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Abstract. We establish inversion formulas of the so called filtered back-projection type to
recover a function supported in the ball in even dimensions from its spherical means over spheres
centered on the boundary of the ball. We also find several formulas to recover initial data of the form
(f, 0) (or (0, g)) for the free space wave equation in even dimensions from the trace of the solution
on the boundary of the ball, provided the initial data has support in the ball.
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1. Introduction and Statement of Results. The problem of determining a
function from a subset of its spherical means has a rich history in pure and applied
mathematics. Our interest in the subject was provoked by the new medical imaging
technologies called thermoacoustic and photoacoustic tomography. The idea behind
these [10, 16] is to illuminate an object by a short burst of radiofrequency or optical
energy which causes rapid (though small in magnitude) thermal expansion which
generates an acoustic wave. The acoustic wave can be measured on the periphery or
in the exterior of the object. The inverse problem we consider is to find the distribution
of the absorbed energy throughout the body. This is of interest, since the amount of
energy absorbed at different points may be diagnostic of disease or indicative of uptake
of probes tagged to metabolic processes or gene expression [9]. For a more thorough
discussion of the modelling and biomedical applications, the reader is referred to the
recent survey [17]. If the illuminating energy is impulsive in time, the propagation
may be modelled as an initial value problem for the wave equation. The problem of
recovering the initial data of a solution of the wave equation from the value of the
solution on the boundary of a domain is of mathematical interest in every dimension,
but for the application to thermo-/photoacoustic tomography it would appear that
the three dimensional case is the only one of interest, since sound propagation is
not confined to a lower dimensional submanifold. However, there exist methods of
measuring the generated wave field which do not rely on point measurements of the
sort that would be generated by an (idealized) acoustic transducer. In particular,
integrating line detectors, which have been studied in [3, 14], in effect compute the
integral of the acoustic wave field along a specified line. In this paper, we work under
the assumption that the speed of sound, c, is constant throughout the body, and
since the x-ray transform in a given direction of a solution of the three dimensional
wave equation is a solution of the two dimensional wave equation, the problem is
transformed. If a circular array of line detectors is rotated around an axis orthogonal
to the direction of the line detectors [7, 14], then for each fixed rotation angle the
measurement provides the trace of the solution of the two dimensional wave equation
on the circle corresponding to the array. The initial data of this two dimensional
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problem is the x-ray transform of the three dimensional initial data. If the inital data
can be recovered in the disk bounded by the detector array and assuming that the
projection of the object to be imaged lies in this disk, then the problem of recovering
the three dimensional initial data is reduced to the inversion of the x-ray transform
in each plane orthogonal to the axis of rotation. One such two dimensional problem
is illustrated in Figure 1.1.
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Fig. 1.1. Principle of thermoacoustic tomography with integrating line detectors. A
cylindrical array of line detectors records the acoustic field and is rotated around the axis e1. For
fixed rotation angle the array outputs the x-ray transform (projection along straight lines) of the trace
of the solution of the wave equation restricted to the boundary S of the disk. The initial condition
is given by the x-ray transform of the initially induced pressure restricted to lines orthogonal to the
base of the cylinder.

To our knowledge, the first work to tackle the problem of recovering a function
from its circular means with centers on a circle was [13], whose author was inter-
ested in ultrasound reflectivity tomography. He found an inversion method based
on harmonic decomposition and for each harmonic, the inversion of a Hankel trans-
form. This method has been the basis for most subsequent work on exact inversion
of circular means. The inversion of the Hankel transform involves a quotient of a
Hankel transform of a harmonic component of the data and a Bessel function. That
this quotient be well-defined turns out to be a condition on the range of the circular
mean transform [2]. See also [1] for range results on the spherical mean transform on
functions supported in a ball in all dimensions, and [6] for range results for the wave
trace map for functions supported in the ball in odd dimensions.

In the work of the first and third authors with Sarah Patch [5], several formulas
were found to recover a smooth function f with support in the closure B of the open
ball B ⊆ Rn from the trace of the solution of the wave equation on the product
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∂B × [0,diam(B)] provided that the space dimension is odd. Specifically, if u is the
solution of the initial value problem

utt −∆u = 0, in Rn × [0,∞) (1.1)

u(., t = 0) = f(.), ut(., t = 0) = 0, (1.2)

where f is smooth and has support in the B, then several formulas were found to
recover f from u(p, t) for p ∈ S := ∂B and t ∈ R+.

The first and third authors tried, at that time, to extend the method to even
dimensions, but did not see a way. Recently, the second author tried numerical
experiments using a two dimensional analog of one of the inversion formulas and
found that it gave excellent reconstructions. This prompted our re-examination of
the problem. Among the results of this paper is a proof of the validity of this formula.

To describe our results, we introduce some notation. The spherical mean trans-
form M is defined by

(M f)(x, r) =
1

|Sn−1|

∫

Sn−1

f(x + rθ) dS(θ) (1.3)

for f ∈ C∞(Rn) and (x, r) ∈ Rn × [0,∞). In this expression, |Sn−1| denotes the
area of the unit sphere Sn−1 in Rn and dS(θ) denotes area measure on the sphere.
In general, we write the area measure on a sphere of any radius as dS, except when
n = 2 when we write ds. We will denote the (partial) derivative of a function q with
respect to a variable r by ∂rq, except in a few formulas where the subscript notation
qr is used. At several points we use Dr to denote the operator

(Dru)(r) :=
(∂ru)(r)

2r

acting on smooth (even) functions u with compact support. Moreover, r will be used
to denote the operator that multiplies a function u(r) by r.

Our first set of results is a pair of inversion formulas for the spherical mean
transform in even dimensions. We state and prove these first in dimension two; that
is, for the circular mean transform.

Theorem 1.1. Let D ⊂ R2 be the disk of radius R0 centered at the origin, let
S := ∂D denote the boundary circle, and let f ∈ C∞(R2) with supp f ⊂ D. Then,
for x ∈ D,

f(x) =
1

2πR0
∆x

∫

S

∫ 2R0

0

r (M f)(p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p) (1.4)

and

f(x) =
1

2πR0

∫

S

∫ 2R0

0

(∂rr∂rM f) (p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p). (1.5)

In Theorem 1.1, ∂rr∂rM f denotes the composition of ∂r, r, ∂r andM applied to
f . The same convention will be used throughout the article to denote the composition
of any operators.

While M f has a natural extension to the negative reals as an even function,
we instead take the odd extension in the second variable. In view of the support
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hypothesis on f , this extension is also smooth. Then formula (1.5) has the following
corollary:

Corollary 1.2. With the same hypotheses as in Theorem 1.1, andM f extended
as an odd function in the second variable r, f can be recovered for x ∈ D by

f(x) =
1

2πR0

∫

S

∫ 2R0

−2R0

(r∂rM f)(p, r)

|x− p| − r
dr ds(p), (1.6)

and

f(x) =
1

2πR0

∫

S

|x− p|
∫ 2R0

−2R0

(∂rM f)(p, r)

|x− p| − r
dr ds(p), (1.7)

where the inner integrals are taken in the principal value sense.
These forms are very close to the standard inversion formula for the Radon trans-

form in the plane [12, Eq. (2.5)].
In higher even dimensions we prove a similar pair of results.
Theorem 1.3. Let B ⊂ Rn, n > 2 even, be the ball of radius R0 centered at the

origin, let S := ∂B be the boundary of the ball, set

cn = (−1)(n−2)/22((n− 2)/2)!πn/2 = (−1)(n−2)/2[((n− 2)/2)!]2|Sn−1|,

and let f ∈ C∞(Rn) have support in B. Then, for x ∈ B,

f(x) =
1

cnR0
∆x

∫

S

∫ 2R0

0

log
∣

∣r2 − |x− p|2
∣

∣ (rDn−2
r rn−2M f)(p, r) dr dS(p), (1.8)

f(x) =
2

cnR0

∫

S

∫ 2R0

0

log
∣

∣r2 − |x− p|2
∣

∣ (rDn−1
r rn−1∂rM f)(p, r) dr dS(p). (1.9)

Recently, Kunyansky [11] has also established inversion formulas of the filtered back-
projection type for the spherical mean transform. His method and results appear to
be very different than ours.

For some results, it will be more convenient to use the wave equation (1.1) with
initial condition

u(., t = 0) = 0, ut(., t = 0) = f(.), (1.10)

It is obvious that the solution of (1.1) with initial values (1.2) is the time derivative
of the solution of (1.1) with initial values (1.10). We denote by P the operator
which takes smooth initial data with support in B to the solution of (1.1), (1.10)
restricted to S× [0,∞) and by W the operator taking f to the solution of (1.1), (1.2)
restricted to S× [0,∞). These operators are simply related byW = ∂t P. An explicit
representation for P comes from the well-known formula [4]

u(p, t) =
1

(n− 2)!
∂n−2

t

∫ t

0

r(t2 − r2)(n−3)/2(M f)(p, r) dr. (1.11)

giving the solution of the initial value problem (1.1), (1.10), in dimension n ≥ 2. We
denote by P∗ and W∗ = −P∗ ∂t the formal L2 adjoints of P and W mapping from
smooth functions u ∈ C∞(S× [0,∞)) with sufficient decay in the second variable. An
explicit expression for P∗ u will be given in Section 3.
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We have two types of inversion results for the wave equation. The first type is
based on the inversion results for the spherical mean transform, since the spherical
mean transform itself can be recovered from the solution of the wave equation by
solving an Abel type equation. In dimension two, this approach yields the following
result.

Theorem 1.4. Let D ⊂ R2 be the open disc with radius R0 and let S := ∂D
denote the boundary circle. Then there exists a kernel function K : [0, 2R0]

2 → R

such that for any f ∈ C∞(R2) with support in D and any x ∈ D

f(x) =
1

R0π2
∆x

∫

S

∫ 2R0

0

(W f)(p, t)K(t, |x− p|) dt ds(p). (1.12)

An analytic expression for K will be given in Section 3.

Theorem 1.4 provides inversion formulas of the filtered back-projection type for
reconstruction of f from (W f)(p, t) = (∂t P f)(p, t) using only data with t ∈ [0, 2R0],
despite the unbounded support of W f and P f in t.

The second type of inversion results holds in all even dimensions and takes the
following form.

Theorem 1.5. Let f be smooth and supported in closure of the ball B of radius
R0 in R2m, and let P f and W f be as above. Then for x ∈ B

f(x) = − 2

R0

(

P∗ t∂2
t P f

)

(x), (1.13)

f(x) =
2

R0
(W∗ tW f) (x) = − 2

R0
(P∗ ∂tt∂t P f) (x). (1.14)

We will prove (1.13) in dimension n = 2m = 2 directly. The higher dimensional
case of (1.13), and (1.14) in all dimensions, are consequences of the following trace
identities, relating the L2 inner product of the initial data to the weighted L2 inner
product of the traces of the solutions of the wave equation.

Theorem 1.6. Let f, g be smooth and supported in the ball B of radius R0, in
R2m with m ≥ 1, let S := ∂B, and let u (resp. v) be the solution of the initial value
problem (1.1), (1.10) with initial value f (resp. g). Then

∫

B

f(x)g(x) dx = − 2

R0

∫

S

∫ ∞

0

tutt(p, t)v(p, t) dt dS(p), (1.15)

∫

B

f(x)g(x) dx =
2

R0

∫

S

∫ ∞

0

tut(p, t)vt(p, t) dt dS(p). (1.16)

In the proof of this theorem, (1.15) for n = 2 follows from (1.13) for n = 2,
while (1.15) in higher even dimensions is derived from the n = 2 case; (1.16) is a
consequence of (1.15) in all dimensions. We remark that these identities were already
proved in [5] for odd dimensions, and so they hold for all dimensions.

Section 2 is devoted to the proof of the inversion formulas for the spherical mean
transform, that is, Theorems 1, 2, and Corollary 1. Section 3 treats the wave equation
and contains the proofs of Theorems 3, 4, and 5. This is followed by a section reporting
on the implementation of the various reconstruction formulas of the preceding sections
and results of numerical tests, in dimension two.
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2. Spherical Means. In this section we prove the Theorems related to the inver-
sion from spherical means and Corollary 1.2. We begin by establishing an elementary
integral identity, which is the key to the results in this paper.

Proposition 2.1. Let D ⊂ R2 be the disk of radius R0, and let S = ∂D be the
boundary circle. Then for x, y ∈ D with x 6= y,

∫

S

log
∣

∣|x− p|2 − |y − p|2
∣

∣ ds(p) = 2πR0 log |x− y|+ 2πR0 log R0. (2.1)

Proof. Let x 6= y both lie in D and let I denote the integral on the left on (2.1).
Expanding the argument of the logarithm as

∣

∣|x− p|2 − |y − p|2
∣

∣ = 2R0|x− y|
∣

∣

∣

∣

(

x + y

2R0
− p

R0

)

· x− y

|x− y|

∣

∣

∣

∣

,

setting e := x−y
|x−y| , and writing p = R0θ for θ ∈ S1, we have

I = 2πR0 log (2R0|x− y|) + R0

∫

S1

log |e · θ − a| dθ, (2.2)

where

a =
x + y

2R0
· e =

|x|2 − |y|2
2R0|x− y| .

We note that |a| < 1.
Using the parameterization θ = cos(φ)e+sin(φ)e⊥, the integral term on the right

of (2.2) has the form

R0

∫ 2π

0

log | cos φ− a| dφ.

Writing a = cosα and using the sum to product trigonometric identity cosφ−cos α =
−2 sin ((φ + α)/2) sin ((φ− α)/2), this is equal to

R0

∫ 2π

0

(log 2 + log | sin ((φ + α)/2) |+ log | sin ((φ− α)/2) |) dφ.

By periodicity, and two linear changes of variable, this reduces to

R0

∫ 2π

0

(log 2 + 2 log | sin(φ/2)|) dφ = 2R0π log 2 + 4R0

∫ π

0

log sin u du,

which is independent of α, and hence of x and y. The latter integral in can be found
in tables, and is equal to −R0π log 2, so the sum is −2πR0 log 2. Substituting in (2.2)
gives the desired result.

Proposition 2.1 is already enough to establish Theorem 1.1.
Proof. [Proof of Theorem 1.1] Let f ∈ C∞(R2) be supported in D and let p be

any point in S = ∂B. Using the definition ofM f and Fubini’s theorem, we have that

∫ 2R0

0

(rM f)(p, r)q(r) dr =
1

2π

∫

R2

f(p + z)q(|z|) dz, (2.3)
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for any measurable function q provided that the product of functions on the right is
absolutely integrable. Applying this with q(r) = log

∣

∣r2 − |x− p|2
∣

∣ and making the
change of variables y = p + z gives

∫

S

∫ 2R0

0

(rM)(f)(p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p)

=
1

2π

∫

S

∫

R2

f(y) log
∣

∣|y − p|2 − |x− p|2
∣

∣ dy ds(p).

Fubini’s theorem again justifies the change of order of integration in the iterated
integral on the right hand side, and so

1

2π

∫

R2

f(y)

∫

S

log
∣

∣|y − p|2 − |x− p|2
∣

∣ ds(p) dy

=
2πR0

2π

∫

R2

f(y)(log |x− y|+ log R0) dy

upon application of (2.1). Recalling that for any constant c, 1/(2π) log |x − y| + c is
a fundamental solution of the Laplacian in R2, we have

f(x) =
1

2πR0
∆x

∫

S

∫ 2R0

0

(rM f)(p, r) log |r2 − |x− p|2| dr ds(p),

which proves (1.4).
The second formula, (1.5), has a similar proof. In this case, we use that the

spherical means satisfy the Euler-Poisson-Darboux equation [4]

(∂2
rM f)(x, r) +

1

r
(∂rM f)(x, r) = (∆M f)(x, r) = (M∆f)(x, r).

The left hand side of the Darboux equation may be written as (1/r)(∂rr∂rM f)(x, r),
so the expression on the right of (1.5) may be rewritten as

1

2πR0

∫

S

∫ 2R0

0

(rM∆f)(p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p). (2.4)

Again applying (2.3), now with the function q(r) = r log
∣

∣r2 − |x− p|2
∣

∣ and ∆f instead
of f , interchanging the order of integration and using (2.1) shows that the expression
(2.4) is equal to

1

2π

∫

R2

∆yf(y)(log |x− y|+ log R0) dy = f(x),

since no boundary terms arise in view of the support hypothesis on f .
Proof. [Proof of Corollary 1.2] Let x ∈ D, and let

U(p, x) :=

∫ 2R0

0

(∂rr∂rM f) (p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr

denote the inner integral in (1.5). Taking the support of f into account, writing the
logarithm as

log
∣

∣r2 − |x− p|2
∣

∣ = log |r − |x− p||+ log |r + |x− p|| ,
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and integrating (1.5) by parts leads to

U(p, x) = −P.V.

∫ ∞

0

(r∂rM f)(p, r)

r − |x− p| dr −
∫ ∞

0

(r∂rM f)(p, r)

r + |x− p| dr.

Here we have used that the distributional derivative of log |r| is P.V. 1
r as well as an

ordinary integration by parts. Therefore (1.5) implies

f(x) =
1

2πR0

∫

S

U(p, x)ds(p)

=
−1

2πR0

∫

S

∫ 2R0

0

(r∂rM f)(p, r)

r − |x− p| dr ds(p)

− 1

2πR0

∫

S

∫ 2R0

0

(r∂rM f)(p, r)

r + |x− p| dr ds(p),

(2.5)

where the inner integral of the first term on the right is taken in the principal value
sense. The odd extension of M f , M f(p,−r) := −M f(p, r), is smooth on R

since M f vanishes to infinite order at r = 0 by the support hypothesis on f and
(r∂rM f)(p, r) is an odd function in r. Substituting r = −r in the last integral in
(2.5) gives

f(x) =
−1

2πR0

∫

S

∫ 2R0

0

(r∂rM f)(p, r)

r − |x− p| dr ds(p)

− 1

2πR0

∫

S

∫ 0

−2R0

(r∂rM f)(p, r)

r − |x− p| dr ds(p)

and hence

f(x) =
1

2πR0

∫

S

∫ 2R0

−2R0

(r∂rM f)(p, r)

|x− p| − r
dr ds(p).

This is (1.6). To prove (1.7), it suffices to write

r

|x− p| − r
= −1 +

|x− p|
|x− p| − r

in (1.6) and to note that
∫ 2R0

−2R0
(∂rM f)(p, r) dr = 0, by the support hypothesis on f .

2.1. Proof of Theorem 1.3. We have found several proofs of Theorem 1.3, the
extension of Theorem 1.1 to higher even dimensions. The one we present is based
on reduction of the higher dimensional problem to the two dimensional case already
established. Another, which is not presented in this article, is based on an extension
of (2.1) to higher dimensions.

We first observe that by a dilation, we may reduce the problem to the case when
f is supported in the unit ball. Tracing through the formulas (1.8) and (1.9) it is
routine to verify that scaling from the unit ball to the ball of radius R0 introduces a
factor of R0. To simplify notation, we shall now suppose that f is supported in the
unit ball B. Let Q and N denote the operators

(Qf)(x) = ∆x

∫

S

∫ 2

0

(rDn−2
r rn−2M f)(p, r) log

∣

∣r2 − |x− p|2
∣

∣ dr dS(p), (2.6)

(Nf)(x) =

∫

S

∫ 2

0

(rDn−1
r rn−1∂rM f)(p, r) log

∣

∣r2 − |x− p|2
∣

∣ dr dS(p), (2.7)
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that map f ∈ C∞(Rn) supported in B to constant multiples of the the right hand
sides of (1.8) and (1.9). Moreover 〈f, g〉 denotes the L2 product of two functions
supported in B. To establish Qf = cnf and Nf = (cn/2)f we will use the following
auxiliary results.

Proposition 2.2. Let f , g be smooth and supported in B. Then
∫

Rn

(Qf)(x)g(x) dx = 〈Qf, g〉 = 2〈f,Ng〉 = 2

∫

Rn

f(x)(Ng)(x) dx. (2.8)

Proof. Let F = M f and G = M g. We introduce the temporary notation
F̃ (p, r) = rDn−2

r rn−2F (p, r). Using the self-adjointness of ∆, applying Fubini’s theo-
rem and an n-dimensional analogue of (2.3), we obtain

〈Qf, g〉 =

∫

B

(
∫

S

∫ 2

0

(rDn−2
r rn−2F )(p, r) log

∣

∣r2 − |x− p|2
∣

∣ dr dS(p)

)

(∆xg)(x) dx

= |Sn−1|
∫

S

∫ 2

0

(
∫ 2

0

F̃ (p, r) log
∣

∣r2 − r̄2
∣

∣ (M∆xg)(p, r̄)r̄n−1 dr̄

)

dr dS(p)

= |Sn−1|
∫

S

∫ 2

0

(
∫ 2

0

F̃ (p, r) log
∣

∣r2 − r̄2
∣

∣ dr

)

(M∆xg)(p, r̄)r̄n−1 dr̄ dS(p)

= |Sn−1|
∫

S

∫ 2

0

(
∫ 2

0

F̃ (p, r) log
∣

∣r2 − r̄2
∣

∣ dr

)

∂r̄ r̄
n−1∂r̄G(p, r̄) dr̄ dS(p).

(2.9)

To justify the last equation it is used that G satisfies the Euler-Poisson-Darboux
equation and the identity r̄n−1(∂2

r̄ + n−1
r̄ ∂r̄) = ∂r̄(r̄

n−1∂r̄). Applying the identities

(Dn−2
r )∗r log |r2 − r̄2| = (−1)n−2rDn−2

r log |r2 − r̄2| = rDn−2
r̄ log |r2 − r̄2| in two

stages to the last expression, this becomes

|Sn−1|
∫

S

∫ 2

0

(
∫ 2

0

rn−1F (p, r)Dn−2
r̄ log |r2 − r̄2| dr

)

(

∂r̄ r̄
n−1∂r̄G(p, r̄)

)

dr̄ dS(p)

=

∫

S

∫ 2

0

(
∫

B

f(y)Dn−2
r̄ log ||y − p|2 − r̄2| dy

)

(

∂r̄ r̄
n−1∂r̄G(p, r̄)

)

dr̄ dS(p)

=

∫

B

(
∫

S

∫ 2

0

log
∣

∣|y − p|2 − r̄2
∣

∣ ((D∗
r̄ )n−2∂r̄ r̄

n−1∂r̄G)(p, r̄) dr̄ dS(p)

)

f(y) dy

after applying Fubini’s theorem. This is finally seen to be equal to 〈f, 2Ng〉 since
(Dn−2

r̄ )∗∂r̄ = 2r̄(−1)n−2Dn−1
r̄ .

We now look at the spherical means of products

f(x) = ρkα(ρ)Φ(θ), (2.10)

where x = ρθ with ρ ≥ 0, θ ∈ Sn−1, Φ is a spherical harmonic of degree k, and
α : R → R is an even smooth function supported in [−1, 1]. Let F := M f be
extended to an even function in the second component and let ν = n + 2k. Then F
satisfies the initial value problem (IVP) for the Euler-Poisson-Darboux equation

(

∂2
rF +

n− 1

r
∂rF

)

(x, r) = ∆xF (x, r), (x, r) ∈ Rn ×R (2.11)

F (x, 0) = α(ρ)ρkΦ(θ), ∂rF (x, 0) = 0, x ∈ Rn, (2.12)
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and, conversely, any solution of (2.11), (2.12), is the spherical mean of the initial
values. The unique solution of (2.11), (2.12) has the form F (x, r) = ρkA(ρ, r)Φ(θ)
where A(ρ, r) is the solution of the IVP

(LnA)(ρ, r) =

(

∂2
ρA +

ν − 1

ρ
∂ρA

)

(ρ, r), (ρ, r) ∈ R2, (2.13)

A(ρ, 0) = α(ρ), ∂ρA(ρ, 0) = 0, ρ ∈ R. (2.14)

Here (LnA)(ρ, r) := (∂2
rA + n−1

r ∂rA)(ρ, r).
We recall that the operator Dr satisfies LnDr = DrLn−2 and for any µ ∈ N

(

∂2
r +

1− µ

r
∂r

)

(rµw) = rµ

(

∂2
r +

1 + µ

r
∂r

)

w,

that is L2−µrµ = rµLµ+2. So

(L2−µ+2σDσ
r rµw)(r) = (Dσ

r L2−µrµw)(r) = (Dσ
r rµLµ+2w)(r). (2.15)

If we set µ = n− 2 and σ = (n− 2)/2 in (2.15), then µ + 2 = n and 2− µ + 2σ = 2.
Therefore

(L2D
(n−2)/2
r rn−2w)(r) = (D(n−2)/2

r rn−2Lnw)(r). (2.16)

Now we set

H(ρ, r) :=
1

((n− 2)/2)!
(D(n−2)/2

r rn−2A)(ρ, r). (2.17)

Since A(ρ, r) is even in r and Dr corresponds to differentiation with respect to r2,

H(ρ, r) is even in r. Moreover, by (2.14), H(ρ, 0) = 1
((n−2)/2)!A(ρ, 0)(D

(n−2)/2
r rn−2) =

α(ρ), and therefore from (2.13) and (2.16) it follows that H is the solution of the IVP

(

∂2
rH +

1

r
∂rH

)

(ρ, r) =

(

∂2
ρH +

ν − 1

ρ
∂ρH

)

(ρ, r), (ρ, r) ∈ R2, (2.18)

H(ρ, 0) = α(ρ), ∂rH(ρ, 0) = 0, ρ ∈ R, (2.19)

Proposition 2.3. Let Ai(ρ, r), i = 1, 2 solve (2.13) with n = 2, subject to initial
conditions Ai(ρ, 0) = αi(ρ), ∂rAi(ρ, 0) = 0, where αi are smooth even functions with
support in [−1, 1] and ν ≥ 2 is even. Then

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ = −
∫ 2

0

∫ 2

0

rA1(1, r)∂r̄ log |r2 − r̄2| r̄(∂r̄A2)(1, r̄) dr̄ dr.

(2.20)

Proof. Let k = (ν − 2)/2 and let Φ(θ) be a nontrivial real circular harmonic of
degree k. Then Fi(x, r) := Ai(ρ, r)ρkΦ(θ) satisfies (2.11), (2.12) for n = 2, and so is
the circular mean of its initial value, fi(x) = αi(ρ)ρkΦ(θ). By (1.4), f1 = 1

2π Qf1, and
using (2.9) gives

〈f1, f2〉 =
1

2π
〈Qf1, f2〉

=

∫

S

∫ 2

0

∫ 2

0

rF1(p, r) log |r2 − r̄2|(∂r̄ r̄∂r̄F2)(p, r̄) dr dr̄ ds(p).
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Taking account the form of Fi and that ρ = 1 on S, this may be rewritten as

〈f1, f2〉 =
∫

S

Φ2(p) ds(p)

∫ 2

0

∫ 2

0

rA1(1, r) log |r2 − r̄2|(∂r̄ r̄∂r̄A2)(1, r̄) dr dr̄. (2.21)

Appealing to the form of fi = F (x, 0),

〈f1, f2〉 =
∫ 1

0

ρ(ρkα1)(ρ
kα2) dρ

∫

S

Φ2(p) ds(p)

=

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ

∫

S

Φ2(p) ds(p).

(2.22)

Since
∫

S
Φ2(p) ds(p) 6= 0, a comparison of (2.21) and (2.22) and an integration by

parts on the right side of (2.21) establishes (2.20) which completes the proof.
Proof. [Proof of Theorem 1.3] Let {Φj} be an orthonormal basis for the spherical

harmonics on Sn−1, and consider fi, i = 1, 2 of the form (2.10) with α = αi and
Φ = Φji

of possibly different degrees. Let Fi be the even extensions ofM fi as above.
Then by orthogonality, 〈f1, f2〉 = 0 unless j1 = j2, in which case

〈f1, f2〉 =
∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ, (2.23)

with ν = n + 2k, where k is the degree of Φj1 . Evaluating 〈Qf1, f2〉 by (2.9), and
using that Fi = ρkiAi(ρ, r)Φji

, we see that it is also zero unless j1 = j2. In this case
we have

〈Qf1, f2〉 = |Sn−1|
∫ 2

0

∫ 2

0

(rDn−2
r rn−2A1)(1, r) log |r2 − r̄2|Ã2(1, r̄) dr dr̄,

= |Sn−1|
∫ 2

0

∫ 2

0

(D
n−2

2
r rn−2A1)(1, r)(D

∗
r )

n−2

2 (r log |r2 − r̄2|)Ã2(1, r̄) dr dr̄

= |Sn−1|
∫ 2

0

∫ 2

0

r(D
n−2

2
r rn−2A1)(1, r)D

n−2

2

r̄ log |r2 − r̄2|Ã2(1, r̄) dr dr̄, (2.24)

where we have abbreviated Ã2 = ∂r̄ r̄
n−1∂r̄A2 and used

(D(n−2)/2
r )∗r log |r2−r̄2| = (−1)(n−2)/2rD(n−2)/2

r log |r2−r̄2| = rD
(n−2)/2
r̄ log |r2−r̄2|.

Applying the adjoint (distributional derivative) again in (2.24), and using Â1(r) to

abbreviate r(D
n−2

2
r rn−2A1)(1, r) which depends only on r,

〈Qf1, f2〉 = |Sn−1|
∫ 2

0

∫ 2

0

Â1(r) log |r2 − r̄2|(D
n−2

2

r̄ )∗(∂r̄ r̄
n−1∂r̄A2)(1, r̄) dr dr̄

= |Sn−1|
∫ 2

0

∫ 2

0

Â1(r) log |r2 − r̄2|(−1)
n−2

2 (∂r̄D
n−2

2

r̄ r̄n−1∂r̄A2)(1, r̄) dr dr̄

= |Sn−1|(−1)n/2

∫ 2

0

∫ 2

0

Â1(r)∂r̄ log |r2 − r̄2|(D
n−2

2

r̄ r̄n−1∂r̄A2)(1, r̄) dr dr̄.

We now use the following identity, which is readily proved by induction,

D
(n−2)/2
r̄ r̄n−1∂r̄q = r̄∂r̄D

(n−2)/2
r̄ r̄n−2q
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taking q = A2, and observe that defining Hi by (2.17) with A = Ai, it then holds that

〈Qf1, f2〉 = γn

∫ 2

0

∫ 2

0

rH1(1, r)∂r̄ log |r2 − r̄2| r̄(∂r̄H2)(1, r̄) dr dr̄,

for γn = |Sn−1|(−1)n/2[((n − 2)/2)!]2. By (2.18) and (2.19) the Hi satisfy the hy-
potheses of Proposition 2.3 with initial data αi, so by (2.20) the expression on the
right is equal to

−γn

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ.

Thus we have proved that for fi of the form above

〈Qf1, f2〉 = (−1)(n−2)/2|Sn−1|[((n− 2)/2)!]2〈f1, f2〉. (2.25)

We note that the constant on the right is cn of Theorem 1.3. By linearity and
orthogonality of spherical harmonics, this still holds when either f1 or f2 is replaced
by a finite linear combination of such functions. The set of finite linear combinations
of functions of form (2.10) is dense in L2, and so we have Qf = cnf in L2 when f is
a finite linear combination of functions of the form (2.10). Now, let g be smooth with
support in the unit ball. Applying Proposition 2.2, it follows that

〈f,Ng〉 = (1/2)〈Qf, g〉 = (cn/2)〈f, g〉. (2.26)

for all f as above. Since (2.26) holds for a dense subset of functions f in L2(B), it
implies that Ng = (cn/2)g almost everywhere in B. However, Ng is easily seen to be
a continuous function, and so Ng = (cn/2)g holds pointwise in B, which is (1.9). But
if N is a multiple of the identity, then so Q, and the proof is complete.

3. The Wave Equation. We begin the analysis of recovery of initial data from
the trace of the solution of the wave equation on the lateral boundary of the cylinder.
As mentioned in the introduction, we have two types of inversion results. The first,
Theorem 1.4, is really a corollary of one of the inversion formulas for circular means
from the previous section.

Proof. [Proof of Theorem 1.4] Let u(x, t) to be the solution of the IVP (1.1), (1.2)
in dimension two. Then by (1.11),

u(p, t) = ∂t

∫ t

0

(rM f)(p, r)√
t2 − r2

dr.

for p ∈ S. We can recover the circular means from u by the standard method of
inverting an Abel type equation. The details are not hard and may be found, for
example, in [12]. The result is

(M f)(p, r) =
2

π

∫ r

0

u(p, t)√
r2 − t2

dt. (3.1)
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Inserting (3.1) into the inversion formula (1.4) forM and applying Fubini’s theorem,
gives, for x ∈ D,

f(x) =
1

2πR0
∆

∫

S

∫ 2R0

0

(rM f)(p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p).

=
1

R0π2
∆

∫

S

∫ 2R0

0

r

∫ r

0

u(p, t)√
r2 − t2

log
∣

∣r2 − |x− p|2
∣

∣ dt dr ds(p)

=
1

R0π2
∆

∫

S

∫ 2R0

0

u(p, t)

∫ 2R0

t

r√
r2 − t2

log
∣

∣r2 − |x− p|2
∣

∣ dr dt ds(p)

=
1

R0π2
∆

∫

S

∫ 2R0

0

u(p, t)K(t, |x− p|) dt ds(p).

Since u(p, t) = (W f)(p, t), this is (1.12), with

K(t, r̄) :=

∫ 2R0

t

r√
r2 − t2

log
∣

∣r2 − r̄2
∣

∣ dr. (3.2)

The integral in (3.2) can be evaluated exactly. For the sake of completeness, we give

the analytic expression. If we substitute r =
√

t2 + ξ2 in (3.2), then dr = (ξ/r)dξ
and thus

K(t, r̄) =

∫

√
4R2

0
−t2

0

log
∣

∣ξ2 + (t2 − r̄2)
∣

∣ dξ

=
√

4R2
0 − t2

(

−2 + log |4R2
0 − r̄2|

)

+ Γ(t, r̄),

where

Γ(t, r̄) =











√
r̄2 − t2 log

√
4R2

0
−t2+

√
r̄2−t2√

4R2
0
−t2−

√
r̄2−t2

t < r̄,

2
√

t2 − r̄2 arctan
√

4R2
0
−t2

t2−r̄2 t > r̄.

For the second type of inversion formula, we start by deriving a representation of
the formal adjoint P∗, for n = 2. For any continuous function G(p, t) on S × [0,∞)
that has a small amount of decay as t→∞, by Fubini’s theorem, we have

〈P f, G〉 =
∫

S

∫ ∞

0

(P f)(p, t)G(p, t) dt ds(p)

=
1

2π

∫

S

∫ ∞

0

G(p, t)

(
∫ t

0

r√
t2 − r2

∫

S1

f(p + rω) ds(ω) dr

)

dt ds(p)

=
1

2π

∫

S

∫ ∞

0

(
∫ t

0

∫

S1

f(p + rω)√
t2 − r2

r dr dS(ω)

)

G(p, t) dt ds(p)

=
1

2π

∫

S

∫ ∞

0

(

∫

R2

f(y)
√

t2 − |y − p|2
χ({|y − p| < t}) dy

)

G(p, t) dt ds(p)

=
1

2π

∫

R2

f(y)

(

∫

S

∫ ∞

|y−p|

G(p, t)
√

t2 − |y − p|2
dt ds(p)

)

dy

= 〈f, P∗ G〉,
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where

(

P∗ G
)

(y) :=
1

2π

∫

S

∫ ∞

|y−p|

G(p, t)
√

t2 − |y − p|2
dt ds(p) . (3.3)

The integral in (3.3) will be absolutely convergent for continuous G provided that G
has a small amount of decay as t → ∞, for example if G(p, t) = O(1/tα), as t → ∞,
for some α > 0.

Next, we note a differentiation formula for the fractional integral appearing in
(1.11).

Proposition 3.1. Let h be differentiable on [0,∞). Then, for t > 0,

∂t

∫ t

0

r h(r)√
t2 − r2

dr =
1

t

∫ t

0

r (∂rrh)(r)√
t2 − r2

dr. (3.4)

Proof. Making the change of variable r = tξ in the integral on the left we have to
evaluate

∂t

∫ 1

0

ξ
√

1− ξ2
th(tξ) dξ.

Here differentiation under the integral yields
∫ 1

0
ξ√

1−ξ2
(tξh′(tξ) + h(tξ)) dξ, which

is equal to the expression on the right side after changing back to integration with
respect to r = tξ.

Proof. [Proof of (1.13) in Theorem 1.5 for n = 2.] We compute (P∗ t∂2
t P f)(x)

for smooth f supported in B and x ∈ B. The function t∂2
t P f has decay of order

1/t2 as t → ∞, and so lies in the domain of P∗. Using the definitions of P and P∗,
and relation (3.4),

(P∗ t∂2
t P f)(x)

=
1

2π

∫

S

∫ ∞

|x−p|
∂2

t

(
∫ t

0

r (M f)(p, r)√
t2 − r2

dr

)

t dt ds(p)
√

t2 − |x− p|2

=
1

2π

∫

S

∫ ∞

|x−p|
∂t

(

1

t

∫ t

0

r (∂rrM f)(p, r)√
t2 − r2

dr

)

t dt ds(p)
√

t2 − |x− p|2
.

Carrying out the differentiation in t using the chain rule, using again (3.4), and
combining terms, the last integral can be rewritten as

1

2π

∫

S

∫ ∞

|x−p|

(

∫ r

0

r (∂rr∂rrM f)(p, r)− r (∂rrM f)(p, r)

t
√

t2 − |x− p|2
√

t2 − r2
dr

)

dt ds(p).

Using the identity

∂rr∂rrh− ∂rrh = ∂rr(∂rrh− h) = ∂rrr∂rh = ∂rr
2∂rh

and applying Fubini’s theorem (P∗ t∂2
t P f)(x) is in turn is equal to

1

2π

∫

S

∫ ∞

0

r (∂rr
2∂rM f)(p, r)

(

∫ ∞

max(|x−p|,r)

dt

t
√

t2 − |x− p|2
√

t2 − r2

)

dr ds(p).
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The inner integral evaluates to

1

2r|x− p| log
r + |x− p|
|r − |x− p||

giving

(P∗ t∂2
t P f)(x) =

1

4π

∫

S

(
∫ ∞

0

(∂rr
2∂rM f)(p, r) log

r + |x− p|
|r − |x− p||dr

)

ds(p)

|x− p| . (3.5)

Treating the inner integral in principal value sense, and integrating by parts, it is
equal to the limit as ε→ 0 of boundary terms

[

(r2∂rM f)(p, r) log
r + |x− p|
|x− p| − r

]|x−p|−ε

0

+

[

(r2∂rM f)(p, r) log
r + |x− p|
r − |x− p|

]∞

|x−y|+ε

plus the term

Iε := −
∫

R+\[|x−p|−ε,|x−p|+ε]

(r∂rM f)(p, r) r∂r log
r + |x− y|
|r − |x− p|| dr.

Using thatM f is smooth, flat at r = 0, and of bounded support in (0,∞), the limit
of the boundary terms is zero. Using the identity

r∂r log
r + |x− p|
|r − |x− p|| = −|x− p|∂r log |r2 − |x− p|2|

followed by another integration by parts, yields the sum of another pair of boundary
terms and

Iε = −|x− p|
∫

R+\[|x−p|−ε,|x−p|+ε]

(∂rr∂rM f) (p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr.

The boundary terms again evaluate to zero as ε → 0 while the integral Iε converges
to

−|x− p|
∫ ∞

0

(∂rr∂rM f) (p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr.

Inserting this into (3.5) and taking into account the support of M f , gives

(P∗ t∂2
t P f)(x) = − 1

4π

∫

S

∫ 2R0

0

(∂rr∂rM f) (p, r) log
∣

∣r2 − |x− p|2
∣

∣ dr ds(p).

In view of (1.5) of Theorem 1.1, (1.13) in Theorem 1.5 is proved, for n = 2.
Proof. [Proof of Theorem 1.6] Formula (1.15), for n = 2, is an easy corollary

of the result just established. Indeed, for f, g smooth with compact support in the
closed disk of radius R0, then

〈f, g〉 = − 2

R0

〈

P∗ t∂2
t P f, g

〉

= − 2

R0

〈

t∂2
t P f, P g

〉

, (3.6)

which is (1.15) for n = 2, due to the definition of the operator P.
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In (1.15), the left hand side is symmetric in f and g, while the right side is not.
Thus there is a companion identity, reversing the roles of u and v on the right. Taking
the difference gives the equation

0 =

∫

S

∫ ∞

0

t(uttv − uvtt) dt ds(p).

Integrating by parts (the boundary terms vanish) yields

0 =

∫

S

∫ ∞

0

(utv − uvt) dt ds(p),

and another integration by parts proves

0 =

∫

S

∫ ∞

0

utv dt ds(p) =

∫

S

∫ ∞

0

uvt dt ds(p).

Using this and one integration by parts in (1.15) establishes (1.16), which completes
the proof of Theorem 1.6 for n = 2. The extension to higher (even) dimensions follows
almost word for word the proof from [5, Section 4.2], where the trace identities in odd
dimensions greater than three were proved from the three dimensional case.

Proof. [Proof of Theorem 1.5 for n > 2.] Reversing the chain of reasoning in (3.6)
proves (1.13) in L2 sense from (1.15). Similarly, (1.14) follows from (1.16). However,
as both sides are continuous functions when f is smooth, the formulas hold pointwise
as well.

4. Numerical results. In the previous sections, we have established several ex-
act inversion formulas to recover a function f supported in a closed disc D from either
its spherical means M f or the trace W f of the solution of the wave equation with
initial data (f, 0). However, those formulas require continuous data, whereas in prac-
tical applications only a discrete data set is available. For example, in thermoacoustic
tomography (see Figure 1.1) only a finite number of positions of the line detectors
and finite number of samples in time are feasible. In this section we derive discrete
filtered back-projection (FBP) algorithms with linear interpolation in dimension two
and present some numerical results.

The derived FBP algorithms are numerical implementations of discretized versions
of (1.4)-(1.7) and (1.12)-(1.14) and the derivation of any of them follows the same line.
We shall focus on the implementation of (1.5), assuming uniformly sampled discrete
data

F k,m := (M f)(pk, rm) , (k,m) ∈ {0, . . . , Nϕ} × {0, . . . , Nr} , (4.1)

where pk := R0 (cos(khϕ), sin(khϕ)), rm := mhr, hϕ := 2π/(Nϕ + 1) and hr :=
2R0/Nr. In order to motivate the derivation of a discrete FBP algorithm based on
(1.5), we introduce the differential operator D := ∂rr∂r and the integral operator

I : C∞
0 (S × [0, 2R0))→ C∞(S × [0, 2R0))

(I G)(p, r̄) :=

∫ 2R0

0

G(p, r) log |r2 − r̄2|dr
(4.2)
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which both act in the second component, and the so called back-projection operator

B : C∞(S × [0, 2R0))→ C∞(D)

(BG)(x) :=
1

2πR0

∫

S

G(p, |x− p|)ds(p)

=
1

2π

∫ 2π

0

G(p(ϕ), |x− p(ϕ)|)dϕ ,

(4.3)

where p(ϕ) := R0(cos ϕ, sin ϕ). Therefore, we can rewrite (1.5) as

f = (B I D)(M f) . (4.4)

In the numerical implementation the operators B, I, and D in (4.4) are replaced
with finite dimensional approximation B, I and D (as described below) and (4.4) is
approximated by

f(xi) ≈ f i := (BIDF)i , i ∈ {0, . . . , N}2 . (4.5)

Here F := (F k,m)k,m with F k,m defined by (4.1), xi := −(R0, R0) + ihx with i =

(i1, i2) ∈ {0, N}2 and hx := 2R0/N . In the following Sϕ,r and Sx denote the sampling
operators that map G ∈ C∞(S× [0, 2R0]) and f ∈ C∞(D) onto its samples, Sϕ,r G :=
(G(pk, rm))k,m and Sx f := f := (f(xi))i, where we set f(xi) := 0 if xi 6∈ D. Moreover,
| · |∞ denotes the maximum norm on either R(Nϕ+1)×(Nr+1) or R(N+1)×(N+1).

1. The operator D can be written as ∂r + r∂2
r . We approximate ∂rG with

symmetric finite differences
(

Gk,m+1 − Gk,m−1
)

/(2hr), ∂2
rG by

(

Gk,m+1 +

Gk,m−1 − 2Gk,m
)

/h2
r and the multiplication operator G 7→ rG by point-wise

discrete multiplication (Gk,m)k,m 7→ (rmGk,m)k,m. This leads to the discrete
approximation

D : R(Nϕ+1)×(Nr+1) → R(Nϕ+1)×(Nr+1) G 7→
(

DG)k,m
)

k,m
,

(DG)k,m :=
1

hr

(

(

m +
1

2

)

Gk,m+1 +
(

m− 1

2

)

Gk,m−1 − 2mGk,m

) (4.6)

where we set Gk,−1 := Gk,Nr+1 := 0. The approximation of ∂r with symmet-
ric finite differences is of second order and therefore |(Sϕ,r D−DSϕ,r)G|∞ ≤
C1h

2
r for some constant C1 which does not depend on hr.

2. Next we define a second order approximation to the integral operator I. This
is done by replacing G(pk, ·) in (4.2) by the piecewise linear spline T k[G] :
[0, 2R0]→ R interpolating G at the nodes rm. More precisely,

I : R(Nϕ+1)×(Nr+1) → R(Nϕ+1)×(Nr+1) : G 7→
(

(IG)k,m
)

k,m

is defined by

T k[G](r) := Gk,m +
r − rm

hr
(Gk,m+1 −Gk,m) , r ∈ [rm, rm+1] (4.7)



18 D. Finch, M. Haltmeier, and Rakesh

and

(IG)k,m :=

∫ 2R0

0

T k[G](r) log |r2 − (rm)2|dr

=

Nr−1
∑

m′=0

Gk,m′

(

∫ rm′+1

rm′

log |r2 − (rm)2|dr

)

+

Nr−1
∑

m′=0

Gk,m′+1 −Gk,m′

hr

(

∫ rm′+1

rm′

(r − rm′

) log |r2 − (rm)2|dr

)

.

(4.8)
For an efficient and accurate numerical implementation it is crucial that the
integrals in (4.8) are evaluated analytically. In fact, by straight forward com-
putation it can be verified that

(IG)k,m =

Nr−1
∑

m′=0

am
m′Gk,m′

+
1

hr

Nr−1
∑

m′=0

bm
m′

(

Gk,m′+1 −Gk,m′

)

,

am
m′ :=

[

(r − rm) log |r − rm|+ (r + rm) log |r + rm| − 2r
]rm′+1

r=rm′

,

bm
m′ := −rm′

am
m′ +

1

2

[

(r2 − (rm)2) log |r2 − (rm)2| − r2
]rm′+1

r=rm′

.

(4.9)
Moreover, using the fact that piecewise linear interpolation is of second order
[15] and that r 7→ log |r2− (rm)2| is integrable, it can be readily verified that
the approximation error satisfies |(Sϕ,r I − I Sϕ,r)G|∞ ≤ C2h

2
r with some

constant C2 independent of hr.
3. Finally, we define a second order approximation to the back-projection (4.3).

The discrete back-projection operator B : R(Nϕ+1)×(Nr+1) → R(N+1)×(N+1)

is obtained by approximating (4.3) with the trapezoidal rule and piecewise
linear interpolation (4.7) in the second variable,

(BG)i :=
1

Nϕ + 1

Nϕ
∑

k=0

T k[G](|xi − pk|) , xi ∈ D, (4.10)

and setting (BG)i := 0 for xi 6∈ D. It is well known [15] that both linear in-
terpolation in r and the trapezoidal rule in ϕ are second order approximations
and therefore |(Sx B−BSϕ,r)G|∞ ≤ C3 max

{

h2
r, h

2
ϕ

}

for some constant C3.
The discrete FBP algorithm is given by (4.5) with D, I, B defined in (4.6), (4.9),

(4.10) and is summarized in Algorithm 1. Using f(xi) = (Sx B I D F )i = (Sx f)i and
f i = (BIDSϕ,r F )i, the discretization error |f(xi)− f i| can be estimated as

|(Sx B I D−BIDSϕ,r)F |∞ ≤ |(Sx B−BSϕ,r)(I D F )|∞
+ |B(Sϕ,r I − I Sϕ,r)(D F )|∞
+ |BI(Sϕ,r D−DSϕ,r)(F )|∞.

(4.11)

Using the facts that B and I are bounded by some constant independent of hr and
that the approximation of D, I, B with D, I, B are of second order, implies that

|Sx f −BIDF|∞ ≤ C max
{

h2
r, h

2
ϕ

}

, (4.12)
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for some constant C independent of hr, hϕ. This shows that the derived FBP algo-
rithm has second order accuracy (for exact data).

Algorithm 1 Discrete FBP algorithm with linear interpolation for reconstruction of
f using data F.

1: hϕ ← 2π/(Nϕ + 1)
2: hr ← 2R0/Nr . initialization
3: for m,m′ = 0, . . . , Nr do . Pre-compute kernel
4: Calculate am

m′, bm
m′ according to (4.8)

5: end for

6:

7: for k = 0, . . . , Nϕ do . Filtering
8: for m = 0, . . . , Nr do

9: F k,m ←
(

m+1/2
)

F k,m+1 +
(

m− 1/2
)

F k,m−1− 2mF k,m . Equation (4.6)
10: end for

11: for m = 0, . . . , Nr do

12: F k,m ←∑Nr−1
m′=0 am

m′F k,m′

+
∑Nr−1

m′=0 bm
m′

(

F k,m′+1 − F k,m′

)

/hr .

Equation (4.9)
13: end for

14: end for

15:

16: for i1, i2 = 0, . . . , N do . BP with linear interpolation
17: i← (i1, i2)
18: f i ← 0
19: for k = 0, . . . , Nϕ do

20: Find m ∈ {0, . . . , Nr − 1} with rm ≤ |pk − xi| < rm+1

21: T ← F k,m + (r − rm)(F k,m+1 − F k,m)/hr . interpolation (4.7)
22: f i ← f i + T/(Nϕ + 1) . discrete back-projection (4.10)
23: end for

24: end for

In the numerical implementation, the coefficients in (4.9) are pre-computed and
stored. Therefore the numerical effort of evaluating (4.9) isO(N 2

r Nϕ). Moreover, (4.6)
requires O(NrNϕ) operations and the discrete FBP O(N 2Nϕ), since for all (N + 1)2

reconstruction points xi we have to sum over Nϕ + 1 center locations on S. Hence,
assuming N ∼ Nr and N ∼ Nϕ, Algorithm 1 requires O(N 3) operations and therefore
has the same numerical effort as the classical FBP algorithm used in x-ray CT [12].
Analogous to the procedure described above, discrete FBP algorithms were derived
using equation (1.4), (1.6) for inverting M and (1.12) for inverting W .

In the following we present numerical results of our FBP algorithms for reconstruc-
tion the phantom shown in the left picture in Figure 4.1, consisting of a superposition
of characteristic functions and one Gaussian kernel. We calculated the data M f via
numerical integration and the operator W f = ∂t P f using (1.11). Subsequently we
added 5% uniformly distributed noise toM f and 10% uniformly distributed noise to
W f . The results for N = Nϕ = Nr = 300 using the algorithms based on (1.4), (1.5),
(1.6) and (1.12) are depicted in Figures 4.2, 4.3 and 4.4. All implementations show
good results although no explicit regularization strategy is incorporated in order to
the regularize the involved (mildly) ill posed numerical differentiation. In particular,
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(1.6) and (1.12) appear to be most insensitive to noise. However, for noisy data, the
accuracy of FBP algorithms can be further improved by incorporating a regularizing
strategy similar to that used in [8]. The derived identities in this article provide the
mathematical foundation for further development of FBP algorithms for the inversion
from spherical means and the inversion of the wave equation.
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Fig. 4.1. Imaging phantom and data. Left: Imaging phantom f consisting of several char-
acteristic functions and one Gaussian kernel. Right: Simulated data F = M f .
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Fig. 4.2. Numerical Reconstruction with Algorithm 1. Top: Reconstructions from simulated
data. Bottom: Reconstructions from simulated data after adding 5% uniformly distributed noise.
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Fig. 4.3. Numerical reconstruction from spherical means with 5% noise added. Top:
Reconstruction using (1.4). Bottom: Reconstruction using (1.6).
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Fig. 4.4. Numerical reconstruction using (1.12) from trace W f of the solution of the
wave equation with 10% noise added.
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