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Abstract. We survey recent work on the attenuated x-ray transform, concentrating espe-
cially on the inversion formulas found in the last few years.

1. Introduction

The attenuated x-ray transform is a variant of the classical x-ray transform in which
functions are integrated over straight lines with respect to an exponential weight. It arises
as a model in single photon emission computed tomography (SPECT) and in the study of
the stationary linear single speed transport equation. Let a, f be continuous functions of
compact support in Rn and let θ be a unit vector. We define the divergent beam x-ray
transform of a at x in direction θ by

(1.1) Da(x, θ) =

∫ ∞

0

a(x+ sθ)ds

where the integration is with respect to arc length. The attenuated x-ray transform of f is
a function on the space of directed lines, whose value on the line l with direction θ is given
by

(1.2) Paf(l) =

∫
l

f(y(τ))e−Da(y(τ),θ)dτ,

where y(τ) is an arc length parametrization of l . When the attenuation, a, is identically zero,
the attenuated x-ray transform reduces to the ordinary x-ray transform. In the model of
single photon emission tomography, the function f represents the spatial density of emitters
which are assumed to emit photons isotropically. The function a is the linear attenuation
coefficient, and so the attenuated x-ray transform is supposed to represent the photon in-
tensity at a detector, collimated to accept only photons which have travelled along a specific
line. A useful survey of the physics can be found in [9]. (The density of emitters is called the
activity distribution, and so some authors denote it by a, whereas we use a for attenuation.)

In the plane, lines are often parametrized by their unit normal and directed distance from
the origin, as are hyperplanes in higher dimensions. In that case, the attenuated x-ray
transform is usually called the attenuated Radon transform and given by

(1.3) Raf(ω, p) =

∫
x·ω=p

f(x)e−Da(x,ω
⊥)dx

where if ω = (cosφ, sinφ) then ω⊥ = (− sinφ, cosφ). The exponential Radon transform in
R2 is given by

(1.4) Eµf(ω, p) =

∫
x·ω=p

f(x)eµx·ω
⊥
dx.
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If the attenuation a is a constant on a convex set containing the support of f , then the
attenuated Radon transform can be expressed in terms of the exponential Radon transform,
and vice versa. The theory of the exponential Radon (or x-ray) transform is far more
complete than that of the attenuated x-ray transform. The attenuated x-ray transform itself
is a special case of the generalized x-ray transform, where the measure e−Da ds is replaced
by a general measure µ(y, θ) ds. Even in this setting, Boman [7] has produced an example of
a smooth measure on lines in the plane so that the associated generalized Radon transform
has non-trivial kernel. One may further pass from lines in Euclidean space to curves on (or
submanifolds of) a manifold. There has been a great deal of work done on such generalized
Radon transforms, and many open questions remain, but we will only touch upon these
extensions in this paper.

There are several inverse problems which can be posed for the attenuated x-ray transform.
The simplest, and the one which has recently been solved, is the linear problem of recovering
the activity f when the attenuation a is known. A much harder problem is to determine
both f and a from Paf. Given the resolution of the linear inverse problem, this amounts to
determining a from Paf. This is called the identification problem, and it is easy to see that
there are rotationally invariant pairs of distinct a and f which give the same measurements,
even when a is constant. Nonetheless, some progress has been made if one assumes that f has
a special structure, e.g. a sum of delta functions, [28, 29] or a sum of point measures and an
Lp function, [6]. In the special case of the exponential Radon transform in two dimensions,
it has been proved that the identification problem has a unique solution if and only if f is
not radial, [39, 17]. While we won’t discuss the identification problem further in this article,
it is worth saying that one of the tools used by Natterer is a set of consistency conditions
for the range of the attenuated transform. The range is a topic discussed in Section 4, and
its application to the identification problem has been an important motivation in its study.

The first uniqueness results which applied to the attenuated transform were of local nature.
Local uniqueness for a generalized Radon transform Rµ means that each point x has a
neighborhood Ux so that no non-trivial f supported in Ux lies in the kernel of Rµ. The size of
Ux usually depends on some norms of the measure defining the generalized Radon transform,
and of its derivatives. Examples of such results can be found in [23, 24]. A method yielding
stronger local uniqueness results in the plane, as well as uniqueness for some problems
of integral geometry, was introduced by Mukhometov [25] in the mid 70’s. It was based
on energy type estimates for a boundary value problem for a partial differential equation
arising from a transport equation formulation of the integral transform. The method of
Mukhometov was adapted by the author, [13], in the special case of the attenuated x-ray
transform to prove uniqueness when the product of the diameter of the support of the activity
and the supremum norm of the attenuation was not too large. Subsequently, Mukhometov’s
method was systematized and extended by Sharafutdinov and collaborators. An account
may be found in his book [35]. Sharafutdinov also considered, see for example [36], the
uniqueness problem for the attenuated x-ray transform on a class of Riemannian manifolds
with boundary, where the integrals are taken over geodesics of the metric. The results
are of the form that if the the integral over all geodesic segments joining boundary points
of a weighted average of the attenuation and a geometric quantity depending on sectional
curvatures is not too large, then the x-ray transform is injective. To our knowledge, these
papers of Sharafutdinov are the only works on the attenuated x-ray transform on manifolds.
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The theory for the exponential transform is fairly complete, but will not be much discussed
in this paper. The first analytic inversion formulas were found in the late 1970’s, [5, 42].
Recently, [31], an inversion procedure when the data is only collected for a range of 180◦ has
been found (implementation is based on truncation of a Neumann series); this paper also
has a good bibliography on inversion methods. The range was first characterized, in a com-
plicated manner, by Kuchment and L’vin, [19], with later simplifications and extensions by
Kuchment and coworkers appearing in [2, 1] and elsewhere. Their most recent contribution,
[12], discusses a differential equation range characterization for a family of transforms which
encompasses the exponential transform.

To the author’s knowledge, most practical reconstruction in SPECT is done using iterative
methods. In conventional x-ray tomography the greater speed and provable convergence
properties of analytic methods have generally outweighed the benefits of iterative methods.
In SPECT, where the photon flux is much smaller, the statistics of the emission process
must be taken into account. The flexibility of iterative methods better allows them to
account for these effects, to incorporate prior information, and to be adapted to incomplete
sampling geometries. Of course, the price is that very little can be proved. The reader who
wants to pursue this side of the subject might start by scanning some recent issues of IEEE
Transactions on Medical Imaging or Physics in Medicine and Biology.

In the last five years, several exact inversion formulas have been found for the attenuated
x-ray transform, as well as some results on characterization of the range of the transform.
This paper is devoted to a survey of these results. In section 2 we introduce some standard
notations and review some background results from complex analysis. In the next section,
we sketch the methods of proof of the various inversion formulas. Section 4 is devoted to the
range results, and the last section mentions some open problems.

2. Background and Preliminaries

Each of the inversion formulas makes use in some way of boundary values of analytic
functions defined in a region in the complex plane. We recall a few results which we will
need later. The first result is the Plemelj-Sokhozki formulas for the boundary values of an
analytic function defined by a Cauchy integral. Suppose that L is a C1 oriented simple path
or simple closed curve in the complex plane, and that g is Holder continuous of order α on
L for some positive α. Let G(z) be defined for z ∈ C \ L by the Cauchy integral

G(z) =
1

2πi

∫
L

g(t)

t− z
dt.

Then G is holomorphic in C \ L and the following formulas hold. For a proof we refer the
reader to [26]. The existence of the principal value integrals is part of the assertion.

Proposition 2.1. Let g, G, and L be as above. If t0 ∈ L and is not either endpoint in the
case when L is not closed, then the limit of G from the left of L exists and is given by

G+(t0) =
1

2
g(t0) +

1

2πi

∫
L

g(t)

t− t0
dt,
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where the integral on L is taken in principal value sense. Similarly the limit from the right
exists and is given by

G−(t0) = −1

2
g(t0) +

1

2πi

∫
L

g(t)

t− t0
dt.

Corollary 2.1. Let g be Holder continuous of order α > 0 on the unit circle, and let G be
Cauchy integral of g, as above, for L the unit circle oriented counterclockwise. Then for ω
in the unit circle,

(2.1) G+(−ω⊥)−G+(ω⊥) =
1

2
(g(−ω⊥)− g(ω⊥)) +

1

2πi
p.v.

∫
S1

1

ω · θ
g(θ)dθ.

Proof. Let ζ = eiσ where ω = (cosσ, sinσ) and w = eiψ for θ = (cosψ, sinψ). Then by the
Plemelj-Sokhozki formula

G+(−iζ)−G+(iζ) =
1

2
(g(−iζ)− g(iζ)) +

1

2πi
p.v.

∫
S1

(
1

w + iζ
− 1

w − iζ

)
g(w)dw.

Combining terms in the integral and using dw = iwdψ, the integral becomes

p.v.

∫
S1

2wζ

w2 + ζ2
g(eiψ) dψ.

But ω · θ = 1
2
(ζw + wζ) which in turn is equal to w2+ζ2

2wζ
, since both w and ζ lie on the unit

circle. �

For f a smooth function with compact support on R the Hilbert transform of f is defined
by the principal value integral

(2.2) Hf(x) =
1

π
p.v.

∫
f(t)

x− t
dt.

The Hilbert transform extends to a bounded operator on Lp, for 1 < p <∞.
We shall use S(Rn) to denote the Schwartz space of infinitely differentiable functions f on

Rn which satisfy Dαf is O((1 + |x|)−k) for every natural number k and for every derivative
Dα. The space of oriented lines in the plane can be parametrized by S1 ×R either in x-ray
coordinates where (θ, s) corresponds to the line sθ⊥ + Rθ or in Radon coordinates in which
(θ, s) corresponds to sθ + Rθ⊥. In either case, we define the Schwartz space of the space
of lines to be the infinitely differentiable functions g on S1 × R such that ∂kθ∂

j
sg(θ, s) is

O((1 + |s|)−n) for every n ∈ N.
We shall frequently use the complex differential operators ∂

∂z
, also abbreviated ∂, and ∂

∂z
,

abbreviated ∂, defined as follows. In R2 with standard coordinates x and y,

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
)

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

With this notation, the Cauchy-Riemann equations for f = u + iv are written simply as
∂f = 0. Let D be an open set in the plane with C1 boundary. If g ∈ C1

0(R2) and ζ ∈ D then

(2.3) g(ζ) = − 1

π

∫
D

∂g

∂z
(x, y)

1

z − ζ
dx dy +

1

2πi

∫
∂D

g(x, y)
1

z − ζ
dz.

There is an analogous formula with kernel (z−ζ)−1 involving ∂g
∂z

obtained by conjugating the
preceding equation after g is replaced by g. If D is the entire plane, this shows that (πz)−1



THE ATTENUATED X-RAY TRANSFORM: RECENT DEVELOPMENTS 5

is a fundamental solution of the ∂ operator, and (πz)−1 is a fundamental solution for ∂. For
details see [18].

The function

(2.4) h(θ, s) =
1

2
(I + iH)Ra(θ, s)

plays a role in all of the inversion formulas. In this definition, I is the identity operator, R is
the Radon transform, and the Hilbert transform H is applied to Ra in the second variable.
Its importance was first discovered by Natterer [27, 28] in his work on consistency conditions
for the range of the attenuated transform. We have adopted his Radon parametrization
rather than the x-ray parametrization for that reason. Note that h(θ, x · θ) is constant on
oriented lines, but not independent of orientation since HRa(θ, x · θ) is odd in θ. Natterer
proved the following lemma, with a different proof. A proof similar to the one given here
was found by Boman and Strömberg [8].

Lemma 2.1. The coefficients of the Fourier expansion in the angular variable of the function
h(θ, x · θ)−Da(x, θ⊥) are zero for negative or even index.

Proof. Since Ra(θ, x · θ) = Da(x,−θ⊥) +Da(x, θ⊥) it needs to be shown that

1

2
(Da(x,−θ⊥)−Da(x, θ⊥)) +

i

2
HRa(θ, x · θ)

has the desired property. Writing the Hilbert transform of the Radon transform as an iterated
integral, and changing to polar coordinates yields

HRa(θ, x · θ) = − 1

π
p.v.

∫
S1

1

θ · ω
Da(x, ω)dω.

By the corollary to the Plemelj-Sokhozki relations (2.1) the combination is the boundary
value of an analytic function, and so has only non-negative Fourier coefficients. Since it is
also an odd function, the result follows. �

In fact more can be said: if
∑

k∈Zmk(x)e
ikφ is the Fourier series expansion of Da(x,−θ⊥)

then the Fourier expansion of h(θ, x · θ) − Da(x, θ⊥) is
∑

d>0m2d+1(x)e
i(2d+1)φ. This is the

form (after a rotation) in which the expression enters in [4].

3. Uniqueness and Inversion

In this section we will present the inversion formulas found in the last five years. They
are all formulated in two dimensions, but that is sufficient, since in higher dimensions one
may restrict the full attenuated x-ray transform to lines in a family of planes whose union
is the full space. (Whether in higher dimensions there exist other families of lines yielding
inversion formulas is an open question.) We will present the formulas in order of discovery.
Several of the authors have also stated uniqueness results for limited angle data, in which it
is supposed that the attenuated x-ray transform is known only for lines with directions lying
in a proper subset of the circle. The specific statements will be mentioned below.
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3.1. The approach of Arbuzov, Bukhgĕım, and Kazantsev. The first result, due to
Arbuzov, Bukhgĕım, and Kazantsev [4], is an application of the theory of A-analytic functions
developed by Bukhgĕım and collaborators. A summary of this theory may be found in [11].
The analysis begins with a formulation of the attenuated transform as a transport problem.
Let f be the activity distribution and a the attenuation, and let Ω be a bounded convex set in
the plane with smooth boundary. For a point x ∈ Ω, let τ±(x, θ) be the point of intersection
of the boundary and the ray from x in the direction ±θ. Let ∇ denote the gradient in space
and consider the stationary transport equation

(3.1) θ · ∇u(x, θ) + a(x)u(x, θ) = f(x).

This equation may be integrated along lines in direction θ to obtain

(3.2) e−Da(y,θ)u(y, θ)
∣∣τ+(x,θ)

τ−(x,θ)
=

∫ τ+

τ−

e−Da(y,θ)f(y)ds(y),

where the integral extends over the segment of the line through x in direction θ lying in Ω. The
right hand side is the attenuated x-ray transform of f and a restricted to Ω. Thus knowing
the boundary values of a solution of (3.1) determines the attenuated x-ray transform (since
a is assumed known). Since (3.1) is a parametrized family of ordinary differential equations,
the forward problem does not have a unique solution without some specification of initial
conditions. For example, if the incoming flux is given, u(x, θ) = u0(x, θ) for x ∈ ∂Ω and
θ · ν(x) < 0, for the ν(x) the outer normal at x, then the solution is unique. Then supposing
the attenuated transform is known, (3.2) completes the specification of the boundary values
of u. The questions of uniqueness and inversion of the attenuated x-ray transform are then
transferred to the questions of uniqueness and inversion for f from boundary values for the
transport equation.

We will now present a proof of the inversion formula of Arbuzov, Bukhgĕım, and Kazant-
sev. Their proof is an application of the theory of A-analytic functions, but we have chosen
to avoid them by working with Fourier series expansions directly. This loses the elegance and
some of the power of the approach taken by these authors, but it shows clearly how easily
the result may be attained. One word of caution: we have stayed with the conventions of
Fourier analysis and write g(θ) ∼

∑
k∈Z gke

ikφ whereas Arbuzov, Bukhgĕım, and Kazantsev
write

∑
gke

−ikφ.
Returning to the transport equation, it is clear that one may use any non-zero multiple

of e−Da(x,θ) as an integrating factor. Let b(x, θ) = h(−θ⊥,−x · θ⊥), where h is given in
(2.4). Although it is not needed in what follows, a calculation similar to that in (2.1) shows
that b(x, θ) = 1

2
(I − iH)Pa(θ, x · θ⊥), where Pa is the parallel beam transform of a. Then

b is constant on lines in direction θ and so eb(x,θ)−Da(x,θ) is also an integrating factor. Let
v(x, θ) = eb(x,θ)−Da(x,θ)u(x, θ). Then v satisfies the equation

(3.3) θ · ∇v = f(x)eb(x,θ)−Da(x,θ)

which may be written in complex form, identifying (x1, x2) ∈ R2 with z = x1 + ix2 and
setting θ = (cosφ, sinφ), as

(3.4) e−iφ
∂v

∂z
+ eiφ

∂v

∂z
= f(z)eb(z,θ)−Da(z,θ).
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By Lemma 2.1, the Fourier coefficients of b(x, θ) −Da(x, θ) are zero for negative (or even)
index, and so the Fourier coefficients of eb(x,θ)−Da(x,θ) are zero for negative index. Thus if
v =

∑
vke

ikφ is substituted in (3.4) and Fourier coefficients are equated, there results the
system of equations

(3.5)
∂vk+1

∂z
+
∂vk−1

∂z
=

{
0, for k < 0

f(z)γk, for k ≥ 0.

where the expansion of e−G, G = Da(x, θ)− b(x, θ) is
∑

k≥0 γke
ikφ.

The aim of the following calculations is to show that each vk for k ≤ 0, can be expressed
in terms of the boundary values of vj for j ≤ k. Since these are given in terms of u and
e−G on the boundary, and since for k ≤ 0, the Fourier coefficient uk of u is the k-th Fourier
coefficient of eGv which is expressible in terms of the γl and the Fourier coefficients vj for
j ≤ k, we can determine everywhere u−1 and u0. These determine f by

(3.6) 2Re
∂u−1

∂z
+ a(z)u0 = f(z)

which results from writing the transport equation θ · ∇u + au = f in complex form, and
separating Fourier coefficients, as was worked out above for v. Here it is also used that u is
real valued, and so ∂u−1 + ∂u1 = 2Re∂u−1.

Let

ρk(x, φ) =
∞∑
j=0

vk−2j(z)e
i(k−2j)φ.

We assume that Ω is an open bounded convex set with C1 boundary, and that ρk is C1 in
Ω and continuous on the closure. Let ζ ∈ Ω and for each φ let l(φ) be the length of the ray
from ζ to the boundary in direction eiφ. Denote by w(φ) = ζ + l(φ)eiφ the point where the
ray meets the boundary. Then for k ≤ 0,

ρk(w(φ), φ)− ρk(ζ, φ) =

∫ l

0

∂ρk
∂s

(ζ + seiφ, φ) ds

=

∫ l

0

(
∂ρk
∂z

e−iφ +
∂ρk
∂z

eiφ
)
ds

=

∫ l

0

∞∑
j=0

∂vk−2j

∂z
ei(k−2j−1)φ +

∞∑
j=0

∂vk−2j

∂z
ei(k−2j+1)φ ds

=

∫ l

0

∂vk
∂z

ei(k+1)φ +
∞∑
j=0

(
∂vk−2j

∂z
+
∂vk−2j−2

∂z

)
ei(k−2j−1)φ ds

=

∫ l(φ)

0

∂vk
∂z

ei(k+1)φ ds

where the series in the second to last integral is zero by (3.5). From this vk(ζ) is found by
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vk(ζ) =
1

2π

∫ 2π

0

ρk(ζ, φ)e−ikφ dφ

=
1

2π

∫ 2π

0

(
ρk(w(φ), φ)−

∫ l(φ)

0

∂vk
∂z

ei(k+1)φ ds

)
e−ikφ dφ

=
1

2π

∫ 2π

0

ρk(w(φ), φ)e−ikφ dφ− 1

2π

∫ 2π

0

∫ l(φ)

0

∂vk
∂z

1

se−iφ
s ds dφ

=
1

2π

∫ 2π

0

∞∑
j=0

vk−2j(w(φ), φ)e−2ijφdφ− 1

2π

∫
Ω

∂vk
∂z

1

z − ζ
dA.(3.7)

By the conjugate form of (2.3),

− 1

2π

∫
Ω

∂vk
∂z

1

z − ζ
dA =

1

2
vk(ζ) +

1

4πi

∫
∂Ω

vk(w)
1

w − ζ
dw.

From w(φ) = ζ + l(φ)eiφ,

e−i2φ =
w − ζ

w − ζ
dφ =

1

2i

(
1

w − ζ
dw − 1

w − ζ
dw

)
.

Substituting these into (3.7) and gathering terms gives

(3.8) vk(ζ) =
1

2πi

∫
∂Ω

dw
1

w − ζ

∞∑
j=0

vk−2j(w)

(
w − ζ

w − ζ

)j
−dw 1

w − ζ

∞∑
j=1

vk−2j(w)

(
w − ζ

w − ζ

)j
.

Recalling that v = e−Gu and that we have reversed the indexing of [4], this is the k-th
component of the equation in Theorem 4.3 of [4].

3.2. Novikov’s inversion formula. In the late spring of 2000, Novikov circulated a man-
uscript with an inversion formula for the attenuated transform. A revised version with some
additional results was written in the fall and has now appeared in [33]. A published an-
nouncement with an outline of the proof appears in [32]. The paper makes heavy use of the
boundary value distributions (x± i0)−1 and becomes notationally dense when operators are
dressed with ± and direction subscripts. We will first present Novikov’s formula in his own
notation, and then modify the notation to accord with that used in this paper. Suppose
that a and f are Holder continuous of order α, for some α ∈ (0, 1),, that there is an ε > 0
such that they are O(|x|−1−ε) as |x| → ∞ and that sup0<|y|≤1 |y|−α|f(x + y) − f(x)| is also

O(|x|−1−ε), and similarly for a. Then using the notations Dθu(x) for Du(x, θ), P⊥
θ u(s) for

Pu(θ, sθ⊥), P⊥
a,θu(s) for Pau(θ, sθ

⊥) and

H±v(s) =
1

π

∫
R

v(t)

s± i0− t
dt

and

exp[±(2i)−1H∓P
⊥
θ a]v(s) = exp[±(2i)−1H∓P

⊥
θ a(s)]v(s),

Novikov’s formula reads
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(3.9) f(x) = − 1

4π

(
∂

∂x1

− i
∂

∂x2

)∫
S1

ϕ(x, θ)(θ1 + iθ2)dθ,

where

(3.10) ϕ(x, θ) = exp[−D−θa(x)]m(x · θ⊥, θ),
with m given by

(3.11) m(s, θ) = m+(s, θ)−m−(s, θ)

= (2i)−1 exp[−(2i)−1H+P
⊥
θ a(s)]H+(exp[(2i)−1H−P

⊥
θ a]P

⊥
a,θf)(s)

− (−2i)−1 exp[(2i)−1H−P
⊥
θ a(s)]H−(exp[−(2i)−1H+P

⊥
θ a]P

⊥
a,θf)(s).

It may be easily shown that

− 1

2i
H+ =

1

2
(I + iH)

1

2i
H− =

1

2
(I − iH),

which is useful when trying to compare Novikov’s development with the work of others.
Further since a and f are real, m+ and m− are conjugate, so m is pure imaginary.

Novikov’s proof is also based on reformulation of the problem as a scattering problem for
the transport equation

(3.12) θ · ∇u+ au = f.

Let ψ+ = ψ+(x, θ) be the solution of the transport equation satisfying lims→−∞ ψ
+(x +

sθ, θ) = 0. Then lims→∞ ψ
+(x + sθ, θ) = Paf(θ, x · θ⊥) which identifies the attenuated

transform as scattering data. Let Σ be the complex quadric in C2 given by Σ = {(θ1, θ2) ∈
C2 : θ2

1 + θ2
2 = 1}. (This intersects the real space in the unit circle.) Novikov shows that for

θ = (θ1, θ2) ∈ Σ \ S1 there is a unique solution ψ of the complex transport equation

(3.13) θ · ∇ψ(x, θ) + a(x)ψ(x, θ) = f(x) x ∈ R2,

which satisfies ψ(x, θ) → 0 as |x| → ∞. An explicit formula is given (see (3.18) below). It is
not remarked by Novikov, but simplifies some of his later results, to observe that

(3.14) ψ(x, θ) = ψ(x, θ),

which follows directly from conjugating the differential equation and using the uniqueness
assertion. The next step is to study the limit of these solutions as θ tends to the real space.
(This is the most delicate part of the analysis.) It is proved that for θ ∈ S1, the limits

(3.15) ψ±(x, θ) = lim
0<τ→0

ψ(x, ω(±τ))

for ω(τ) =
√

1 + τ 2θ+iτθ⊥ with τ real and the positive square root, exist and are continuous,
and satisfy the real transport equation (3.12), with initial conditions

lim
s→−∞

ψ±(x+ sθ, θ) = m±(x · θ⊥, θ),

where m± were defined in (3.11). It follows from (3.14) that ψ+ and ψ− are conjugate. The
difference ψ+ − ψ− is then a solution of the homogeneous transport equation with value at
−∞ equal to m+ −m−. Since

ϕ(x, θ) = e−Da(x,−θ)(m+ −m−)
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is the unique such solution, it must hold that

ϕ(x, θ) = ψ+ − ψ−.

(This is the ϕ of the inversion formula.) Next the quadric Σ is seen to have the holomorphic
parametrization θ(λ), given by

(3.16) θ1 =
λ+ λ−1

2
θ2 =

λ− λ−1

2i
,

for λ ∈ C \ {0}. Moreover, the unit circle T ⊂ C corresponds to the unit circle S1 ⊂ R2,
with the interior of the unit circle in C mapping to the the subset of Σ parametrized above
by ω(τ), for τ > 0 (and all θ). It is easy to check that θ(λ) also satisfies

(3.17) θ(1/λ) = θ(λ).

It is then shown that for each x ∈ R2, ψ(x, θ(λ)) is holomorphic in λ for λ ∈ C\{0∪T}, and
that the limit from inside the circle (resp. from outside the circle) correspond to the boundary
values ψ±, respectively. The analyticity results from the specific form of the solution of the
complex transport equation, referred to above. Here it is appropriate to indicate the form:
for θ = θ(λ) one has,

(3.18) ψ(x, θ(λ)) =

∫
R2

e−Gθ(λ)a(x)G(x− y, θ(λ))eGθ(λ)a(y)f(y)dy,

where (x1, x2) ∈ R2 is identified with z = x1 + ix2 ∈ C,

(3.19) G(z, θ(λ)) =
sgn(1− |λ|)

2πi(i/2)(λz − z/λ)
,

for λ 6= 0, λ /∈ T, and Gθa(x) is the convolution
∫
G(x−w, θ)a(w)dw. Moreover, from (3.14)

and (3.17),

(3.20) ψ(x, θ(λ)) = ψ(x, θ(λ
−1

)),

so the Laurent expansion in the punctured circle determines that in the exterior of the circle,
and vice versa. Looking at the kernel, G(x, θ(λ)), it is clear that the expansion around λ = 0
has the form, with ζ = y1 + iy2 and z = x1 + ix2

(3.21) ψ(x, θ(λ)) = λ

∫
f(ζ)

π(z − ζ)
dy +O(λ2),

and so the expansion at infinity is

(3.22) ψ(x, θ(λ)) = ψ(x, θ(λ
−1

)) = λ−1

∫
f(ζ)

π(z − ζ)
dy +O(λ−2).
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Thus using (3.22) and taking the limit as the contour shrinks to the unit circle∫
f(ζ)

π(z − ζ)
dy =

1

2πi

∫
T

ψ−(x, θ(λ))dλ

= − 1

2πi

∫
T

(ψ+(x, θ(λ))− ψ−(x, θ(λ)))dλ

= − 1

2π

∫
S1

(ψ+(x, θ)− ψ−(x, θ))(θ1 + iθ2)dθ,(3.23)

which finishes the proof of the formula, since (πz)−1 is a fundamental solution for ∂.
Since the constant terms of the Laurent expansions inside and outside the circle are both

zero, a similar chain of equalities shows that

(3.24) 0 =
1

2πi

∫
T

(ψ+ − ψ−)
dλ

λ
=

1

2π

∫
S1

(ψ+(x, θ)− ψ−(x, θ))dθ.

This is a consistency condition which will be used later.
Novikov proves a limited angle theorem assuming that f is continuous with compact

support. If Paf(θ, s) is known for all s ∈ R and θ in a set of positive length, then f is
uniquely determined.

The inversion formula of Novikov has been implemented by Kunyansky, [22], with further
particulars in [21]. Kunyansky also shows that in the case of constant attenuation Novikov’s
formula reduces to the inversion formula for the exponential transform given by Tretiak and
Metz, [42].

3.3. The results of Natterer and of Boman and Strömberg. Natterer, [30], works
with the attenuated Radon transform, (1.3), and proves the inversion formula

f(x) =
1

4π
Re div

∫
S1

θeDa(x,θ
⊥)e−h(θ,x·θ)H(ehRaf)(θ, x · θ) dθ,

where h is given by (2.4) and the Hilbert transform H is applied to ehRaf in the second
variable. This formula can be shown to be equivalent to Novikov’s formula after changing
from x-ray to Radon coordinates and taking account of the parities of the constituent func-
tions under change of sign in the argument (these occur since Raf(θ, s) = Paf(θ⊥,−s)).
Natterer’s proof is very economical: our prose description will be nearly as long as his full
exposition.

It begins with a few lemmas. The first is the result given above as (2.1) on the Fourier
coefficients of u(x, θ) = h(θ, x · θ)−Da(x, θ⊥), and the second, which evaluates the integrals∫ 2π

0
θ
x·θe

ilφ dφ (with θ = (cosφ, sinφ)), is easily derivable from (2.1). The proof of the main
theorem has two steps. The first expresses the integrand in the inversion formula as

θe−u(x,θ)H(ehRaf)(θ, x · θ) =
1

π

∫
R2

f(y)
θ

(x− y) · θ
eu(y,θ)−u(x,θ)dy

(there are two minor misprints in his equation (2.4)) and then shows that

Re

∫
S1

θ

(x− y) · θ
eu(y,θ)−u(x,θ) dθ = 2π

x− y

|x− y|2

which is a multiple of a fundamental solution of the divergence operator. The proof of
this formula follows by expanding eu(y,·)−u(x,·) in Fourier series, applying the lemma on the
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evaluation of the integrals
∫

θ
x·θe

ilφ dφ, and observing that only the l = 0 term of the Fourier
expansion contributes to the real part. Natterer does not formulate a precise theorem on the
necessary regularity of f , but notes that the formula does hold pointwise for f ∈ C1

0(R2). The
conditions on a are even less specific: only that it is sufficiently smooth and of sufficiently
rapid decay at infinity. Natterer has implemented the formula and presents an example
reconstruction.

The work of Boman and Strömberg, [8], does not yet have its final form, so we can only
indicate the preliminary results given by Boman in lecture. First they prove an inversion
formula for continuous functions with compact support in an open set Ω for the generalized
Radon transform

Rρf(θ, p) =

∫
x·θ=p

f(x)ρ(θ, x) ds (θ, p) ∈ S1 ×R,

for complex measures ρ(x, θ) such that for each x ∈ Ω, ρ(x, ·) extends to a continuous nowhere
zero function on the unit disk which is analytic on the open disk, ρ is Holder continuous
on Ω × T, and such that arg ρ(x, θ) is constant on each oriented line x · θ = p for x ∈ Ω.
With m(x) = 1

2π

∫
ρ(x, θ)dθ the (angular) mean value of ρ, assumed to be real, the inversion

formula takes the form,

(3.25) f(x) =
1

4πm(x)
div

(
m(x)Re

∫
S1

θ(HRρf)(θ, x · θ) 1

ρ(x, θ)
dθ

)
.

They then observe that their argument can be applied to any measure ρ0 for which there is a
nowhere zero function τ , constant on oriented lines, such that ρ = τρ0 satisfies the conditions
above. They prove that if ρ0 = eq is real, and q(x, θ) = w(x, θ) + u(x, θ) for real u,w where
u and the conjugate function w̃ are constant on all oriented lines x · θ = p in Ω, then the
trick applies with τ = e−u+iw̃. It is further shown that for the attenuated transform, where
q = −Da(x, θ⊥), this kind of decomposition holds, so their inversion formula applies. They
also prove a limited angle theorem which states that for the generalized Radon transform Rρ,
with ρ satisfying the conditions above, if Rρf(θ, p) = 0 for all p ∈ R and θ in an non-empty
open subset of the circle for some compactly supported continuous function f , then f must
be identically zero.

3.4. Additional remarks. Here we add a few remarks on the preceding formulas and cite
a new paper which has just come to our attention.

Remark 3.1. The analysis of the stationary transport equation (3.1) is an important ingre-
dient in the study of inverse problems for the stationary transport equation with scattering.
This seems to have the motivation for much of the work by the Novosibirsk group. Indeed,
it was in this context that (to our knowledge) it was first observed, see [3], that local unique-
ness for the attenuated transform in dimension two implies global uniqueness for compactly
supported activity distributions in higher dimensions. We refer the reader to the recent
thesis and paper by Tamasan, [41, 40], for applications of the recent inversion formulas for
the attenuated transform to inverse problems for the more general transport equations, and
for further references.

Remark 3.2. The results of Natterer and of Boman and Strömberg provide more direct proofs
of inversions formulas of Novikov type, but they clearly owe their formulation to the work
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of Novikov. It is not hard to modify Natterer’s Fourier series expansion to arrive at the
fundamental solution of ∂ instead of working with the real part of the vector adjoint to
arrive at a fundamental solution for the divergence operator.

Remark 3.3. The inversion procedure given by Arbuzov, Bukhgĕım, and Kazantsev is fairly
complicated, because it requires evaluating u0 and u−1, both of which require the full se-
quence of {vk} for k ≤ 0. One explanation may be that the method is underspecified. The
derivation leading up to (3.8) holds no matter what choices are made in (3.2) to complete
the boundary values (e.g. zero incoming or some other), and it would be no surprise if some
choice might lead to a more efficient inversion formula.

Remark 3.4. In a recent work, [10], which came to the author too late for a full treatment
in this paper, A. A. Bukhgeim and Kazantsev have found an inversion formula adapted
to divergent beam geometry, where it is supposed that the attenuation and activity are
supported in the unit disk, and lines are parametrized by direction and point of intersection
with the unit circle. The formula makes use of the circular Hilbert transform Γ, given by

Γq(φ) =
1

2π

∫ 2π

0

cot(φ− α)

2
q(α)dα,

with respect to both direction at points on the measurement circle, and with respect to
position on the measurement circle. Assuming that f is square integrable on the unit disk
and that a is C2 on the closed unit disk, they state and outline the proof of the following:

(3.26) f(z) =
∂

∂z

i

π

∫ 2π

0

e−iφe−m(z,φ)Im[e−2(Da)+(γ(z,φ),φ)v∗(γ(z, φ), φ)] dφ

where for t in the unit circle,

v∗(t, φ) = (I + iΓ)(v(·, φ)− 1

2
v(γ(·, φ+ π), φ))(t)

with
v(t, φ) = e−2(Da)+(t,φ)Daf(t, φ).

In the preceding, the notations are θ = (cosφ, sinφ), m(z, φ) = Da(z,−θ), γ(z, φ) is the
point of intersection of the unit circle with the ray from z in the direction −θ, Daf(z, φ) =∫ 0

−∞ f(z+sθ) exp(−Da(z+sθ,−θ)) ds, and (Da)+(z, φ) = 1
2
(I−iΓ)modd(z, ·)(φ), where modd

is the odd part of m(z, φ) with respect to the angular variable.

4. Range characterization

Prior to presenting what is known about range characterization for the attenuated x-
ray transform, it is valuable to recall what is known for the classical x-ray and Radon
transforms. The results are most easily stated for the Radon transform. The chief theorem,
which was first proved fully by Helgason, [16], gives a characterization of the range of the
Radon transform on S(Rn), the Schwartz space of smooth rapidly decreasing functions on
Rn.

Theorem 4.1. A function g ∈ S(Sn−1 × R) is in the range of the Radon transform on
S(Rn) if and only if

(1) g is even, that is g(θ, p) = g(−θ,−p) for all (θ, p) ∈ Sn−1 ×R,
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(2) for each natural number m the function pm(θ) =
∫
R
g(θ, p)pm dp is the restriction to

Sn−1 of homogeneous polynomial on Rn.

The last set of conditions are called the moment conditions. They also enter what are
called the Paley-Wiener type theorems for the Radon transform, which characterize the range
of the transform on various spaces of compactly supported functions. There are analogous
results on the range of the classical x-ray transform in higher dimensions, [37], but also
characterizations of the range as the solution space of certain differential equations.

In the mid-80’s, Solmon, [38], gave a very nice extension of the range theorem, which
said that if g is an even smooth function of rapid decay on Sn−1 ×R, then g is the Radon
transform of a function f which is O(|x|−n), moreover f is O(|x|−n−m−1), m ≥ 0, as |x| → ∞
if and only if g satisfies the moment conditions through order m. Furthermore, any k-th
order derivative of f is O(|x|−n−1−m−k) as |x| → ∞.

For the attenuated Radon transform, the first result found was an analogue of the moment
conditions. Natterer, [27, 28], showed the following,

Theorem 4.2. Let k > m ≥ 0 be integers. If g = Raf for a, f ∈ S(R2) then∫
R

∫ 2π

0

pmeikφ+1/2(I+iH)Rag(ω, p) dp dω = 0,

where as usual, ω = (cosφ, sinφ). (Additional conditions result from taking the conjugate,
since g is real.)

The proof follows from writing out the integral defining the attenuated Radon transform,
applying Fubini’s theorem, and (2.1) on the vanishing of the negative Fourier coefficients of

eh(x,x·θ)−Da(x,θ
⊥). About ten years later, Kuchment and L’vin gave a characterization of the

range of the exponential Radon transform, [19]. One consequence was that Natterer’s con-
ditions are not sufficient to characterize the range, even for the case of constant attenuation.
Something which was obviously lacking was the analogue of the evenness condition in the
classical range theorem. Novikov, [33, 32] found such a condition, and has proved, [34], the
following theorem.

Theorem 4.3. Let a, g be in the Schwartz space S(S1 ×R) and let g satisfy the condition

(4.1) Re

∫
S1

e−Da(x,−θ)e1/2(I+iH)Pa(θ,x·θ⊥)H+(e1/2(I−iH)Pa(θ,·)g(θ, ·))(θ⊥ ·x) dθ = 0 for x ∈ R2.

Then there is a C∞ function f such that f and all its derivatives are O(|x|−2) as |x| → ∞
with Paf = g.

The necessity of (4.1) was established in (3.24). The scheme of the proof is to define f by
Novikov’s inversion formula, using g in place of Paf , and then to prove that the resulting
function has the required decay and that its image under the attenuated transform is g. In
the case of the classical x-ray transform, (4.1) takes the form

0 =

∫
S1

Hg(θ, x · θ⊥) dθ for all x ∈ R2.

It is obvious that if g = Pf then the conditions are satisfied, for then Pf is even and so
HPf(θ, x · θ⊥) is odd in θ, but the converse takes some work. It suffices to prove that under
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the hypothesis 0 =
∫
S1 Hg(θ, x · θ⊥) dθ the function g must be even, for one can then apply

Solmon’s theorem, but the author has not found a simple proof of this.
Arbuzov, Bukhgĕım, and Kazantsev give a different range result, whose consequence and

interpretation in the context of the attenuated transform have not, to the author’s knowledge,
been fully worked out. (Kuchment has some ideas on the matter. A discussion, along with
many other matters related to the present paper, can be found in [20].) Recalling the
Plemelj-Sokhozki relations from Section 2, one sees that a Holder continuous function g on
the boundary of a simply connected domain with smooth boundary is the boundary value of a
function analytic in the domain (its Cauchy integral) if and only if the principal value integral
over the boundary is one-half the value of the function on the boundary. The same result
holds for Holder continuous functions on the boundary, taking values in Xm+2 of the scale of
Banach space defining A-analyticity. (See [4] for further explanation of the following.) Since
the transmuted function e−Gu is A-analytic, if the boundary values are Holder continous,
they must be equal to twice the principal value integral over the boundary.

5. Open Problems

In the author’s opinion, the “most wanted” of the open problems is to find an explicit set of
consistency conditions which characterize the range of the attenuated transform on functions
of compact support or rapid decay. As mentioned above, Novikov has proved the necessity
of (4.1), and its sufficiency for a rapidly decaying smooth function on the space of lines to
be the attenuated transform of a function with quadratic decay. Natterer’s conditions, (4.2),
are also necessary range conditions for functions of rapid decay. It is unknown whether
the union of these conditions is sufficient. There are some implicit conditions, such as the
function produced by the inversion formula has the desired property, but these do not seem
useful for application elsewhere, such as to the identification problem. An allied question
would be the existence of a support theorem for the attenuated transform. If f is continuous
and decays faster than any reciprocal power of |x| and Paf(l) = 0 for every directed line l
disjoint from some compact convex set K, is f supported in K?

Inversion from partial data. In the plane, Novikov and Boman-Strömberg proved unique-
ness for compactly supported activity distributions when the line directions are restricted
to a non-empty open subset of the circle. Natterer has posed the question of whether there
exists a stable inversion formula when the directions comprise half the circle. If such could
be found, it could help make analytic methods more competitive with iterative methods in
clinical applications. The analogous problem for the exponential transform has been treated
by Noo and Wagner in [31].

In higher dimensions, for what submanifolds of the manifold of lines can inversion formulas
be derived? Gel’fand, Gindikin, and Shapiro [14] have given conditions on curve families with
densities in the plane for admissibility, and for curve families in higher dimensions this was
extended in [15]. These papers are concerned with a geometric condition (admissibility)
which corresponds to a certain differential form being closed. In complex space this can
lead to local inversion formulae, though not in real space. For the attenuated transform one
might start by making a similar analysis on submanifolds of oriented curves.

As mentioned in the introduction, there has been a lot of work on generalized Radon
transforms on manifolds, but very little specifically about the attenuated x-ray transform.
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In particular, the uniqueness problem remains open. One might hope also for an inversion
formula, perhaps under more stringent hypotheses.
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18. L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, Berlin, Heidelberg,
New York, Tokyo, 1983.

19. P. A. Kuchment and S. Ya. L’vin, Paley-Wiener theorem for the exponential Radon transform, Acta
Appl. Math. 18 (1990), 251–260.

20. P. A. Kuchment and E. T. Quinto, Some problems of integral geometry arising in tomography, chapter
11 in L. Ehrenpreis’ forthcoming book on the Radon Transform.

21. L. A. Kunyanksy, Analytic reconstruction algorithms in emission tomography with variable attenuation,
J. Comp. Math. in Sci. and Engr., to appear.

22. L. A. Kunynasky, A new SPECT reconstruction algorithm based on the Novikov explict inversion formula,
Inverse Problems 17 (2001), 293–306.
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