1
2 .) For u ∈ Im(Λ), the wave

front set WF (u) ⊂ Λ.
Let X and Y be smooth manifolds. The operators F : C∞

0 (X) → D′(Y ) whose
Schwartz kernel KF ∈ D′(X×Y ) is a Lagrangian distribution associated to a conic
Lagrangian manifold Γ (also called canonical relation) with respect to the twisted
symplectic form ωT∗(X×Y ) = ωT∗(X)−ωT∗(Y ) are called Fourier integral operators.
Here ωT∗(X), ωT∗(Y ) denote the symplectic forms on T ∗(X), T ∗(Y ) respectively. We
have that the twisted wave front set WF ′(KF ) ⊂ Λ where

WF ′(KF ) = {(x, y, ξ, η) ∈ T ∗(X × Y )\0: (x, y, ξ,−η) ∈WF (KF )}.
Now let S ⊂ X be a smooth submanifold of codimension k. Then the conormal

bundle of S,
N∗S = {(x, ξ) ∈ T ∗X\0: x ∈ S, ξ ⊥ TxS} ,

is a Lagrangian submanifold of T ∗X\0; the space of distributions on X conormal
to S is by definition

Iµ(S) = Iµ+ k
2−

n
4 (N∗S) .

If h ∈ C∞(X,Rk) is a defining function for S, with rank (dh) = k at S, then
u(x) ∈ Iµ(S) ⇒

u(x) =
∫

Rk

eih(x)·θa(x, θ)dθ, a ∈ Sµ
(
X × (Rk\0)

)
.

For example, if δS is a smooth density on S, then δS ∈ I0(S), while a distribution
on X\S having a Heaviside-type singularity at S belongs to I−k(S). One easily
sees that

Iµ(S) ⊂ Lploc(X) if µ < −k
(
1− 1

p

)
.



MICROLOCAL ANALYSIS OF THE X-RAY TRANSFORM WITH SOURCES ON A CURVE 5

Now, let Λ0, Λ1 ⊂ T ∗X\0 be a cleanly intersecting pair of conic Lagrangians in
the sense of [MU]. Thus, Σ = Λ0 ∩ Λ1 is smooth and

Tλ0Σ = Tλ0Λ0 ∩ Tλ0Λ1, ∀λ0 ∈ Σ .

Associated to the pair (Λ0,Λ1) is a class of Lagrangian distributions, Ip,`(Λ0,Λ1),
indexed by p, ` ∈ R, which satisfy WF (u) ⊂ Λ0 ∪ Λ1 [MU],[GuU]. Microlocally,
away from Σ,

(2.1) Ip,`(Λ0,Λ1) ⊂ Ip+`(Λ0\Λ1) and Ip,`(Λ0,Λ1) ⊂ Ip(Λ1) .

We have that⋂
`

Ip,`(Λ0,Λ1) = Ip(X,Λ1),
⋂
p

Ip,`(Λ0,Λ1) = C∞(X).

The principal symbol of a paired Lagrangian distribution Ip,`(Λ0,Λ1) consists
of the pair of symbols (σ0

p+`, σ
1
` ) of the Lagrangian distributions Ip+`(Λ0\Λ1) and

Ip(Λ1\Λ0) away from the intersection Σ. For the definition of the symbol of a La-
grangian distribution see [H] and section 8 in this paper for more details. The
symbols σ0 and σ1 each have a conormal singularity as they approach the intersec-
tion and the singularities satisfy a compatibility condition at the intersection (see
[GuU] for more details).

The symbol calculus of [GuU] implies

Theorem 2.1. Let u ∈ Ip,`(Λ0,Λ1). If σp+`(u) = 0 on Λ0\Σ then u ∈ Ip,`−1 +
Ip−1.`(Λ0,Λ1).

If Y2 ⊂ Y1 ⊂ X are smooth submanifolds with codimX(Y1) = d1, codimX(Y2) =
d1 + d2, then N∗Y1 and N∗Y2 intersect cleanly in codimension d2. The space of
distributions on X conormal to the pair (Y1, Y2) of orders µ, µ′ is

Iµ,µ
′
(Y1, Y2) = Iµ+µ′+

d1+d2
2 −n

4 ,−
d2
2 −µ′(N∗Y1, N

∗Y2)(2.2)

= Iµ+
d1
2 −n

4 ,µ
′+

d2
2 (N∗Y2, N

∗Y1).(2.3)

If one introduces local coordinates (x1, . . . , xn) on X such that

Y1 = {x1 = · · · = xd1 = 0} = {x′ = 0}, and(2.4)

Y2 = {x1 = · · · = xd1+d2 = 0} = {x′ = 0, x′′ = 0} ,(2.5)

then u(x) ∈ Iµ,µ′(Y1, Y2) iff it can be written locally as

u(x) =
∫

Rd1+d2

ei(x
′·ξ′+x′′·ξ′′)a(x; ξ′; ξ′′)dξ′dξ′′

with a(x; ξ′; ξ′′) belonging to the product-type symbol class

Sµ,µ
′
(X × (Rd1\0)× Rd2) = {a ∈ C∞ :

|∂γx∂
β
ξ′′∂

α
ξ′a(x, ξ)| ≤ CαβγK〈ξ′, ξ′′〉µ−|α|〈ξ′′〉µ

′−|β|} .

Let X be a smooth manifold of dimension n. We denote the diagonal

(2.6) D = {(x, ξ, x, ξ); (x, ξ) ∈ T ∗(X)\0}.
The class of operators F : C∞

0 (X) → D′(X) whose twisted wave front set consists
of two intersecting conic Lagrangian manifolds, one being the diagonal, is called
the class of pseudodifferential operators with singular symbols. An important class
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of pseudodifferential operators with singular symbols are those whose other La-
grangian manifold, ΛΣ, is a flowout. Let Σ ⊂ T ∗X\0 be a smooth, codimension
k conic submanifold, 1 ≤ k < n which is involutive with respect to the symplec-
tic form ωT∗(X) (that is, the ideal of functions vanishing on Σ is closed under the
Poisson bracket). Thus T(x,ξ)Σω ⊂ T(x,ξ)Σ is a k plane for all (x, ξ) ∈ Σ, where
T(x,ξ)Σω denotes the orthogonal complement of T(x,ξ)Σ with respect to the symplec-
tic form. The distribution {T(x,ξ)Σω} is integral with integral submanifolds Ξ(x,ξ)

called the bicharacteristic leaves of Σ. The flowout of Σ is the canonical relation
ΛΣ ⊂ (T ∗(X)\0)× T ∗(Y )\0) given by

(2.7) ΛΣ = {(x, ξ, y, η) ∈ Σ× Σ: (y, η) ∈ Ξ(x,ξ)}.

In [AU] a calculus a composition calculus was developed for pseudodifferential
operators with singular symbols when the other Lagrangian ΛΣ is a flow out. Notice
that D ◦ D = D, D ◦ ΛΣ = ΛΣ, ΛΣ ◦ D = ΛΣ and ΛΣ ◦ ΛΣ = ΛΣ. Here C1 ◦ C2

denotes the composition of the relations C1 and C2. Thus one can expect that the
composition of pseudodifferential operators with singular symbols for which the
second Lagrangian is a flowout is again in the same class. A theorem of [AU] shows
that this indeed the case. More precisely we have

Theorem 2.2. Let Ai ∈ Ipi,`i(D,ΛΣ), i = 1, 2, with ΛΣ a flowout as above. Then
A1A2 ∈ Ip1+p2+k/2,l1+l2−k/2(D,ΛΣ). The principal symbol of A1A2 on D, away
from the intersection, is given by σ(A1A2)|D\(D∩ΛΣ) = (σ(A1)σ(A2))|D\(D∩ΛΣ).

In [AU] the symbol of A1A2 is also computed on the flowout Lagrangian away
from the intersection with the diagonal.

Using this calculus one can prove the following estimate:

Theorem 2.3. Let A ∈ Ip,`(X,D,ΛΣ) with ΛΣ a flowout as above. Then

A : Hs
comp(X) → Hs+s0

loc (X),∀s ∈ R

if

max(p+
k

2
, p+ l) ≤ −s0.

3. Parametrices for Principal Type Operators

The simplest example of an operator of principal type on Rn, n ≥ 2 is the
operator Dx1 = 1

i
∂
∂x1

. The forward fundamental solution is given by

(3.1) E+f(x) = i

∫ x1

−∞
f(s, x′)ds

where we are using coordinates x = (x1, x
′). Let

Λ+ = {(x1, x
′, ξ1, ξ

′, y1, x
′, ξ1, ξ

′) ∈ T ∗(Rn)× T ∗(Rn) : y1 ≥ x1}.

It is readily seen that Λ+ is the forward flowout from D ∩ {ξ1 = 0} by Hξ1 where
Hp denotes the Hamiltonian vector field of p. We have that

WF ′E+ = D ∪ Λ+,

and in fact E+ ∈ I− 1
2 ,−

1
2 (D,Λ+).
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Another example of the class of operators whose Schwartz kernel has wave front
set in two conic Lagrangian manifolds which intersect cleanly is the forward funda-
mental solution of the wave operator � = ∂2

t −
∑n
i=1 ∂

2
xi

. The forward fundamental
solution is given by

(3.2) �−1f(t, x) =
∫ t

0

∫
((t− s)2 − |x− y|2)−

(n−1)
2

+

Γ
(

(−n+3)
2

) f(s, y)dyds.

(The distribution xs
+

Γ(s+1) , is defined by analytic continuation (see [H1, section 3.2]).

Notice that for n odd, n ≥ 3,
x
− (n−1)

2
+

Γ( (−n+3)
2 )

= δ
(n−3)

2 .We have that �−1 ∈ I− 3
2 ,−

1
2 (D,Λ)

where Λ is the forward flowout from ∆∩{p = 0} by the Hamiltonian vector field Hp.
Here p denotes the principal symbol of the wave operator: p(t, x, τ, ξ, t′, x′, τ ′, ξ′) =
τ2 − |ξ|2.

The paper [MU] contains a symbolic construction of the forward parametrices
(PE = I +R, with R smoothing) for pseudodifferential operators of real principal
type. These parametrices were first studied in [DH]. We recall,

Definition 3.1. Let P (x,D) be an mth order classical pseudodifferential operator,
with real homogeneous principal symbol pm(x, ξ). We say that P is of real principal
type if a) dpm 6= 0 at char(P ) = {(x, ξ) ∈ T ∗X\0: pm(x, ξ) = 0} so that char(P ) is
smooth, and b) char(P ) has no characteristics trapped over a compact set of X.

For (x, ξ) ∈ char(P ), let Ξ(x,ξ) be the bicharacteristic of P (x,D) (i.e., integral
curve of Hpm

) through (x, ξ). Then the flowout canonical relation generated by
char(P ),

(3.3) ΛP = {(x, ξ; y, η) : (x, ξ) ∈ char(P ), (y, η) ∈ Ξ(x,ξ)} ,
intersects the diagonal D cleanly in codimension 1. In [MU], it was shown that
P (x,D) has a parametrix Q ∈ I 1

2−m,−
1
2 (D,ΛP ).

We now review the mapping properties of a parametrix for a pseudodifferential
operator of real principal type, acting on the spaces of distributions associated with
one and two Lagrangians described in §2 (see [GrU]).

Proposition 3.1. Suppose Λ0 ⊂ T ∗X\0 is a conic Lagrangian intersecting char(P )
transversally and such that each bicharacteristic of P intersects Λ0 a finite number
of times. Then, if T ∈ Ip,`(D,ΛP )

T : Ir(Λ0) → Ir+p,`(Λ0,Λ1) ,

where Λ1 = ΛP ◦ Λ0 is the flowout from Λ0 on char(P ). Furthermore, for (x, ξ) ∈
Λ1\Λ0,

σ(Tu)(x, ξ) =
∑
j

σ(T )(x, ξ; yj , ηj)σ(u)(yj , ηj) ,

where {(yj , ηj)} = Λ0 ∩ Ξ(x,ξ).

The action of Ip,`(D,Λp) on the class Ip
′,`′(Λ0,Λ1) is described in the next

proposition.

Proposition 3.2. Under the same assumptions as Proposition 3.1

T : Ip
′,`′(Λ0,Λ1) → Ip+p

′+ 1
2 ,`+`

′− 1
2 (Λ0,Λ1) .
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Thus, if Q is a parametrix for P (x,D),

Q : Ip
′,`′(Λ0,Λ1) → Ip

′+1−m,`′−1(Λ0,Λ1) .

The following result is also useful.

Proposition 3.3. Suppose Λ1 ⊂ T ∗X\0 is a conic Lagrangian which is character-
istic for P : Λ1 ⊂ char(P ). Then, if T ∈ Ip,`(D,ΛP ),

T : Ir(Λ1) → Ir+p+
1
2 (Λ1)

and thus
Q : Ir(Λ1) → Ir+1−m(Λ1) .

4. The Inverse Backscattering Problem for a Conormal Potential

In the wave equation approach to the inverse backscattering problem in the
framework of the Lax-Phillips theory of scattering, the continuation problem of
solving the wave equation plus a potential with data a plane wave in the far past
is fundamental [GrU].

(4.1)

{(
� + q(x)

)
u(x, t, ω) = 0 on Rn−1 × Sn−1

u(x, t, ω) = δ(t− x · ω), t << 0,

where � = ∂2

∂t2 −∆Rn is the wave operator on Rn+1 acting independently of ω. For
the inverse scattering problem one needs to understand the behavior of the solution
u(x, t, ω) for t large.

In the case that q is a compactly supported smooth function we can write a
solution of (4.1) in the form

(4.2) u = δ(t− x · ω) + a(t, x, ω)H(t− x · ω).

where H(x) denotes the Heaviside function and a is a smooth function of all vari-
ables. We have then that the wave front set of the solution satisfies

WFu ⊂ N∗{t = x · ω)} =: Λ+.

Thus singularities propagate forward as time increases.
We now sketch the construction of the solution of (4.1) under the assumption

that the potential q(x) is conormal to a smooth codimension k submanifold. Let S
be given by a defining function,

S = {x ∈ Rn : h(x) = 0} ,

where h ∈ C∞(Rn,Rk) satisfies rank(dh(x)) = k for x ∈ S; in addition we assume
S has compact closure. Let

q(x) ∈ Iµ(S),

{
µ < −max

(
(1− 2

n )k, k − 1
)
, n ≥ 5

µ < −max(k2 , k − 1), n = 3 or 4

be compactly supported and real-valued. We have that q ∈ Lp(Rn) for p = n
2 when

n ≥ 5 and p > 2, when n = 3 or 4.
Now define

(4.3) S1 = {(x, t, ω) ∈ Rn−1 × Sn−1 : x ∈ S} ;
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regarding q(x) as a distribution on Rn−1 × Sn−1 independent of t and ω, one has

q ∈ Iµ(S1) .

We wish to find an approximate solution to (4.1). We look for an approximation

u ∼ u0 + u1 + · · ·+ uj + · · ·
where u0(x, t, ω) = δ(t − x · ω) and such that the series on the right is (for-
mally) telescoping when � + q is applied. The terms in the series are increas-
ingly smooth. This type of solution is called a geometrical optics solution. Thus,
uj+1 = −�−1

(
q(x)uj(x, t, ω)

)
, where �−1 is the forward fundamental solution of

�. We only consider the first two more singular terms, the other terms are smoother
as shown in [GrU]. We have that

(4.4) u0 + u1 = δ(t− x · ω)−�−1
(
q(x)δ(t− x · ω)

)
.

Now, the most singular term in the expansion is

(4.5) u0(x, t, ω) = δ(t− x · ω) ∈ I0(S+) ,

where

(4.6) S+ = {(x, t, ω) ∈ Rn+1 × Sn−1 : t− x · ω = 0} .
The submanifolds S+ and S1 intersect transversally; let S2 = S+∩S1 be the result-
ing codimension k + 1 submanifold of Rn+1 × Sn−1. Let Λ1 = N∗S1,Λ+ = N∗S+

and Λ2 = N∗S2 be the respective conormal bundles, which are conic Lagrangian
submanifolds of T ∗(Rn+1 × Sn−1)\0. The geometry of how these submanifolds
intersect is summarized in the following

Proposition 4.1. (1) WF (q) ⊂ Λ1 and WF (u0) ⊂ Λ+.
(2) Λ1 and Λ+ are disjoint.
(3) Λ2 intersects Λ1 and Λ+ cleanly in codimensions 1 and k, respectively, so

that (Λ1,Λ2) and (Λ+,Λ2) are intersecting pairs.

The second term in (4.4) is

(4.7) u1 = −�−1
(
q(x, t)δ(t− x · ω)

)
,

where �−1 acts only in the (x, t) variables. We have that

q(x, t) · δ(t− x · ω) ∈ I0,µ(S+, S2) ,

so that
WF (q · δ) ⊂ Λ+ ∪ Λ2 .

To obtain WF (u1), recall that

(4.8) WF (�−1v) ⊂ (D ∪ Λ�) ◦WF (v) , ∀v ∈ E ′(Rn+1 × Sn−1) ,

where D is the diagonal of T ∗(Rn+1 × Sn−1)\0 and Λ� is the flowout of the char-
acteristic variety

char(�) = {(x, t, ω; ξ, τ,Ω): |τ |2 = |ξ|2}
of � (acting on Rn+1 × Sn−1). In (4.8), D ∪Λ� acts as a relation between subsets
of T ∗(Rn+1×Sn−1)\0; of course, D acts as the identity. Also, Λ� ◦Λ+ = Λ+ since
Λ+ is characteristic for �. Thus

WF (u1) ⊂ Λ+ ∪ Λ2 ∪ Λ� ◦ Λ2 .

Compared with the case of a smooth potential, u1 has the additional singularity
Λ2 ∪ Λ� ◦ Λ2.
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An analysis of this contribution (see [GrU]) gives

Proposition 4.2. u1 ∈ I−( n+1
2 )(Λ+\L) + Iµ+ k−2−n

2 (Λ−\L), t� 0.

We note that when q is smooth, u1 ∈ I−( n+1
2 )(Λ+). We describe below what Λ−

and L are. We have
L = Λ� ◦Θ

where Θ is a conic neighborhood of Σ3 = Λ2|S3 with S3 the set of points where the
incoming plane wave and the surface S are tangent. We denote by Σ = Λ2∩char(�).
Now

Σ = Σ+ ∪ Σ−

with Σ+ = Λ+ ∩ Λ2. The “new” Lagrangian Λ− is the flowout of Σ−\Σ3 by Hp.
Using this additional singularity it is shown in [GrU] that we can recover the

symbol of q from the singularities of the backscattering kernel; that is, the location
and strength of the singularities of the q is determined by the singularities of the
backscattering kernel. The crucial element in the proof, of importance in its own
right, is the construction of geometrical optics solutions of (4.1) for q conormal as
above.

For the case that q is a general potential, the operator

U : E ′(Rn) −→ D′(Rn × R× Sn−1)

defined by

(4.9) Uq(x, t, ω) = �−1(q(x) · δ(t− x · ω))

was studied in [GrU3], where the two following results are proved.

Theorem 4.1.
U ∈ I−( n+4

4 ),− 1
2 (Λ1,Λ2),

where

Λ1 = N∗{(x, t, ω, y; )x = y, t = x · ω}, Λ2 = N∗{|t− y · ω|2 = |x− y|2}.

Theorem 4.2.

U : Hs
comp(Rn) −→ Hs+1

loc (Rn × R× Sn−1), ∀s < −1
2
,

with the endpoint result

U : H− 1
2

comp(Rn) −→ B
1
2
2,∞,comp(R

n × R× Sn−1).

Here Bsp,∞ denotes the standard Besov spaces of distributions with s derivatives
having Littlewood-Paley components associated with large frequencies uniformly in
Lp.

5. Operators of Complex Principal Type and Calderón’s problem

We first recall the inverse conductivity problem, also known as Calderón’s prob-
lem. Let γ ∈ C2(Ω) be a strictly positive function on Ω. The equation for the
potential in the interior, with conductivity γ under the assumption of no sinks or
sources of current in Ω, is

(5.1) div(γ∇u) = 0 in Ω, u|∂Ω = f.
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The Dirichlet-to-Neumann map is defined in this case as follows:

Λγ(f) =
(
γ
∂u

∂ν

)∣∣∣
∂Ω
.

Let ρ ∈ Cn\0 satisfy ρ ·ρ = 0. A key step in the proof of unique determination of
the conductivity γ from Λγ , and in the study of several other inverse problems, is the
construction of complex geometrical optics solutions to the conductivity equation
found in [SyU, SyU1]. (See also [U] and the references there for the applications
of complex geometrical optics solutions to Calderón’s problem and to other inverse
problems.) For sufficiently large |ρ| one can construct solutions to div(γ∇u) = 0 in
Rn (extending γ to be 1 outside a large ball) of the form

(5.2) uρ(x) = ex·ργ−
1
2 (1 + ψ(x, ρ))

with

‖ψ(x, ρ)‖L2(K) ≤
C

|ρ|
for every compact set K.

The term ψ is constructed by solving the equation

(5.3) ∆ρψ = q(1 + ψ)

where q = ∆
√
γ√
γ and

(5.4) ∆ρu = (∆ + 2ρ∇)u.

The solution ψ is written in the form

ψ =
∞∑
j=0

ψj

where
ψj+1 = ∆−1

ρ (qψj), ψ0 = 1.

The fundamental property of ∆−1
ρ is that satisfies the estimate, for 0 < δ < −1

[SyU], [SyU1],

‖∆−1
ρ f‖L2

δ(Rn) ≤ C
‖f |L2

δ+1(Rn)

|ρ|
where ‖f‖2L2

α(Rn) =
∫
|f(x)|2(1 + |x|2)αdx. Here we show that ∆ρ can be viewed as

an operator of complex principal type in the sense of Duistermaat-Hörmander [DH]
and ∆−1

ρ is a pseudodifferential operator with a singular symbol.
We take the Fourier transform of u in the |ρ| variable.

(5.5) v(x, r, ω) =
∫

R
e−irλu(x, λω)dλ.

Then the operator ∆ρ is transformed into the operator

(5.6) �∗ = ∆x + 2i(ω · ∇x) ·
∂

∂r

If ρ · ρ = 0, we can write ρ = |ρ|√
2
(ωR + iωI) with ωr, ωI ∈ Sn−1 and ωR · ωI = 0.

Let
V = {ωR + iωI ∈ Sn−1 + iSn−1 : ωR · ωI = 0}.
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Considered as an operator acting only in the (x, r) variables �∗ is of complex
principal type in the sense of Duistermaat and Hörmander: �∗ has symbol

σ(�∗)(ξ, τ ;ω) = −(|ξ|2 − 2i(ω · ξ)τ)
= −[(|ξ|2 − 2(ωI · ξ)τ) + i(ωR · ξ)τ ] = −[pR + ipI ].

The functions pR and pI have linearly independent gradients and Poisson commute
({pR, pI} = 0) and so the characteristic variety Σ is codimension two and invo-
lutive. Furthermore, the two-dimensional bicharacteristics are not trapped over a
compact set, so �∗ is locally solvable. Now, �∗ actually acts on D′(Rn+1

x,r × V),
with coefficients that depend on ω but without differentiation in the ω directions,
and the above facts remain true as long as we work away from 0T∗Rn+1 × T ∗V,
which will always be the case below. Away from there, �∗ possesses a parametrix
�−1
∗ ∈ I−2,0(D,CΣ) as we describe below.
We can write the (complex) Hamiltonian vector field of − 1

2σ(�∗) as HR + iHI ,
where

HR = (ξ − τωI) ·
∂

∂x
− (ωI · ξ)

∂

∂r
+ τi∗ωI

(ξ) · ∂

∂ΩI
and

HI = τωR ·
∂

∂x
+ (ωR · ξ)

∂

∂r
− τi∗ωR

(ξ) · ∂

∂ΩR
.

Here, Ω = (ΩR,ΩI) ∈ T ∗ωV and iωA
: TωA

Sn−1 ↪→ TωA
Rn is the natural inclusion

for A = R, I. HR and HI span the annihilator TΣ⊥ of TΣ with respect to the
canonical symplectic form on T ∗(Rn+1 × V), and Σ is nonradial since the radial
vector field

ξ · ∂
∂ξ

+ τ
∂

∂τ
+ ΩR ·

∂

∂ΩR
+ ωI ·

∂

∂ΩI
/∈ TΣ⊥.

(Recall (cf., [DH,7.2.4]) that Σ nonradial means that the (two-dimensional) an-
nihilator of TΣ with respect to the symplectic form σ on T ∗X does not contain
the radial vector field

∑N
i=1 ξi

∂
∂ξi

at any point.) The family of two dimensional
subspaces TΣ⊥ forms an integrable distribution in the sense of Frobenius, and its
integral surfaces are the bicharacteristic leaves of Σ. It is easy to verify that no
bicharacteristic leaf is trapped over a compact set and that the bicharacteristic
foliation is regular (see [DH,§7]). The flowout of Σ is then the canonical relation
CΣ ⊂

(
T ∗(Rn+1 × V) \ 0)× (T ∗(Rn+1 × V) \ 0)

)
defined by

(5.7) CΣ =
{

(x, r, ω, ξ, τ,Ω;x′, t′, ω′, ξ′, τ ′,Ω′) : (x, r, ω, ξ, τ,Ω) ∈ Σ,

(x′, r′, ω′, ξ′, τ ′,Ω′) = exp(sHR + tHI)(x, r, ω, ξ, τ,Ω) for some (s, t) ∈ R2
}
.

By the results of [DH], �∗ is locally solvable, and admits a right-parametrix which
we will denote by �−1

∗ , so that �∗�−1
∗ = I +E with E a smoothing operator. Al-

though not stated in this way, since [DH] predates [MU] and [GuU], the parametrix
of [DH] has a Schwartz kernel belonging to I−2,0(D′, C ′

Σ). Here, D is the diagonal
as before and the prime denotes the twisting

(x, r, ω, ξ, τ,Ω; x̃, r̃, ω̃, ξ̃, τ̃ , Ω̃) → (x, r, ω, ξ, τ,Ω; x̃, r̃, ω̃,−ξ̃,−τ̃ ,−Ω̃).

Greenleaf, Lassas and Uhlmann [GLU] are using this microlocal approach to
consider Calderón’s problem when the conductivity γ has conormal singularities.
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6. Microlocal Characterization of the Range of Radon Transforms

By a well known theorem of Fritz John the range of the X-ray transform in
R3 is characterized as a solution of an ultrahyperbolic equation. Guillemin and
Sternberg in [GuS1] characterized microlocally the range of a very general class of
Radon transforms. It was shown in [GuU] that the projection onto the range is
an operator in the class of intersecting Lagrangians. In order to state these results
we first describe the microlocal approach to the double fibration of Gelfand and
Helgason.

Let X and Y be smooth manifolds with dim X = n and dim X ≤ dim Y. Let
Z be an embedded submanifold of X × Y of codimension k < n. We consider the
double fibration diagram

(6.1) Z
ρ

��~~
~~

~~
~

π

  @
@@

@@
@@

Y X

where π and ρ are the natural projections onto X and Y , respectively. We also
assume that π is proper.

We denote by Gx the fibers of the projection π : Z → X, considered as subman-
ifolds of Y and Hy the fibers of ρ : Z → Y , considered as submanifolds of X. If
µ is a smooth, nonvanishing measure on Z, then µ induces measures dµx on Gx
and dµy on Hy. This gives rise to the generalized Radon transform, defined for
f ∈ C∞

0 (X) by

(6.2) Rf(y) =
∫
Hy

f(x)dµy(x), y ∈ Y.

The formal adjoint of R is given by

(6.3) Rtg(x) =
∫
Gx

g(y)dµ̄x(y), x ∈ X.

By standard duality arguments, R and Rt extend to act on distributions, R :
E ′(X) → D ′(Y ) and Rt : D ′(Y ) → D ′(X).

It is immediate from (6.2) that the Schwartz kernel of R is δZ , the delta function
supported on Z defined by µ. Guillemin and Sternberg, see ([Gu], [GuS]), first
introduced microlocal techniques to the study of generalized Radon transforms
noting that δZ is a Fourier integral distribution, and then studying the microlocal
analogue of the double fibration (6.1). It follows from Hörmander’s theory [H] that
R is a Fourier integral operator of order (dimY − dimZ)/2 associated with the
canonical relation Γ = N∗Z ′. Similarly, Rt is a Fourier integral operator associated
with the canonical relation Γt ⊂ T ∗X × T ∗Y , which is simply Γ with (x, ξ) and
(y, η) interchanged.

Now consider the microlocal diagram

(6.4) Γ
ρ

}}zz
zz

zz
zz

π

!!D
DD

DD
DD

D

T ∗Y T ∗X



14 DAVID FINCH, IH-REN LAN, AND GUNTHER UHLMANN

where π and ρ again denote the natural projections, this time onto T ∗X and T ∗Y ,
respectively. We analyze the normal operator Rt ◦R. Concerning the wave front
sets we have, by a theorem of Hörmander and Sato (see [H]), that for f ∈ E ′(X),

WF ((Rt ◦R)f) ⊂ (Γt ◦ Γ)(WF (f)).

In general Γt ◦Γ can be a quite complicated object, but under certain assumptions
one can prove that it is a canonical relation, in fact the diagonal D.

For example, if Γ is a canonical graph (i.e. the graph of a canonical transforma-
tion χ : T ∗X → T ∗Y ), then this is the case and on the operator level, Hörmander’s
composition calculus applies to yield that Rt ◦R is a pseudodifferential operator
on X. This happens if π and ρ are local diffeomorphisms and ρ is 1-1. This is the
case for the generalized Radon transforms considered in [B] and [Q].

If dimX < dimY , however, Γ cannot be a canonical graph. This is the
case for the X-ray transforms and geodesic X-ray transforms in dimensions ≥ 3.
Guillemin[G], motivated by work of Bolker on the discrete Radon transform, intro-
duced a condition that guarantees that Γt ◦ Γ is still the diagonal and allows the
“clean intersection” composition calculus of Duistermaat and Guillemin [DG] to be
applied. The Bolker condition is that

the map ρ in (6.4) is an embedding.
Guillemin then proved

Theorem 6.1. If the Bolker condition is satisfied, then Rt◦R is an elliptic pseudo-
differential operator on X of order dim Y − dim Z. Hence, R is locally invertible.
Moreover,

R : Hs
comp(X) → H

s+ dim Z−dim Y
2

loc (Y ).

Other examples of generalized Radon transforms to which Theorem 6.3 applies
include X-ray transforms and, more generally a class of geodesic X-ray transforms
(see [GrU1], section 2 for the precise class of geodesic X-ray transforms). A con-
sequence of the fact that the X-ray transform P is a Fourier integral operator is a
precise description of the wave front set of Pf in terms of the wave front set of f,
and also microlocal description of the Sobolev singularities. An elementary account
is given in Theorem 3.1 of [Q1].

If the Bolker condition is satisfied then ρ(Γ) =: Σ is a co-isotropic submani-
fold of T ∗(Y )\0 of codimension k = dim Y − dim X. Locally the submanifold
Σ is defined by p1(y, η) = ... = pk(y, η) = 0 such that the Poisson brackets of all
the p′is vanish, i.e. {pi, pj} = 0, i, j = 1, ..., k on Σ. The problem of showing that
the Radon transform has for its range the solution set of a system of pseudodif-
ferential equations is reduced in [GS1] to the construction of left parametrices for
pseudodifferential equations of the form

P = P 2
1 + ....+ P 2

k +
n∑
i=1

AiPi +B,

where the principal symbol of Pi is pi, A′is and B are pseudodifferential operators
of order zero.

The left parametrix E ∈ Ip,`(D,Λ) where Λ denotes the joint flow out from
D ∩ Σ by the Hpj

, j = 1, ...n. D and Λ intersect cleanly of codimension k on Σ.
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We remark that the principal symbol of E on D − Σ is 1
p21+...+p

2
k
.

7. Restricted X-ray transforms

If W ⊂ Y is a submanifold, the restricted generalized Radon transform RW f =
Rf |W will typically not satisfy the Bolker condition even if R does. It is then of
interest to study what injectivity properties and estimates RW satisfies (as com-
pared with R) and the operator theory associated with RW . This was done for the
geodesic X-ray transform in [GrU1]. We denote by X = (M, g) a complete, n di-
mensional simply connected Riemannian manifold. We assume, as in §2 of [GrU1],
that the space of geodesics Y =: M is a smooth manifold of dimension 2n− 2.

We now describe the structure of the microlocal diagram (6.4) for C ⊂ M , a
geodesic complex satisfying an analogue of Gelfand’s cone condition for the case of
an admissible line complex [GGr]. Let

Cx =
⋃
{γ ∈ C ;x ∈ γ}

which generates a cone with vertex at x

Σx =
⋃
{γ̇; γ ∈ Cx}.

Let γ ∈ Cx and y ∈ γ. The cone condition states that the tangent planes of Σx and
Σy along γ ∈ C are parallel translates of each other.

We now describe the projections π : Γ → T ∗M\0 and ρ : Γ → T ∗C \0 in
the language of singularity theory. (Note that (6.4) is a diagram of smooth maps
between manifolds, all of dimension 2n.) First, one makes (see[GrU1,p.215) a cur-
vature assumption on the cones Σx which guarantees that π has a Whitney fold
(see[GoGu]), at least away from a codimension 3 submanifold of Γ (automatically
empty if n = 3); furthermore, one microlocalizes away from the critical points of
the complex. We denote by L the fold hypersurface of π, so that π(L) ⊂ T ∗M\0 is
an immersed hypersurface. Microlocally, the image π(Γ) is a half-space in T ∗M\0
with boundary π(L). In fact, π(Γ) is the support of the Crofton symbol CrC (x, ξ)
of C , defined by Gelfand and Gindikin[GGi]:

CrC (x, ξ) = #{γ ∈ Cx : γ̇ ⊥ ξ}

if finite and 0 otherwise. CrC is piecewise constant and jumps by 2 across π(L). So
far, we have only used the curvature assumption, not the cone condition. The pro-
jection ρ : Γ → T ∗C \0 is necessarily singular at L, since π is (this is a general fact
about canonical relations), but for an arbitrary geodesic complex, little can be said
about the structure of ρ. However, using Jacobi fields, one can show [GrU1,p.225]
that, assuming that the curvature operator can be smoothly diagonalized, the cone
condition forces ρ to be a blow − down at L; that is, ρ has the singularity type of
polar coordinates in R2 at the origin (crossed with a diffeomorphism in the remain-
ing 2n − 2 variables). Thus, ρ is 1-1 away from L, ρ|L has 1-dimensional fibers,
and ρ(L), which is thus of codimension 2, is symplectic (noninvolutive) in the sense
that ωT∗C |ρ(L) is nondegenerate. Furthermore, the fibers of ρ are the lifts by π of
the bicharacteristic curves of the hypersurface π(L) ⊂ T ∗M\0.

Some canonical relations having the singular structure described above were inde-
pendently considered by Guillemin[Gu1], for reasons arising in Lorentzian integral
geometry.
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We denote by RC ,Rt
C the geodesic transform restricted to C and its transpose.

In [GrU1] it is proven that

Theorem 7.1.
Rt
C ◦RC ∈ I−1,0(D,ΛΠ(L))

where ΛΠ(L) denotes the flowout of Π(L).
The symbol on D away from the intersection is computed in [GrU1]. By us-

ing Theorem 1.1 and the functional calculus of [AU] a relative left parametrix is
constructed for RC .

We remark that this result has as corollary Theorem 5.3 in Faridani’s chapter,
which was explicitly stated in Theorem 4.1 in [Q1].

More details are given in the next sections on the computation of the symbols
in both Lagrangians for the case that the complex of curves are straight lines going
through a curve satisfying some additional conditions.

8. The complex of lines through a curve in R3

In this section, we will study in more detail a specific case of a restricted X-ray
transform, that of the complex of line passing through a curve in R3. Our goal is
to compute the principal symbol on the diagonal, and the symbol on the flowout
Lagrangian. In view of applications to limited data problems in computed tomog-
raphy, we suppose that the restricted transform acts on functions (distributions)
with support contained in a given set, and that the curve lies outside this set.
Specifically, we suppose that Ω is a bounded open set in R3, that the curve Cv lies
outside the closed convex hull of Ω, and that the tangent to Cv never points into Ω.
Taking a(t) to be an arc length parametrization, we parametrize the family of lines
passing though Cv by Cv×S2, where the pair (a, θ) is associated to the line a+Rθ
through a in direction θ. Notice that there is some redundancy, since the same line
is also associated to (a,−θ), and any line which meets the curve Cv more than
once is counted multiple times. Rewriting (6.2) and (6.3) for this specific restricted
transform we have

(8.1) RCf(a, θ) =
∫

R
f(a+ sθ)ds

where s is an arc length parameter on R. The formal adjoint Rt
C , which here maps

C∞(Cv × S2) to C∞(Ω), is defined for x ∈ Ω by

(8.2) Rt
Cg(x) =

∫
Cv

g

(
a(t),

x− a(t)
|x− a(t)|

)
1

|x− a(t)|2
dt.

The operators RC and Rt
C satisfy

(8.3)
∫
Cv×S2

RCf(a, θ)g(a, θ) dt dθ =
∫

Ω

f(x)Rt
Cg(x)dx

for smooth f and g, with f compactly supported in Ω. This relation is used to
extend RC , by duality, to compactly supported distributions in Ω.

In the situation of the complex C described above, it is possible to study the
geometry of Γt◦Γ directly to find the intersecting Lagrangians. (The definition of Γ
is slightly modified, since it is only an immersed submanifold.) It is found that that
Γt ◦ Γ is the union of a subset of the diagonal relation consisting of all (x, ξ, x, ξ) ∈
T ∗(Ω)\0 × T ∗(Ω)\0 such that the plane through x with normal ξ intersects the
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curve Cv, and another set consisting of all (x, ξ, y, η) ∈ T ∗(Ω)\0×T ∗(Ω)\0 subject
to the condition that x and y lie in a line through Cv, ξ and η are normal to the line
and to the tangent to the curve at the point of intersection, and s2ξ = s1η, where
s1 (resp. s2) is the distance from x (resp. y) to the point of intersection. This is
parametrized by (t, s1, s2, θ, u) → (a(t) + s1θ, us2β, a(t) + s2θ, us1β) where β is a
conormal vector at a(t) annihilating both the tangent vector to the curve and the
tangent vector to the line in direction θ. Computations in local coordinates show
that this map is an immersion when s1 6= s2 and also when s1 = s2 provided that
a′′(t), a′(t) and θ are linearly independent. Moreover, in the second case, this is
found to be precisely the condition for clean intersection between the image and the
diagonal relation (see also the discussion prior to (3.20) in [GrU2]). We let Λ

′
be

the full set, and Λ′ be the image of the relatively open subset where a′′(t), a′(t), and
θ are linearly independent. For (x0, ξ0) such that (x0, ξ0, x0, ξ0) lies in Λ′, choose
one (if there be more than one) t0 such that x0 = a(t0) + sθ and ξ0 is normal
to θ and a′(t0), and then a′(t0) · ξ0 = 0 while a′′(t0) · ξ0 6= 0. By the implicit
function theorem, there is a conic neighborhood of ξ0 and a smooth function t(ξ),
homogeneous of degree 0, such that a′(t(ξ)) ·ξ = 0. Defining p(x, ξ) = (x−a(t(ξ)) ·ξ
it is then the case that the sheet of Λ parametrized using t(ξ) is the Hp flowout of
p = 0.

Theorem 8.1. The symbol of Rt
C ◦RC on D\Λ′ is given by

(8.4) σ0(x, ξ) =
∑

{t:a(t)∈(x+ξ⊥)∩Cv}

2π
|ξ · a′(t)||x− a(t)|n−2

σ0
Id(x, ξ),

where σ0
Id is the symbol of the identity operator considered as a reference section of

L⊗Ω
1
2 , and where it is also assumed that the sum is finite. The symbol of Rt

C◦RC

on Λ
′\D is given by

(8.5) σ1(x, ξ, y, η) = c
1√

|y − a| − |x− a|
|dν| 12 ,

where |dν| 12 is the half-density on Λ′ induced from the parametrization above, a is
the point where the line through x and y meets the curve, and c incorporates some
powers of 2π and of i.

The hypothesis that there are only finitely many intersections between any plane
x+ ξ⊥ and Cv is true generically. Lan has proved also

Theorem 8.2. Let C be a compact smooth space curve. If C has non-vanishing
torsion, then the set of intersection numbers of C with planes is bounded above.

We will outline the proof of the symbol result, but the calculations on the flowout
are too lengthy to be presented in detail here. Most of them can be found in [La],
and will also be reported in another work in preparation. The principal symbol
(i.e. on the diagonal) can be calculated by several methods. The easiest is to find a
Fourier representation of Rt

C ◦RCf by carrying through the calculations of formula
(3.6) in [GrU1]. As this can be done expeditiously, we include it here. Moreover,
for this part of the calculation, the dimension n may be greater than three as well.

Since the line integral of f through a(t) in the direction ξ = x−a
|x−a| is equal to the

line integral of f through x in the same direction, we have
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Rt
C ◦RCf(x) =

∫
Cv

∫
R

f(a(t) + sξ)|x− a(t)|1−nds dt

=
∫
Cv

∫
R

f(x+ sξ)|x− a(t)|1−n ds dt

= (2π)1−n
∫
Cv

∫
ξ⊥
eix·η f̂(η)dvξ⊥(η)|x− a(t)|1−ndt

= (2π)−n
∫
Rn

eix·ηb(x, η)f̂(η)dη

where b(x, η) is the pushforward of 2π|x − a(t)|1−ndv(x−a)⊥(η)dt under the map
(η, t) → η, with dv(x−a)⊥(η) the Lebesgue measure on (x−a)⊥ and dt the arc length
measure on Cv. In writing this, we have presumed that the pushforward measure
has a density with respect to Lebesgue measure on Rn. This will hold provided the
set of critical points has measure zero [GuS, p. 304]. Let {u1(t), . . . , un−1(t)} be
a smoothly varying orthonormal basis for (x − a(t))⊥ and let ζ = (ζ1, . . . , ζn−1)
be the coordinates of η ∈ (x − a(t))⊥ with respect to this basis. Then the map
(η, t) → η is given by G(ζ, t) =

∑
ζiui(t). The differential is given by

dG = [u1, . . . , un−1,
∑

ζiu
′
i],

and since the {ui}n−1
i=1 span (x− a)⊥, the absolute value of the determinant is just

|
∑
ζiu

′
i · x−a

|x−a| |. Now since ui · x−a
|x−a| = 0, u′i · x−a

|x−a| = −ui · ddt
x−a(t)
|x−a(t)| and thus

|det(dG)| =
∣∣∣∣∑ ζiu

′
i ·

x− a

|x− a|

∣∣∣∣ =
∣∣∣∣η · ddt x− a

|x− a|

∣∣∣∣ .
Simplifying, we obtain,

|det(dG)| = |η · a′||x− a|−1.

From this is evident that the set of critical points has measure zero. Moreover, the
density of the pushforward at a regular value is given by the sum over the preimages
of (x, η) of the value of density |x− a|1−n times the reciprocal of the Jacobian, and
thus

(8.6) b(x, η) = 2π
∑

{t:a(t)∈(x+η⊥)∩Cv}

1
|η · a′(t)||x− a(t)|n−2

.

We note that for a given x, η is a regular value if and only if the plane x + η⊥

has only transversal intersections with the curve Cv which holds precisely when
(x, η, x, η) ∈ D\Λ′.

The symbol of a Fourier integral operator is usually expressed in terms of an
amplitude and phase function, when the Schwartz kernel of the operator is given
explicitly as an oscillatory integral. We do not have an explicit phase function
parametrizing the Lagrangian Λ, so we must approach the problem differently.
Here we use an intrinsic characterization based on the asymptotics of testing the
Schwartz kernel against localized oscillatory functions. A development can be found
in sections 3.2 and 3.3 of [H], and in the specific form which we use it, in section
4.1 of [D].
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Definition 8.1. The principal symbol of order m of a Fourier integral distribution
K of order m associated to the conic Lagrangian manifold Λ is the element in

(8.7) Sm+ n
4 (Λ, Ω 1

2
⊗ L)/Sm+ n

4−1(Λ, Ω 1
2
⊗ L)

given by

(8.8) α −→ eiψ(π(α), α)
〈
ue−iψ(x, α), K

〉
.

Here Sµ
(
Λ, Ω 1

2
⊗ L

)
denotes the symbol space of sections of the complex line bun-

dle Ω 1
2
⊗ L over Λ, of growth order µ; u ∈ C∞

0

(
X, Ω 1

2

)
; ψ(x, α) ∈ C∞(X × Λ)

is homogeneous of degree 1 in α and the graph of x 7→ dxψ(x, α) intersects Λ
transversally at α.

To apply this, we need to find candidate functions ψ for which the graph of the
differential is transverse to the Lagrangian where we wish to evaluate the symbol. If
we can find such a ψ, which moreover has the form ψ(x, y, w) = ψ1(x,w)+ψ2(y, w),
where w is the point in the Lagrangian where the symbol is to be calculated, then
we can evaluate the pairing when K is the Schwartz kernel of Rt

C ◦RC by

〈K, ei(ψ1+ψ2)ρ1(x)⊗ ρ2(y)〉 = 〈Rt
C ◦RC e

iψ2ρ2, e
iψ1ρ1〉(8.9)

= 〈RC e
iψ2ρ2,RC e

iψ1ρ1〉.

This last pairing is an ordinary five dimensional integral over the product of C with
two copies of R (for the line integrals). We will evaluate its asymptotics using the
method of stationary phase.

Initially, we will assume that a point w = (x0, y0, ξ0,−η0) ∈ Λ\Σ is given, and
that it lies in the flowout of the clean intersection subset of Σ, and define

(8.10) ψ(x, y, w) = 〈x− x0, ξ0〉+ 〈y − y0, −η0〉

+
1
2
〈y − y0, y − y0〉k(ξ0, −η0) +

1
2
〈x− x0, x− x0〉h(ξ0, −η0)

where k and h are homogeneous of degree one in ξ0 and η0. When h is non-vanishing
and k is identically zero, or the reverse, the graph of dψ is transverse to Λ at w.
This is proved by showing that the 12×12 matrix whose first six columns represent
the differential of the parametrization of Λ and whose last six columns represent
the differential of the graph mapping has full rank. (The hypotheses of vanishing
and non-vanishing of k and h are only to simplify the rank calculation.)

Next we substitute ψ for w = (x0, ξ̃, y0, η̃) ∈ Λ\Σ into the pairing (8.9) to obtain

(8.11) 〈K, eiψρ2(y)⊗ ρ1(x)〉 =
∫
ρ1 (a(t) + s1θ) ρ2 (a(t) + s2θ) e−iψ̃ ds1ds2dθdt,

where ψ̃ is ψ evaluated at (a(t) + s1θ, a(t) + s2θ). It is checked that ψ̃ has only the
critical point corresponding to w if ρ1 and ρ2 have small enough support, then an
application of stationary phase as τ →∞ for ξ̃ = τξ0, η̃ = τη0 gives the asymptotic
expansion of the pairing. It is found, when h = 0, k 6= 0 or k = 0, h 6= 0 that the
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leading term of the asymptotic expansion is given by

(2π)
5
2 e

πiσ
4 ρ1ρ2(x0, y0)

k
(
ξ̃, η̃

) ∣∣∣ξ̃∣∣∣ ||y0 − a| − |x0 − a|| 12
∣∣∣a(t(ξ̃))− y0

∣∣∣ 1
2

∣∣∣a′′ · ξ̃∣∣∣ 1
2

if h = 0, k 6= 0

(2π)
5
2 e

πiσ
4 ρ1ρ2(x0, y0)

h
(
ξ̃, η̃

)
|η̃| ||y0 − a| − |x0 − a||

1
2

∣∣∣a(t(ξ̃))− x0

∣∣∣ 1
2 |a′′ · η̃|

1
2

if k = 0, h 6= 0

where the signature factor σ is given by

σ = 2 + sgn((a′′(t) · ξ̃)(|ξ̃| − |η̃|)).
We note that since we have assumed that w lies in the flowout of the clean in-
tersection subset we have a′′(t) · ξ̃ 6= 0. Now we must divide by the value of ρ1ρ2

and account for the dependence of the asymptotics on the transverse Lagrangian,
graph dψ. Following the analysis in [H] or [D], it can be seen that the invariant ex-
pression of the symbol will be obtained by multiplying this asymptotic expression
by |P ∗

Lω|
1
2 , where PL is the linear projection of the tangent space to the Lagrangian

at w onto the tangent space to the fiber of T ∗(Ω×Ω) along the tangent space to the
graph of dψ at w, and ω is the volume induced in the fiber as the quotient of the
volume from the symplectic form and the volume on the base. (The projection is
non-singular by the hypothesis of transversal intersection.) These may be evaluated
when h = 0, k 6= 0 and h 6= 0, k = 0 using the same coordinates as were used in the
preceding calculations. Multiplying the leading terms above by these half-density
factors, it is found that both expressions produce

(8.12)
(2π)

5
2 e

iπσ
4

||y0 − a| − |x0 − a|| 12
.

Taking account that the signature factor changes by ±i along any line in the flowout
when passing through the diagonal, we may incorporate this in the denominator,
to obtain the square root of the difference of |y0 − a| and |x0 − a|. This analysis
breaks down when w corresponds to a point in Λ\Λ. However, one can also approach
the analysis of the Schwartz kernel of Rt

C ◦RC by another method. It can also be
expressed as the pushforward under the natural projection from Cv×Ω×Ω to Ω×Ω
of the pullback by a submersion of a conormal distribution on the product of two
two-spheres. One can then check that the tranversality condition of [GuS] is satisfied
above Λ away from the diagonal, so that the Schwartz kernel is a Lagrangian
distribution (in fact, conormal) on the flowout of the nonclean intersection subset
as well. Since the symbol must be smooth, we can extend by continuity the formula
obtained above.

The method used above for computing the symbol σ1 using (8.9) can also be
used to obtain the specific form of the principal symbol σ0; the details are worked
out in [La]. This was the version used by Ramaseshan in [R] where he needed to
compute the principal symbol of the Doppler transform restricted to the complex
of straight line through a space curve.

Finally we would like to point out that Propositions 3.1 and 3.3 have some
interesting consequences in tomography. It is sometimes taken as a useful approxi-
mation to represent the object to be reconstructed as a superposition of products of
a smooth function with the characteristic function of a set with smooth boundary,
which places it in the category of conormal distributions considered in section §2.
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The tomographer is interested in reconstructing the discontinuities (singularities)
of the object, but Propositions 3.1 and 3.3 say that a local method (applying a dif-
ferential or pseudodifferential operator to Rt

C◦RC ) will always produce artifacts due
to the flowout Lagrangian. More specifically, suppose µ is a conormal distribution
associated to a surface S and that (x0, ξ0, x0, ξ0) ∈ Σ. Let p(x, ξ) = (x−a(t(ξ))) · ξ,
for ξ in a conic neighborhood of ξ0 be as described prior to Theorem 8.1, let P (x,D)
be a pseudodifferential operator with symbol p(x, ξ), so that microlocally Λ′ = ΛP
with ΛP as in (3.3). One can then prove that char(P ) intersects N∗S transversally
at (x0, ξ0) provided that x0− a(t(ξ0)) is not an asymptotic vector to the surface at
x0. (Of course, this holds automatically if the surface has positive Gaussian curva-
ture at x0.) Using Λ0 = N∗S and Λ1 = ΛP ◦Λ0 as in Proposition 3.1, we have from
Theorem 7.1, Proposition 3.1, and Theorem 8.1 that if µ ∈ Ir(N∗S) has non-zero
symbol at (x0, ξ0) then Rt

C◦RCµ ∈ Ir−1(Λ0\Λ1) and Rt
C◦RCµ ∈ Ir−1(Λ1\Λ0), and

the symbol of the latter is non-zero. This means that the propagated singularities
have the same strength as the singularities which were to be recovered. (A similar
observation, in a specific case, was also made by Katsevich in [Ka].) However, the
structure of Λ1 in this case, being the conormal bundle of a ruled surface, may
provide evidence that it could be an artifact. Furthermore, applying P (x,D) to
Rt
C◦RCµ would decrease the order of the singularities in the flowout, though at the

expense of changing the symbol on Λ0 as well.
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[H] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183.
[H1] L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, Berlin,

1983.
[Ka] A. Katsevich, Cone beam local tomography, SIAM J. Appl. Math. 59 (1999), no. 6, 2224–

2246.

[La] I.-R. Lan, On an operator associated to a restricted X-ray transform, Ph.D. thesis, Oregon
State University, July 1999.

[LoMa] A. K. Louis and P. Maass, Contour reconstruction in 3-D X-Ray CT, IEEE Trans. Med.

Imag. 12 (1993), 764–769.
[MU] R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm.

Pure Appl. Math 32 (1979), 483–519.

[Q] E. T. Quinto, The dependence of the generalized Radon transform on defining measures,
Trans. Amer. Math. Soc. 257 (1980), no. 2, 331–346.

[Q1] E. T. Quinto, Singularities of the X-ray transform and limited data tomography in R2 and

R3, SIAM J. Math. Anal. 24 (1993), no. 5, 1215–1225.
[R] K. Ramaseshan, Microlocal analysis of the restricted Doppler transform, to appear J. Fourier

Analysis and Applications.

[SyU] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary problem,
Ann. of Math., 125 (1987), 153-169.

[SyU1] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem
arising in electrical prospection, Comm. Pure Appl. Math., 39(1986), 91-112.

[U] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Essays

on Harmonic Analysis and Partial Differential Equations, pp 295–345, Chicago Lectures in
Math., Univ. Chicago Press, Chicago, IL, 1999, edited by M. Christ, C. Kenig and C. Sadosky.

Department of Mathematics, Oregon State University, Corvallis, OR, 97331

E-mail address: finch@math.orst.edu

Veritas DGC Inc., 10300 Town Park Drive, Houston, TX 77072
E-mail address: ih-ren lan@veritasdgc.com

Department of Mathematics, University of Washington, Seattle, WA, 98195
E-mail address: gunther@math.washington.edu


