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Abstrat. The �ltered bakprojetion algorithm is probably the most often used reon-

strution algorithm in 2D-omputerized tomography. For a semi-disrete version in the

parallel sanning geometry we prove optimal L

2

-onvergene rates for density distributions

in Sobolev spaes. Additionally we show L

2

-onvergene without rates when the density

distribution is only in L

2

. The key to suess is a new representation of the �ltered bak-

projetion whih enables us to apply tehniques from approximation theory. Our analysis

provides further a modi�ation of the Shepp-Logan reonstrution �lter with an improved

onvergene behavior. Numerial experiments in the fully disrete setting reprodue the

theoretial preditions.

Key words. Radon transform, tomography, �ltered bakprojetion algorithm, reon-

strution �lter
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1. Filters in Tomography. Tomographi reonstrution means �nd-

ing a density distribution f from all its line integrals g = Rf . Here, R

denotes the Radon transform,

Rf(s; #) :=

Z

L(s;#)\


f(x) d�(x);

mapping a funtion to its integrals over the lines L(s; #) = f� !

?

(#) +

s !(#) j � 2 Rg where s 2 R, !(#) = (os #; sin #)

t

, and !

?

(#) = (� sin #;

os #)

t

for # 2 ℄0; �[. This parameterization of lines gives rise to the parallel

sanning geometry. The Radon transform R maps L

2

(
) boundedly to

L

2

(Z) where 
 is the unit ball in R

2

entered about the origin and Z is the

retangle Z = ℄� 1; 1[� ℄0; �[.

Analytially tomographi reonstrution is represented by the inversion

formula

f = (2�)

�1

R

�

� g (1.1)
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2 A. RIEDER AND A. FARIDANI

where the bakprojetion operator R

�

: L

2

(Z)! L

2

(
) is the adjoint to R,

R

�

�(x) :=

Z

�

0

�(x

t

!(#); #) d#:

Formally, � is the square root of the 1D Laplaian ��: � = (��)

1=2

. In

(1.1), � ats on the variable s of g. For a proof of (1.1) see, e.g., Natterer [14℄.

Due to the ompatness of R the reonstrution of f from noisy Radon

data g by (1.1) is unstable (� ampli�es high frequenies). A stable algorithm

of tomographi reonstrution is therefore based on

f ? e



= R

�

(�



?

s

g); e



= R

�

�



; (1.2)

where ? denotes onvolution and ?

s

denotes onvolution with respet to the

variable s. In (1.2) e



(x) = e(x=)=

2

,  > 0, and e = e

1

is a molli�er,

that is, a smooth funtion with normalized mean value. Thus, f ? e



is a

smoothed or molli�ed approximation to f . The funtion � = �

1

is alled

reonstrution kernel or reonstrution �lter whih is independent of the

angle # for radially symmetri molli�ers (whih we assume in the sequel).

Note that �



(s) = �(s=)=

2

. By the inversion formula (1.1) we an ompute

the reonstrution kernel from a molli�er e:

� =

1

2�

�Re (1.3)

The onvolution �



?

s

g realizes a low pass �ltered version of �g=(2�).

A straightforward disretization of (1.2) together with an interpolation

step yields the �ltered bakprojetion algorithm (FBA) whih is the most fre-

quently used algorithm in omputerized tomography, see, e.g., Natterer [14,

hap. V℄. In the sequel let f be a density distribution ompatly supported

in 
. If we assume to know the disrete Radon data g

k;j

:= Rf(s

k

; #

j

) for

s

k

= k=q, k = �q; : : : ; q, and #

j

= j �=p, j = 0; : : : ; p � 1, then the FBA

reonstruts f

FB

by

f

FB

(x) := R

�

p

I

h

(w ?

q

g)(x): (1.4)

In the FBA, �rst the disrete onvolution

(w ?

q

g)

`;j

:=

1

q

X

k2Z

w

`�k

g

k;j

�

�

�



?

s

g(�; #

j

)

�

(s

`

) (1.5)

is performed where fw

k

g is a weight sequene assoiated with the hosen

kernel �



. In the seond step, an interpolation operator I

h

is applied (with

respet to `). Finally, the disrete bakprojetion operator

R

�

p

�(x) :=

�

p

p�1

X

j=0

�(x

t

!(#

j

); #

j

) (1.6)
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is evaluated.

Exept for the interpolation proess, the disrete onvolution (1.5) is the

most deliate step in the FBA: the disrete onvolution kernel fw

k

g has to

be hosen arefully from the ontinuous kernel �



. For instane, a ommon

hoie is

w

k

= �



(s

k

): (1.7)

Here  has to be adjusted to the disretization step size h = 1=q. The

sensitivity of the reonstruted image to  has been notied probably for the

�rst time by Smith in [22, p. 20℄. Rules for seleting  have been suggested

by Smith and Keinert [23, se. VI℄, Natterer [14℄ and Rieder [16℄. For loal

tomography, see Faridani [8℄ and Rieder et al. [17℄.

Smith [22, pp. 18-19℄ propagated a di�erent way to de�ne the w

k

's. He

intended the disrete onvolution (1.5) to be exat for a large lass of fun-

tions. Let E

h

u be an approximation to the funtion u given as superposition

of translated and saled versions of a funtion B, that is,

E

h

u(s) =

X

k2Z

u(s

k

)B

h

(s� s

k

) where B

h

(s) = B(s=h): (1.8)

For instane, E

h

ould be an interpolation operator. De�ning

w

k

:=

1

h

Z

�



(s) B

h

(s

k

� s) ds =

1

h

�



? B

h

(s

k

); k 2 Z; (1.9)

we have that

(w ?

q

u)

`

= �



?

s

E

h

u(s

`

); ` 2 Z:

Moreover, if E

h

is interpolating then

(w ?

q

E

h

u)

`

= �



?

s

E

h

u(s

`

); ` 2 Z;

that is, the disrete onvolution (1.5) is exat for E

h

u. Numerial as well

as theoretial onsiderations, see [16, 22℄, showed that the reonstruted

images f

FB

are less sensitive to hanges in  when working with (1.9) rather

than working with (1.7). Indeed, we will show in the next setion that the

disrete �lter fw

k

g from (1.9) onverges for  ! 0 and that its limit fw

1

k

g

is again a reonstrution �lter belonging to a ompatly supported molli�er.

This limit �lter has an interesting feature: omputing �E

h

u(s

`

)=(2�) an

now be realized by the disrete onvolution

1

2�

�E

h

u(s

`

) = (w

1

?

q

u)

`

:

The latter equation is the starting point in Setion 3 for a re-formulation

of the FBA leading to optimal L

2

-onvergene rates in a semi-disrete set-

ting (Theorem 3.7) where in (1.4) the disrete bakprojetion operator R

�

p

is replaed by the ontinuous one R

�

. We see how the reonstrution �l-

ter, the interpolation proess (I

h

in (1.4)), and the Sobolev regularity of the
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searhed-for density distribution inuene the onvergene rate. As a by-

produt of our analysis we disover a new reonstrution �lter (Example 4.1)

with an improved onvergene behavior ompared to the widely used Shepp-

Logan �lter [21℄ (Setions 4 and 5). Indeed, our modi�ed Shepp-Logan �lter

yields optimal onvergene for Sobolev orders up to 5=2 whereas the onver-

gene order of the original Shepp-Logan �lter saturates at 2 (Example 5.1).

Numerial experiments in the fully disrete setting of (1.4) agree ompletely

with our theoretial preditions and are presented in Setion 6. Auxiliary

but new approximation properties of (quasi) interpolation operators, whih

we need for the analysis, are proved in several appendies.

2. The limit. We will now investigate the onvergene in Sobolev

spaes of �



? B as  tends to zero. We de�ne the Sobolev spaes H

�

(R

d

),

� 2 R, to be the losure of L

2

(R

d

) with respet to the norm

kfk

2

�

:=

Z

R

d

�

1 + k�k

2

�

�

j

b

f(�)j

2

d�

where

b

f(�) := (2�)

�d=2

R

R

d

f(x) e

�{ �

t

x

dx is the Fourier transform of a fun-

tion f in L

1

(R

d

) \ L

2

(R

d

). The Fourier transform an be extended to L

2

-

funtions and tempered distributions by ontinuity and duality, respetively.

The �-operator,



�f(�) := k�k

b

f(�);

maps H

�

(R

d

) boundedly to H

��1

(R

d

).

The latter mapping property of � together with a smoothing e�et of R,

see [14, hap. II, th. 5.1℄, and the Sobolev embedding theorem show that

� from (1.3) is ontinuous whenever e is a radially symmetri ompatly

supported molli�er in H

�

(R

2

), � > 1. Furthermore, � 2 L

1

(R), see [16,

lemma 3.1℄. Thus, �



? B is well de�ned in H

t

(R) for B 2 H

t

(R), t 2 R,

see, e.g., Aubin [1, proposition 9.3.2℄.

Lemma 2.1. Let e 2 H

�

(R

2

), � > 1, be a radially symmetri ompatly

supported molli�er and let � be the orresponding reonstrution kernel (1.3).

Then,

lim

!0







�



�

1

2�

�Æ







��

= 0 for any � > 3=2 (2.1)

where Æ denotes the Dira generalized funtion. Moreover, if B 2 H

t

(R),

t 2 R, then

lim

!0







�



? B �

1

2�

�B







t�1

= 0: (2.2)

For values of s suh that �B is ontinuous near s we have

lim

!0

�



? B(s) =

1

2�

�B(s):
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Proof. We prove (2.2) whih then implies (2.1) when setting B = Æ and

realling that Æ 2 H

t

(R) for t < �1=2. With

I(�; ) = (1 + j�j

2

)

t�1

�

�

p

2� �



(�)

b

B(�)� j�j

b

B(�)=(2�)

�

�

2

we obtain that







�



? B �

1

2�

�B







2

t�1

=

Z

R

I(�; ) d�:

By the projetion slie theorem, see, e.g., Natterer [14, hap. II, th. 1.1℄, we

�nd (e is a radially symmetri funtion)

�



(�) =

1

2�

j�j

d

Re



(�) =

1

p

2�

j�j be



(�; 0) =

1

p

2�

j�j be( �; 0)

whih yields

I(�; ) � (1 + j�j

2

)

t

�

�
b

B(�)

�

�

2

�

�

be( �; 0)� 1=(2�)

�

�

2

:

The stated onvergene follows now from be(0; 0) = 1=(2�), the Riemann-

Lebesgue lemma, and the dominated onvergene theorem.

Let us look at an example. For � being the indiator funtion of the

interval [�1=2; 1=2℄ we are able to ompute �� by

��(s) = �

1

�

Z

R

js� tj

�2

�(t) dt; jsj > 1=2; (2.3)

see Faridani et al. [9, formula (2.1)℄. Evaluating the integral gives

��(s) =

4

�

1

1� 4 s

2

: (2.4)

The above formula holds for all s 2 R n f�1=2; 1=2g. This an be veri�ed

using the relation �(1��) = ��� and applying formula (2.1) of [9℄ to 1��,

the indiator funtion of R n [�1=2; 1=2℄. So we have that

lim

!0

�



? �(s) =

2

�

2

1

1� 4 s

2

; jsj 6= 1=2:

In weaker Sobolev norms we even an give onvergene rates. For for-

mulating the respetive result and later in the paper we use the following

onvenient notation: A . B indiates the existene of a generi onstant 

suh that A � B holds uniformly with respet to all parameters A and B

may depend on.

Corollary 2.2. Let 0 � s � 2. Under the assumptions of Lemma 2.1

we have that







�



? B �

1

2�

�B







t�1�s

. 

s

kBk

t

:
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Proof. As in the proof of Lemma 2.1 we obtain that







�



? B �

1

2�

�B







2

t�1�s

�

Z

R

(1 + j�j

2

)

t�s

�

� b

B(�)

�

�

2

M( �; 0) d�

where M(z) := jbe(z) � 1=(2�)j

2

, z 2 R

2

. Sine e is an even funtion all

its �rst order moments vanish. Therefore, all �rst order derivatives of be are

zero at the origin. Thus the Taylor expansion of be about the origin beomes

be(z) =

1

2�

+

X

�2N

2

0

�

1

+�

2

=2

D

�

be(�

z

z)

�!

z

�

for a �

z

2 [0; 1℄

whih yields M(z) . kzk

4

. Now let s 2 [0; 2℄. Then,







�



? B �

1

2�

�B







2

t�1�s

.

Z

j�j�1=

�

�
b

B(�)

�

�

2

(1 + j�j

2

)

t�s

M( �; 0) d�

+

Z

j�j>1=

�

� b

B(�)

�

�

2

(1 + j�j

2

)

t�s

d�

. 

4

Z

j�j�1=

�

� b

B(�)

�

�

2

(1 + j�j

2

)

t

j�j

4�2s

d�

+

Z

j�j>1=

�

� b

B(�)

�

�

2

(1 + j�j

2

)

t

j�j

�2s

d�:

Both latter terms an be bounded by 

2s

kBk

2

t

.

Remark 2.3. The generalization of Corollary 2.2 to reonstrution

kernels � belonging to molli�ers with higher order vanishing moments is

obvious.

3. The FBA is optimal. We will re-formulate the FBA (1.4) for the

limit �lters onsidered in the former setion, see (3.2) below. This new

representation of the FBA allows us to introdue a novel error analysis

whih shows that the FBA is optimal for tomographi inversion.

3.1. A new representation of the FBA. We start with the follow-

ing simple observation.

Lemma 3.1. Let B be in H

t

(R) for a t 2 R suh that �B(s) is ontin-

uous near integer values of s. For  (s) =

P

k2Z



k

B

h

(s� h k), where f

k

g

is a �nite sequene and h is positive, we have

� (h `) = h

�1

X

k2Z



k

�B(`� k); ` 2 Z:
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Proof. The statement follows diretly from the relations �B

h

(s) =

�B(s=h)=h and �T

a

= T

a

� where T

a

is the translation operator T

a

u(s) =

u(s� a).

Remark 3.2. Relying on Lemma 3.1 we easily derive that

2

�

1

q + 1=2

=

q

X

k=�q

��(k) for any q 2 N

0

where � is as in (2.3). To prove the above identity we only mention that

P

q

k=�q

�(� �k) is the harateristi funtion of the interval [�q�1=2; q+1=2℄.

Let the operator E

h

be given by (1.8) with B as in Lemma 3.1. De�ne

the disrete reonstrution kernel fw

1

k

g by

w

1

k

=

1

2� h

2

�B(k) = �

1

h

(h k) (3.1)

where �

1

h

(s) = �

1

(s=h)=h

2

and �

1

(s) := �B(s)=(2�). Then, the disrete

onvolution (1.5) an be written as the �-operator applied exatly to a fun-

tion approximating g from disrete values:

(w

1

?

q

g)

`;j

=

1

2�

�

�E

h

g(�; #

j

)

�

(h `); ` 2 Z:

Thus, the reonstruted image f

FB

may be re-written as

f

FB

(x) =

1

2�

R

�

p

I

h

�E

h

g(x); (3.2)

see (1.4). Please observe that the three operators E

h

, �, and I

h

at on the

�rst variable of the data g = Rf .

Example 3.3. Let B = � be the harateristi funtion of [�1=2; 1=2℄.

Then, the reonstrution kernel w

1

used for evaluating (3.2) is

w

1

k

=

2

�

2

h

2

1

1� 4 k

2

whih follows from (2.4) and (3.1). Here, w

1

is the disrete Shepp-Logan

reonstrution �lter [21℄. |

Remark 3.4. Let the disrete reonstrution kernel fw

k

g be given

by (1.9). Due to Lemma 2.1 we obtain lim

!0

w

k

= w

1

k

implying that

lim

!0

(w ?

q

g)

`;j

=

1

2�

�

�E

h

g(�; #

j

)

�

(h `); ` 2 Z:
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1

3

1

1

Fig. 3.1. Radial part of limit molli�er e

1

(3.4) where B is the linear (left) and the

quadrati (right) B-spline, respetively.

We next ask the question whih molli�er e

1

belongs to the reonstru-

tion kernel �

1

(3.1)? By (1.3) and the projetion slie theorem we �nd

that



e

1

(�) =

b

B(k�k)=

p

2�; � 2 R

2

; (3.3)

whih yields (J

0

denoting the Bessel funtion of the �rst kind of order 0)

e

1

(x) =

1

p

2�

Z

1

0

r

b

B(r) J

0

(kxk r) dr: (3.4)

In view of (3.3) the molli�er e

1

is in L

2

(R

2

) if lim

r!1

r j

b

B(r)j = 0. Further,

a ompat support of B implies a ompat support of e

1

. More preisely,

let B be even with suppB � [�R;R℄ then supp e

1

� fx 2 R

2

j kxk � Rg.

The latter statement is a onsequene from the Paley-Wiener theorems, see,

e.g., Rudin [19, hap. 7℄.

Example 3.5. Let B = � be the harateristi funtion of the interval

[�1=2; 1=2℄. By formula 6.671.7 from [11℄ we �nd that

e

1

(x) =

(

2

�

1

p

1�4 kxk

2

: kxk < 1=2

0 : otherwise

whih is the molli�er belonging to �

1

(s) =

1

2�

��(s) =

2

�

2

(1 � 4 s

2

)

�1

, see

(2.4). The graphs of the radial parts of e

1

with respet to the linear and

quadrati B-splines are plotted in Figure 3.1.

3.2. A novel error estimate. The new representation (3.2) of the

FBA gives us the freedom to provide a novel error analysis based on prin-

iples from approximation theory. Indeed, we will be able to prove L

2

-

onvergene of the FBA with optimal rates.

In ontrast, the error estimates based on Fourier analysis, see Nat-

terer [14, hap. V℄ and Faridani and Ritman [10℄ are of qualitative nature in

terms of essentially band limited funtions. Sine the used main tool is the

Poisson summation formula the onsidered density distributions are required
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to be ontinuous funtions at least (

b

f 2 L

1

). Convergene has been shown

before: Popov [15℄ established pointwise onvergene restrited to a small

lass of funtions (pieewise C

1

with jumps aross smooth urves). The ap-

proah of Rieder and Shuster [18℄ leads to L

2

-onvergene for f 2 H

�

0

(
),

� > 1=2, however, with suboptimal rates.

In our analysis below we will not take into aount the error introdued

by disretizing the bakprojetion R

�

, that is, our model of the FBA reon-

struts

e

f

FB

by

e

f

FB

(x) :=

1

2�

R

�

I

h

�E

h

Rf(x); (3.5)

ompare (3.2).

Before bounding the reonstrution error of

e

f

FB

we generalize both op-

erators E

h

and I

h

. For u 2 H

�

(R), � 2 R, we de�ne

E

h

u(s) := h

�1

X

k2Z




u; �

h

(� � s

k

)

�

B

h

(s� s

k

) (3.6)

where �

h

(s) = �(s=h) with � 2 H

��

(R) being even and b�(0) = 1=

p

2�. Fur-

ther, h�; �i denotes the duality pairing in H

�

(R) �H

��

(R). For u 2 H

�

(R),

� > 1=2, we may hoose � = Æ (Dira distribution). Thus, h

�1

hu; �

h

(� �

s

k

)i = u(s

k

) and the general form (3.6) of E

h

oinides with its former

de�nition (1.8). We extended the domain of de�nition of E

h

to over (gen-

eralized) funtions in H

�

(R) with � � 1=2.

The re-de�nition of E

h

was neessary beause we apply E

h

to Rf(�; #),

see (3.5), and we only have that Rf(�; #) 2 H

1=2

0

(�1; 1) for f 2 L

2

(
)

and almost all #. Moreover, our new model allows for �nite width of the

rays and detetor inhomogeneities in the observed semi-disrete Radon data,

see Natterer [14, hap. V.5.1℄. Indeed, for � being a non-negative funtion

ompatly supported in [�1=2; 1=2℄ with a normalized mean value we obtain

h

�1




Rf(�; #); �

h

(� � s

k

)

�

= h

�1

s

k

+h=2

Z

s

k

�h=2

Rf(s; #) �

h

(s� s

k

) ds: (3.7)

Hene, � an be seen as the sensitivity pro�le of the X-ray detetors.

In a very similar way we de�ne I

h

by

I

h

u(s) := h

�1

X

k2Z




u; �

h

(� � s

k

)

�

A

h

(s� s

k

) (3.8)

where � and A are like � and B from (3.6), respetively.

Our modi�ations of E

h

and I

h

do not a�et the eÆient omputation of

I

h

�E

h

Rf(�; #)=(2�) by disrete onvolution. A straight forward alulation

reveals that

1

2�

�

I

h

�E

h

Rf(�; #)

�

(s) =

X

`2Z

�

w ?

q

g

�

(�; #)

�

`

A

h

(s� s

`

)
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where g

�

(s; #) =

�

Rf(�; #)?

s

�

h

�

(s)=h, see (3.7), and the disrete reonstru-

tion kernel w is given by

w

r

= �(r)=h

2

; r 2 Z;

with �(s) :=

1

�

Z

1

0

�

b

B(�) b�(�) os(s �) d�:

(3.9)

The above integral exists as a duality pairing whenever B 2 H

t

(R) and

� 2 H

1�t

(R).

Example 3.6. We will give the Shepp-Logan reonstrution �lter a

new interpretation. To this end, let B(s) = sin(� s) be the interpolating

funtion used to de�ne E

h

. In I

h

let � be the harateristi funtion of

the interval [�1=2; 1=2℄. We obtain

b

B = �

[��;�℄

=

p

2� (�

D

harateristi

funtion of interval D) and b�(�) = sin(�=2)=

p

2�. Hene,

�(s) =

2

�

2

2 s sin(� s)� 1

4 s

2

� 1

and w

k

= �(k)=h

2

=

2

�

2

h

2

1

1� 4 k

2

;

see Example 3.3 and ompare formula (1.22) on page 111 in [14℄. |

In estimating the reonstrution error below we will need that the inver-

sion formula (1.1) holds true for funtions in L

2

(
), that is,

f = (2�)

�1

R

�

�Rf for any f 2 L

2

(
): (3.10)

As far as we know the most general version of (1.1) is due to Smith et

al. [24, p. 1257℄ requiring a ompatly supported f 2 H

�

(R

2

) with � � 1=2.

To verify (3.10) we reall the following mapping property of the Radon

transform,

R : H

�

0

(
)! H

(�+1=2;0)

is bounded for any � � 0; (3.11)

whih is due to Louis and Natterer [13, th. 3.1℄, see also [14, th. II.5.1℄.

Above, H

�

0

(
) is the losure of C

1

0

(
), the spae of in�nitely di�erentiable

funtions ompatly supported in 
, with respet to the norm k�k

�

. Further,

H

(�;0)

is the tensor produt spae H

�

(R)

b


L

2

(0; �).

Now the validity of (3.10) an be seen from the following three fats:

1. The operatorR

�

�R : L

2

(
)! L

2

(
) is bounded sine all three mappings

R : L

2

(
) ! H

(1=2;0)

, � : H

(1=2;0)

! H

(�1=2;0)

, and R

�

: H

(�1=2;0)

!

L

2

(
) are bounded.

�

2. Formula (3.10) applies to all f 2 C

1

0

(
), see, e.g.,

Natterer [14, th. II.2.1℄. 3. The spae C

1

0

(
) is dense in L

2

(
).

�

The ontinuity of R

�

: H

(�1=2;0)

! L

2

(
) follows from (3.11) by duality.
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After these preparations we onentrate on the reonstrution error for

f in H

�

0

(
), � � 0. Relying on (3.10) we begin with





e

f

FB

� f





L

2

(
)

=

1

2�





R

�

I

h

�E

h

Rf �R

�

�Rf





L

2

(
)

�





�

R

�

I

h

�R

�

�

�E

h

Rf





L

2

(
)

+





R

�

�

�

E

h

Rf �Rf

�





L

2

(
)

and proeed by estimating both norms on the right hand side.

We saw above that R

�

� maps H

(1=2;0)

boundedly to L

2

(
). Hene,





R

�

�

�

E

h

Rf �Rf

�





L

2

(
)

.





E

h

Rf �Rf





H

(1=2;0)

:

Now we need an approximation property of E

h

. Therefore, we assume there

are non-negative onstants �

max

and �

min

� �

max

suh that





E

h

u� u





�

. h

���

kuk

�

as h! 0 (3.12a)

for �

min

� � � �

max

; 0 � � � �; � � �

max

; u 2 H

�

0

(�1; 1): (3.12b)

For instane, if E

h

represents pieewise linear interpolation

y

then (3.12)

holds with �

max

= 2, �

min

> 1=2, and �

max

< 3=2. For pieewise linear

interpolation the approximation property (3.12) is a lassial result when

� 2 f0; 1g and � = 2, see, e.g., Strang and Fix [25, th. 1.3℄. Also band-

limited interpolation

z

yields (3.12) with �

min

> 1=2 and any �

max

= �

max

<

1. In Appendies A and B we prove (3.12) for more general interpolation-

like operators E

h

where �

min

= 0.

Estimates of terms from above by powers of h (like (3.12)) are in the

sequel always understood asymptotially in the sense of h! 0.

Assume (3.12) to hold with �

max

� 1=2 and �

max

� 1=2. If maxf0; �

min

�

1=2g � � � �

max

� 1=2 then





R

�

�

�

E

h

Rf �Rf

�





L

2

(
)

. h

�

kRfk

H

(1=2+�;0)

(3.11)

. h

�

kfk

�

:

Now we turn to k(R

�

I

h

�R

�

)�E

h

Rfk

L

2

(
)

whih we estimate aording to





R

�

�

I

h

� I

�

�E

h

Rf





L

2

(
)

�

kR

�

k

H

(�1=2;0)

!L

2

(
)

kI

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

� k�k

H

�+1=2

(R)!H

��1=2

(R)

kE

h

Rfk

H

(1=2+�;0)

where I : H

��1=2

(R) ,! H

�1=2

(R) is the anonial inlusion. Observe that

(3.12) implies the boundedness of E

h

: H

1=2+�

0

(�1; 1) ! H

1=2+�

(R) uni-

formly in h for 0 � � � minf�

max

; �

max

g � 1=2. Thus,

kE

h

Rfk

H

(1=2+�;0)

. kRfk

H

(1=2+�;0)

(3.11)

. kfk

�

:

y

� is the Dira distribution and B is the linear B-spline.

z

� is the Dira distribution and B(x) = sin(�x).
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For the operator I

h

we require that

kI

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

. h

�

as h! 0 for 0 � � � �

I

: (3.13)

whih yields that





�

R

�

I

h

�R

�

�

�E

h

Rf





L

2

(
)

. h

�

kfk

�

:

Thus, we have proven the following theorem.

Theorem 3.7. Assume (3.12) to hold with �

max

� 1=2 and �

max

� 1=2.

Further, let there exist an �

I

> 0 suh that (3.13) holds true.

If maxf0; �

min

� 1=2g � � � min

�

�

I

; �

max

� 1=2; �

max

� 1=2

	

and f 2

H

�

0

(
) then







f �

1

2�

R

�

I

h

�E

h

Rf







L

2

(
)

. h

�

kfk

�

as h! 0: (3.14)

The best possible L

2

-onvergene rate for the reonstrution of f 2

H

�

0

(
) from Radon data sampled at distane h is h

�

as h ! 0, see Nat-

terer [14, hap. IV, th. 2.2℄. So we just proved that the FBA with an

`averaged' limit kernel (3.9) is an optimal reonstrution algorithm (at least

for semi-disrete data). The range of Sobolev orders yielding optimal on-

vergene depends on the hosen �lter and the used interpolation proedure.

Example 3.8. Here we provide a simple example for (3.13) whih results

in a onvergene proof of the FBA with Shepp-Logan �lter and nearest-

neighbor interpolation.

To this end let both � and A be �rst order B-splines, that is, � =

A = �

[�1=2;1=2[

. In this situation (3.13) applies with �

I

= 3=2 as we will

demonstrate now. By Theorem A.2,

kI

h

u� uk

�

. h

���

kuk

�

(3.15)

for 0 � � � � � 1 and � < 1=2. To estimate kI

h

u� uk

�1=2

we use a duality

argument and the symmetry I

h

= I

�

h

where I

�

h

is the L

2

-adjoint of I

h

. We

�nd that, for 0 � � � 1=2,

kI

h

u� uk

�1=2

= sup

v2H

1=2

(R)

hI

h

u� u; vi

kvk

1=2

= sup

v2H

1=2

(R)

hu; I

h

v � vi

kvk

1=2

� kuk

��1=2

sup

v2H

1=2

(R)

kI

h

v � vk

1=2��

kvk

1=2

(3.15)

. h

�

kuk

��1=2

:

(3.16)
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For 1=2 < � � 3=2 we estimate similarly relying on I

2

h

= I

h

:

kI

h

u� uk

�1=2

= sup

v2H

1=2

(R)

h(I

h

� I)

2

u; vi

kvk

1=2

= sup

v2H

1=2

(R)

hI

h

u� u; I

h

v � vi

kvk

1=2

� kI

h

u� uk

L

2

(R)

sup

v2H

1=2

(R)

kI

h

v � vk

L

2

(R)

kvk

1=2

(3.17)

(3.15)

. h

��1=2

kuk

��1=2

h

1=2

:

Hene, (3.13) holds for �

I

= 3=2.

Realling Example 3.6 we observe that FBA with Shepp-Logan �lter

and nearest-neighbor interpolation is represented by B(s) = sin(� s) and

� = A = �

[�1=2;1=2[

in our framework (3.5). Therefore, our results from

Appendix B give that




e

f

FB

� f





L

2

(
)

. h

minf3=2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

as long as � is either an even, ompatly supported and normalized L

2

-

funtion (Theorem B.2) or the Dira distribution (Theorem B.4). |

In the next setion we will generalize the above example overing espe-

ially pieewise linear interpolation in I

h

.

So far we have not shown L

2

-onvergene of the FBA when the searhed-

for density distribution is only in L

2

(
). However, we possess all tools to

do this.

Corollary 3.9. Assume (3.12) to hold with �

min

� 1=2, �

max

> 1=2

and �

max

> 1=2. Further, let there exist an �

I

> 0 suh that (3.13) holds

true. Then,

lim

h!0







f �

1

2�

R

�

I

h

�E

h

Rf







L

2

(
)

= 0 for any f 2 L

2

(
): (3.18)

Proof. We will use that R

�

I

h

�E

h

R : L

2

(
) ! L

2

(
) is uniformly

bounded in h > 0. This follows by setting � = 0 in (3.14) whih is al-

lowed sine �

min

� 1=2. Thus, kR

�

I

h

�E

h

Rk

L

2

(
)!L

2

(
)

. 1.

Fix an � with 0 < � � minf�

I

; �

max

� 1=2; �

max

� 1=2g. By assumption

the upper bound on � is positive. Sine H

�

0

(
) is dense in L

2

(
) there

exists a family ff

�

g

�>0

� H

�

0

(
) whih onverges to f in L

2

(
) as � ! 0.

Without loss of generality we may assume that f is not an element of H

�

0

(
)

for any � > 0 (otherwise we apply Theorem 3.7 to obtain (3.18)). Therefore,

the funtion �(�) := kf

�

k

�

explodes: �(�)!1 as �! 0. Now we hoose

a family f�

h

g

h>0

satisfying

lim

h!0

�

h

= 0 as well as lim

h!0

h

�

�(�

h

) = 0:
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We proeed with







f �

1

2�

R

�

I

h

�E

h

Rf







L

2

(
)

� kf � f

�

h

k

L

2

(
)

+







f

�

h

�

1

2�

R

�

I

h

�E

h

Rf

�

h







L

2

(
)

+ kR

�

I

h

�E

h

R(f

�

h

� f)k

L

2

(
)

. kf � f

�

h

k

L

2

(
)

+ h

�

�(�

h

)

where we applied Theorem 3.7 in the last step. Finally, the limit h ! 0

implies (3.18).

Example 3.10. We re-onsider Example 3.8 in the light of Corollary 3.9.

The onvergene (3.18) holds true when using the Shepp-Logan �lter with

nearest-neighbor interpolation for I

h

and band-limited quasi-interpolation

for E

h

, that is, � = A = �

[�1=2;1=2[

, B(s) = sin(� s), and � is an even,

ompatly supported and normalized L

2

-funtion (Theorem B.2). Please

note that band-limited interpolation for E

h

(� is the Dira distribution),

whih requires �

min

> 1=2, is not overed by Corollary 3.9.

4. Verifying (3.13) for interpolation-like operators I

h

based on

orthogonalized B-splines. We onsider a speial hoie for I

h

(3.8): let

e� and A be the B-splines of order M � 1 and N � 1, respetively. De�ne �

by

b�(�) :=

b

e�(�)

a(�)

=

1

p

2�

sin

M

(�=2)

a(�)

(4.1)

where

a(�) =

X

`2Z

a

`

e

�{ `�

with a

`

=

Z

R

e�(s) A(`� s) ds: (4.2)

Note that a is a positive even real trigonometri polynomial with a(0) = 1,

see Appendix C.1. Further, � and A are dual funtions, that is,




�(� � k); A(�)

�

= Æ

k;0

; (4.3)

see Appendix C.2. Espeially,

(I � I

h

) (I �

e

I

h

) = I � I

h

(4.4)

where

e

I

h

u(s) := h

�1

P

k2Z

hu; e�

h

(� � s

k

)iA

h

(s� s

k

).

As in (3.16) we obtain

kI

h

u� uk

�1=2

� kuk

��1=2

sup

v2H

1=2

(R)

kI

�

h

v � vk

1=2��

kvk

1=2

; 0 � � � 1=2:
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Aordingly we have to investigate the approximation power of the L

2

-

adjoint operator I

�

h

u(s) = h

�1

P

k2Z

hu;A

h

(� � s

k

)i �

h

(s� s

k

) whih is done

in Appendix C.3. By (C.3),

kI

h

u� uk

�1=2

. h

�

kuk

��1=2

; 0 � � � 1=2:

The range � > 1=2 we approah as in (3.18) with the help of (4.4):

kI

h

u� uk

�1=2

. h

1=2

k

e

I

h

u� uk

L

2

(R)

:

Applying Theorem A.2 to the above right hand side implies (3.13) with

�

I

=

(

3=2 : N = 1

5=2 : N � 2

:

The reonstrution �lter belonging to I

h

onsidered in this setion is

�(s) =

1

�

p

2�

Z

1

0

�

sin

M

(�=2)

a(�)

b

B(�) os(s �) d�:

To �nd an expliit representation of a poses no problem sine a

`

= B(`)

where B is the B-spline of order M + N . So, a

`

2 Q an be found by the

B-spline reursion or expliit representations of B-splines. Nevertheless, �

annot be evaluated expliitely in general. However, the needed values of �

at integers an be omputed numerially to any desired auray.

Example 4.1. Let M = 1, N = 2, and B(s) = sin(� s). Then,

a(�) =

3

4

+

1

4

os(�) and

�(s) =

4

�

2

Z

�

0

sin(�=2) os(s �)

3 + os(�)

d�:

Using this �lter in the FBA together with pieewise linear interpolation in I

h

yields




e

f

FB

� f





L

2

(
)

. h

minf5=2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

sine band-limited interpolation (B.4) is onsidered for E

h

(�

max

= �

max

>

3). |

Remark 4.2. The bi-orthogonalization proedure (4.1) is the same

used in the onstrution of orthogonal spline wavelets, see Lemari�e [12℄. The

onnetion between wavelets and reonstrution �lters an even be extended

to inrease �

I

. Choosing A to be a B-spline of order N and � to be a

suitable ompatly supported dual saling funtion, see Cohen, Daubehies

and Feaveau [4℄, yields an operator I

h

with an �

I

inreasing with N . The

needed approximation properties of I

h

and I

?

h

are reported, for instane, by

Dahmen [5, Prop. 5.1℄.
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5. Verifying (3.13) for interpolation-like operators I

h

based on

B-splines. Our analysis presented so far does not over operators I

h

where

� and A are B-splines of order M and N , respetively. We will now investi-

gate this situation.

Let E

h

and I

h

be de�ned as earlier with respet to �, B, �, and A.

Moreover, let a be given as in (4.2), however, e� is replaed by �. Further,

de�ne the operator A

h

: L

2

(R) ! L

2

(R), h > 0, by

d

A

h

u(�) := a(h�) bu(�).

Note that

\

A

�1

h

u(�) = bu(�)=a(h�). Now the key observation is that

e

f

FB

=

1

2�

R

�

I

h

�E

h

Rf =

1

2�

R

�

I

h

A

�1

h

�A

h

E

h

Rf:

Consequently, we have to study the approximation powers of the produts

A

h

E

h

and I

h

A

�1

h

. The latter produt is exatly the operator I

h

studied in

the former setion. Hene,

kI

h

A

�1

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

. h

�

; 0 � � � �

I

=

(

3=2 : N = 1

5=2 : N � 2

:

The produt A

h

E

h

requires a little bit more attention. We begin with

kA

h

E

h

u� uk

�

. kE

h

u� uk

�

+ kA

h

u� uk

�

:

In view of (3.12) and (C.2) we obtain

kA

h

E

h

u� uk

�

. h

���

kuk

�

; u 2 H

�

0

(�1; 1);

for �

min

� � � minf�

max

; 2 + �g, 0 � � � �, � � �

max

. The parameters

�

min

, �

max

, and �

max

orrespond to E

h

.

Theorem 3.7 holds aordingly, however, with the following restritions

on �:

maxf0; �

min

� 1=2g < � � min

�

�

I

; 2; �

max

� 1=2; �

max

� 1=2

	

;

that is, the maximal onvergene order annot exeed 2 whih is a tribute

to the operator A

h

in front of E

h

.

Example 5.1. Using the Shepp-Logan �lter (� = �

[�1=2;1=2[

, B(s) =

sin(� s)) in the FBA together with pieewise linear interpolation in I

h

(A

is the linear B-spline) yields




e

f

FB

� f





L

2

(
)

. h

minf2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

when � is either an even, ompatly supported and normalized L

2

-funtion

(Theorem B.2) or the Dira distribution (Theorem B.4). |
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Fig. 6.1. The funtion f from (6.1) (left) and its ross setion f(�; 0) (right).

6. Numerial illustrations. We provide numerial experiments to il-

lustrate the onvergene results proved in the former setions. Espeially,

we will see that the onvergene rates saturate indeed at the given bounds.

To this end we need an f 2 L

2

(
) with a presribed Sobolev order and

with an analytially omputable Radon transform. We favor the following

onstrution. Let p

n

be de�ned by p

n

(x) = (1 � kxk

2

)

n

, kxk � 1, and

p

n

(x) = 0, otherwise. We have that p

n

2 H

�

0

(
) for any � < n+ 1=2. The

funtion f for the �rst numerial experiment is then given by

f(x) :=

3

X

k=1

d

k

p

3

�

U

k

(x� b

k

)

�

2 H

�

0

(
) for any � < 7=2 (6.1)

where d

1

= 1, d

2

= �1:5, d

3

= 1:5, and b

1

= (0:22; 0)

t

, b

2

= (�0:22; 0)

t

,

b

3

= (0; 0:2)

t

. Further, U

k

= U('

k

; Æ

k

; 

k

), k = 1; 2; 3, with

U('; Æ; ) :=

 

os(')=Æ sin(')=Æ

� sin(')= os(')=

!

(6.2)

and

Æ

1

= 0:51; 

1

= 0:31; '

1

= 72�=180;

Æ

2

= 0:51; 

2

= 0:36; '

2

= 108�=180;

Æ

3

= 0:5; 

3

= 0:8; '

3

= �=2:

See Figure 6.1 for a graphial representation of f . We reonstruted f on

the grid X

q

:= 
 \ f(i=q; j=q) j � q � i; j � qg by

f

FB;q

(x) :=

1

2�

R

�

3q

I

1=q

�E

1=q

Rf(x); x 2 X

q

;

where R

�

p

is de�ned in (1.6). We have hosen the number of diretions (3q)

lose to its optimal value, see, e.g., Natterer [14, p. 84℄.
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q=1/h

e
(q

)

~q
−5/2

 

Fig. 6.2. The relative `

2

-errors e (6.3) for reonstruting f (6.1) by the FBA using the

Shepp-Logan �lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-

Logan �lter with pieewise linear interpolation (dashed with 4), and the modi�ed Shepp-

Logan �lter with pieewise linear interpolation (solid with Æ). The auxiliary solid line

indiates exat deay q

�5=2

.

Now we de�ne the relative `

2

-reonstrution error e by

e(q) :=

�

X

x2X

q

�

f

FB;q

(x)� f(x)

�

2

.

X

x2X

q

f(x)

2

�

1=2

: (6.3)

In Figure 6.2 we plotted e as funtion of q 2 f25; 50; 75; 100; 125; 150; 175; 200g

on a double logarithmi sale with respet to three di�erent settings in the

FBA:

� Shepp-Logan �lter with nearest neighbor interpolation (Example 3.8).

Here, the expeted and observed onvergene rate is e(q) � q

�3=2

,

see the dot-dashed line marked with �.

� Shepp-Logan �lter with pieewise linear interpolation (Example 5.1).

Here, the expeted and observed onvergene rate is e(q) � q

�2

, see

the dashed line marked with 4.

� modi�ed Shepp-Logan �lter with pieewise linear interpolation (Ex-

ample 4.1). Here, the expeted and observed onvergene rate is

e(q) � q

�5=2

, see the solid line marked with Æ. We also plotted an

auxiliary urve deaying exatly like q

�5=2

(solid line in light gray).

In the light of the omputational experiments we may onlude that our

bounds for the maximal onvergene orders annot be improved (at least

for the settings underlying the experiments).
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Fig. 6.3. Top: head phantom due to Shepp-Logan [21℄. Bottom: the relative `

2

-errors

e (6.3) for reonstruting the Shepp-Logan phantom by the FBA using the Shepp-Logan

�lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-Logan �lter

with pieewise linear interpolation (dashed with 4), and the modi�ed Shepp-Logan �lter

with pieewise linear interpolation (solid with Æ). The auxiliary solid line indiates exat

deay q

�1=2

.

Next, we present the relative `

2

-errors in reonstruting the Shepp-Logan

head phantom, see Figure 6.3. The Shepp-Logan head phantom f

SL

simu-

lates the geometry and the density relations in a human skull. It onsists

of superimposed indiator funtions of ellipses. Hene, f

SL

2 H

�

0

(
) for

any � < 1=2.

x

We therefore expet and observe e(q) � q

�1=2

for all three

settings from above.

Both experiments agree ompletely with our theoretial results although

a disretization of the bakprojetion operator was not investigated. With

our last experiment we justify this simpli�ation one more by onsidering

x

In general piture densities in medial imaging an be onsidered elements in H

�

0

(
)

with � < 1=2 but lose to 1=2, see Natterer [14, p. 92�.℄.
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Fig. 6.4. The funtion f from (6.4) (left) and its projetion Rf(�; 0) (right). The

jumps of Rf(�; 0) in �2=5 are learly visible.

a setting whih might ause trouble in a onvergene analysis inluding the

disrete bakprojetion operator.

The funtion to be reonstruted onsists of indiator funtions of two

retangles R

1

and R

2

:

f(x) := �

R

1

(x) + 0:5�

R

2

(x) (6.4)

with

R

1

:= [�2=5; 2=5℄ � [�3=5; 3=5℄

and (U as in (6.2))

R

2

:=

�

x 2 R

2

�

�

U(�=3; 0:7; 0:4)(x � b) 2 [�1; 1℄

2

	

; b = (�0:1;�0:1)

t

;

see Figure 6.4 (left). Note that f is in H

�

0

(
) for any � < 1=2. So what is

the di�erene to the Shepp-Logan head phantom? While the fat that Rf

as a funtion of two variables lies in H

�

0

(�1; 1)

b


L

2

(0; �) implies that the

funtions of one variable Rf(�; #) lie in H

�

0

(�1; 1) for almost all #, there

may be a null-set of exeptional angles # where Rf(�; #) has less Sobolev

regularity. For f given in (6.4) we have that Rf is in H

�

0

(�1; 1)

b


L

2

(0; �)

for any � < 1 but there exist four angles # where Rf(�; #) is less smooth.

Indeed,

Rf(�; #) 2 H

�

0

(�1; 1); � < 1=2; for # 2 f0; �=3; �=2; 5�=6g;

see Figure 6.4 (right). The bound on � is maximal (there are no suh patho-

logial angles for the Shepp-Logan head phantom, however, one expets suh

angles in real measurements from medial imaging).

In Figure 6.5 we plotted the relative reonstrution error (6.3) for the

same q-values as before. Please note that the disrete Radon data for all q

ontain integrals over lines whih run along the boundary of R

1

. Further, all
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Fig. 6.5. The relative `

2

-errors e (6.3) for reonstruting f (6.4) by the FBA using the

Shepp-Logan �lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-

Logan �lter with pieewise linear interpolation (dashed with 4), and the modi�ed Shepp-

Logan �lter with pieewise linear interpolation (solid with Æ). The auxiliary solid line

indiates exat deay q

�1=2

.

used reonstrution grids X

q

have suÆiently many points on the boundary

of R

1

, indeed, the ardinality of X

q

\ �R

1

inreases like O(q).

We observe that even `pathologial' projetions do not deteriorate the

onvergene rate obtained by using the ontinuous bakprojetion operator

for the analysis.

A. Appendix: proof of (3.12) for interpolation-like operators

E

h

based on B-splines. We onsider E

h

as de�ned in (3.6) where B is

the ardinal B-spline of order N � 1, that is, B is the N -fold onvolution of

�

[�1=2;1=2℄

with itself. The funtional � 2 H

��

min

0

(R), �

min

� 0, is supposed

to be even, ompatly supported in � = [�a; a℄, a > 0, and normalized by

h1; �i = 1 where h�; �i denotes the duality pairing in H

�

min

(�)�H

��

min

0

(�).

The tehniques we use below are standard in approximation theory, yet,

we are not aware of any referene suitable for our setting, however, see

Aubin [1, se. 8.6℄.

First, we show that E

h

reprodues aÆne linear funtions if N � 2.

Lemma A.1. If N � 2 then E

h

p = p for any p 2 �

1

. For N = 1 E

h

reprodues only onstants.

Proof. Note that the ation of E

h

on p is well de�ned sine � has ompat

support. Constants are preserved by h1; �(��k)i = 1 and

P

k2Z

B(s�k) = 1,

see, e.g., Shoenberg [20, p. 16℄. Let p(s) = s then hp(�); �(��k)i = k due to

the evenness of �. By s =

P

k2Z

k B(s�k), N � 2, see, e.g., Shoenberg [20,

p. 16℄, we are done.
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Theorem A.2. Let �

min

� � � minf2; Ng, � < N�1=2, and 0 � � � �.

Then,

kE

h

u� uk

�

. h

���

kuk

�

as h! 0:

Proof. We restrit the proof to N � 2 and we show �rst a loal version

of the approximation property. Therefore, let �

h;k

:= h (�+2a k) for k 2 Z.

We will rely on the Bramble-Hilbert like estimate (A.1): there is an aÆne

linear funtion P = P (u) suh that

ku� Pk

H

�

(�

h;k

)

. h

���

kuk

H

�

(�

h;k

)

; 0 � � � � � 2: (A.1)

For � = 0, (A.1) redues to the original estimate by Bramble and Hilbert [2℄.

For positive real � , see Dupont and Sott [7, th. 6.1℄ or Brenner and Sott [3,

lem. 4.3.8℄. By Lemma A.1 and (A.1) we have

kE

h

u� uk

H

�

(�

h;k

)

. kE

h

(u� p)k

H

�

(�

h;k

)

+ h

���

kuk

H

�

(�

h;k

)

:

Let J

h;k

:= fr 2 Z j suppB

h

(��s

r

)\�

h;k

6= ;g. The ardinality of J

h;k

does

neither depend on h nor on k. We proeed with

kE

h

(u� p)k

H

�

(�

h;k

)

.

X

r2J

h;k

h

�1

�

�




u� P; �

h

(� � s

r

)

�

�

�

kB

h

(� � s

r

)k

H

�

(R)

. h

��

X

r2J

h;k

h

�1=2

�

�




u� P; �

h

(� � s

r

)

�

�

�

:

From the proof of Lemma 5.2 by Dahmen, Pr�ossdorf and Shneider [6℄ we

know that

�

�




u� P; h

�1=2

�

h

(� � s

r

)

�

�

�

2

. ku� Pk

2

L

2

(�

h;r

)

+ h

2�

min

ku� Pk

2

H

�

min

(�

h;r

)

whih, by (A.1), gives

kE

h

u� uk

H

�

(�

h;k

)

. h

���

X

r2J

h;k

kuk

H

�

(�

h;r

)

. h

���

�

X

r2J

h;k

kuk

2

H

�

(�

h;r

)

�

1=2

. h

���

kuk

H

�

(

e

�

h;k

)

where

e

�

h;k

:=

S

r2J

h;k

�

h;r

. Thus,

kE

h

u� uk

H

�

(�

h;k

)

. h

���

kuk

H

�

(

e

�

h;k

)

:

Squaring both sides of the latter loal approximation property and summing

over k 2 Z yields �nally the stated global approximation property.

Summary. The above theorem overs espeially the ases � = Æ (Dira

distribution), where �

min

> 1=2, and � 2 L

2

(�) being even with

R

�

�(s) ds =

1 where �

min

= 0. Hene, for both latter ases (3.12) holds with �

max

= 2

and �

max

< N � 1=2.
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B. Appendix: proof of (3.12) for interpolation-like operators E

h

based on the sin-funtion. We onsider E

h

as de�ned in (3.6) where B

is the sinus ardinalis, that is, B(x) := sin(� x) where sin(x) = sin(x)=x,

x 6= 0, and sin(0) = 1. Further, � 2 L

1

(R)\L

2

(R) is an even funtion with

ompat support and a normalized mean value,

R

�(x) dx = 1. Here, h�; �i

denotes the L

2

(R)-inner produt.

First we bound E

h

uniformly in h.

Lemma B.1. a) The operators E

h

: L

2

(R) ! L

2

(R), h > 0, are uni-

formly bounded in h.

b) Let w be in L

2

(R) with supp bw � [��=h; �=h℄. Then, we have the inverse

estimate kwk

�

� 2

�=2

�

�

h

��

kwk

L

2

(R)

for 0 < h � � and any � � 0.

Proof. a) Set �

h;k

= h (supp �+ k). The L

2

(R)-orthogonality of fB

h

(� �

s

k

)g

k2Z

gives

kE

h

uk

2

L

2

(R)

= h

�1

X

k2Z

jhu; �

h

(� � s

k

)ij

2

�

X

k2Z

kuk

2

L

2

(�

h;k

)

k�k

2

L

2

(R)

. kuk

2

L

2

(R)

:

b) The inverse estimate results from a straight forward estimate of kwk

2

�

taking into aount the ompat support of bw.

After the above preparatory results we are able to prove the laimed

onvergene estimate.

Theorem B.2. Let 0 � � � �, � � � � 2. Under the assumptions from

above we have that

kE

h

u� uk

�

. h

���

kuk

�

as h! 0:

Proof. De�ne an auxiliary operator P

h

: L

2

(R) ! L

2

(R) by

d

P

h

w(�) := �

�

h

(�) bw(�):

{

(B.1)

It is an easy exerise to obtain

kP

h

u� uk

�

. h

���

kuk

�

for 0 � � � � <1 (B.2)

whenever the right hand side is �nite.

In a �rst step we onsider kE

h

P

h

u� P

h

uk

�

. We have

\

E

h

P

h

u(�) =

1

p

2�

�

�

h

(�)

X

k2Z

hP

h

u; �

h

(� � s

k

)i e

�{ hk�

{

Atually, P

h

is the orthogonal projetor onto the losed subspae of band-limited

funtions with band-width �=h.
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and

h

1=2

hP

h

u; �

h

(� � s

k

)i = h

1=2

Z

�

h

d

P

h

u(�) b�

h

(�) e

{ hk�

d�

=

�

h

2�

�

1=2

Z

�

h

\

P

h

u ? �

h

(�) e

{ hk�

d�

whih is the k-th Fourier oeÆient of

\

P

h

u ? �

h

. Hene,

\

E

h

P

h

u(�) = h

�1

�

�

h

(�)

\

P

h

u ? �

h

(�):

Therefore,

kE

h

P

h

u� P

h

uk

2

�

=

Z

�

h

(1 + �

2

)

�

�

�

h

�1

\

P

h

u ? �

h

(�)�

d

P

h

u(�)

�

�

2

d�

.

Z

�

h

(1 + �

2

)

�

�

�

bu(�)

�

�

2

M(h�) d�

where M(z) = jb�(z)� 1=

p

2�j

2

, z 2 R. As in the proof of Corollary 2.2 one

shows that M(z) . z

4

using a Taylor expansion of b� about the origin. Now

let 0 � � � � � 2. Then,

kE

h

P

h

u� P

h

uk

2

�

. h

4

Z

�

h

(1 + �

2

)

�

�

�

bu(�)

�

�

2

�

4�2(���)

d� (B.3a)

. h

2(���)

kuk

2

�

: (B.3b)

In the �nal step we use both statements from Lemma B.1 as well as (B.2)

and (B.3):

kE

h

u� uk

�

� kE

h

u�E

h

P

h

uk

�

+ kE

h

P

h

u� P

h

uk

�

+ kP

h

u� uk

�

. h

��

ku� P

h

uk

L

2

(R)

+ h

���

kuk

�

:

Applying (B.2) again we onlude with the proof of Theorem B.2.

Remark B.3. The upper bound 2 on � � � in Theorem B.2 may be

relaxed by imposing higher order vanishing moments on �.

Now we investigate band-limited interpolation, that is, E

h

is de�ned by

E

h

u(s) =

X

k2Z

u(s

k

) sin

�

�

h

(s� s

k

)

�

: (B.4)

Theorem B.4. Let �

max

2 N. Then, for 1=2 < � <1, 0 � � � � with

� � � � �

max

, we have that

kE

h

u� uk

�

. h

���

kuk

�

as h! 0
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whenever u 2 H

�

(R) is ompatly supported. The onstant in the above

estimate may depend on �

max

.

Proof. Band-limited interpolation is well de�ned under the assumptions

on u. We introdue an auxiliary operator E

(m)

h

. To this end let � 2 L

2

(R)

be ompatly supported with normalized mean value (

R

�(x) dx = 1) and

vanishing moments up to order �

max

(

R

x

k

�(x) dx = 1, k = 1; : : : ; �

max

).

Thus, b�(0) = 1=

p

2� and b�

(�)

(0) = 0, � = 1; : : : ; �

max

. De�ne �

(m)

(s) :=

m�(ms), m 2 N, and

E

(m)

h

u(s) := h

�1

X

k2Z




u; �

(m)

h

(� � s

k

)

�

sin

�

�

h

(s� s

k

)

�

:

Observe that E

(m)

h

: L

2

(R) ! L

2

(R) is uniformly bounded in h and m, see

proof of Lemma B.1. Hene, we may apply Theorem B.2 to obtain

kE

(m)

h

u� uk

�

. h

���

kuk

�

(B.5)

where the onstant is bounded in m as a areful inspetion of the proof of

Theorem B.2 shows. Moreover, the upper bound on � � � in (B.5) is �

max

sine all derivatives of b� up to order �

max

vanish about 0, see Remark B.3.

By (B.5),

kE

h

u� uk

�

. kE

h

u�E

(m)

h

uk

�

+ h

���

kuk

�

: (B.6)

Further,

kE

h

u�E

(m)

h

uk

�

� ksin

h=�

k

�

X

k2J

m;h

(u)

�

�

u(s

k

)�




u; h

�1

�

(m)

h

(� � s

k

)

�

�

�

with J

m;h

(u) = fk 2 Z j s

k

2 suppug[fk 2 Z j supp u\h(m

�1

supp �+k)g.

The set J

m;h

(u) is �nite and its ardinality is bounded in m. So we have

that lim

m!1

kE

h

u � E

(m)

h

uk

�

= 0 and the stated estimate is readily seen

from (B.6).

Summary. The band-limited interpolation-like operators onsidered in

Theorem B.2 satisfy (3.12) with �

min

= 0, �

max

= 2+ � and any �

max

<1.

For the band-limited interpolation (B.4) we have (3.12) with �

min

> 1=2

and any positive �

max

and any �xed �

max

> 1=2.

C. Appendix: Complement to Setion 4. This appendix is de-

voted to the proof of various auxiliary results from Setion 4. Throughout

this appendix let e� and A be B-splines of order M � 1 and N � 1, respe-

tively. Further, let � be de�ned by (4.1).

C.1. The trigonometri polynomial a. Reall that

a(�) =

X

`2Z

a

`

e

�{ `�

with a

`

=

Z

R

e�(s) A(`� s) ds:
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Sine e� and A are even, so are fa

`

g

`2Z

and a. By

P

`2Z

A(� � `) = 1,

and

R

e�(s)ds = 1, see, e.g., Shoenberg [20, p. 16 and p. 2℄, we have that

a(0) = 1. In the remainder of this appendix we verify that a has no zeros.

Then we have established all properties of a laimed and needed in Setion 4.

Straightforward alulations reveal that the a

`

's are the Fourier oeÆ-

ients of the 2�-periodi funtion 2�

P

k2Z

b

e�(� + 2� k)

b

A(� + 2� k). Hene,

a(�) = 2�

X

k2Z

b

e�(�+2� k)

b

A(�+2� k) =

X

k2Z

sin

M+N

(�=2+� k): (C.1)

If M + N is even, a learly has no zeros beause there is no � suh that

sin

M+N

(�=2+� k) = 0 for all k 2 Z. It remains to investigate the odd ase

M +N = 2L+ 1, L 2 N. We fatorize a aording to

a(�) = sin

2L

(�=2) �

2L+1

(�) with �

2L+1

(�) :=

X

k2Z

(�1)

k

(�=2 + � k)

2L+1

:

As multiples of 2� are not zeros of a it suÆes to show that �

2L+1

has no

zeros in ℄0; 2�[. Separating even from odd indies we �nd

�

2L+1

(�) = 2

�(2L+1)

�

S

2L+1

(�=4) � S

2L+1

(�=4 + �=2)

�

where S

l

(�) :=

P

k2Z

(� + � k)

�l

, l � 2. Observe that S

2l

(�) > 0, l 2 N.

Now,

d

d�

S

2L+1

(�) = �(2L+ 1) S

2L+2

(�) < 0; � 2 ℄0; 2�[:

Therefore S

2L+1

is strongly dereasing in ℄0; 2�[ whih gives �

2L+1

> 0 in

℄0; 2�[.

C.2. Biorthogonality (4.3). By (4.1) and (C.1) we obtain




�(� � k); A(�)

�

=

Z

R

b�(�)

b

A(�) e

{ k�

d�

=

Z

2�

0

X

n2Z

b�(� + 2� n)

b

A(� + 2� n) e

{ k�

d�

=

Z

2�

0

1

a(�)

X

n2Z

b

e�(� + 2� n)

b

A(� + 2� n) e

{ k�

d� =

Z

2�

0

e

{ k�

2�

d�

whih is (4.3).

C.3. Approximation power of I

�

h

. We are not able to apply Theo-

rem A.2 diretly to I

�

h

as � from (4.1) does not have ompat support in

general. Nevertheless, we will show that the approximation power of

e

I

�

h

arries over to I

�

h

(for the notation see Setion 4). Sine



I

�

h

u(�) =



e

I

�

h

u(�)=a(h�)
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we have that

ku� I

�

h

uk

2

�

.

Z

R

(1 + �

2

)

�

�

�

a(h�) bu(�)�



e

I

�

h

u(�)

�

�

2

d�:

Thus,

ku� I

�

h

uk

�

. kA

h

u�

e

I

�

h

A

h

uk

�

+ k

e

I

�

h

A

h

u�

e

I

�

h

uk

�

where

d

A

h

u(�) = a(h�) bu(�). Theorem A.2 provides

kA

h

u�

e

I

�

h

A

h

uk

�

. h

���

kA

h

uk

�

. h

���

kuk

�

for 0 � � � minf2;Mg, � < M � 1=2, and 0 � � � �. Further, also by

Theorem A.2,

k

e

I

�

h

A

h

u�

e

I

�

h

uk

�

. kA

h

u� uk

�

whenever 0 � � < M � 1=2, for M � 2, and 0 � � � 2, otherwise. A Taylor

expansion of a about 0 proves that ja(�) � 1j . �

2

. Now we may opy the

proof of Corollary 2.2 to obtain

kA

h

u� uk

�

. h

minf2;���g

kuk

�

; 0 � � � �: (C.2)

Colleting the piees we �nd

ku� I

�

h

uk

�

. h

���

kuk

�

as h! 0 (C.3)

for 0 � � � minf2;Mg, � < minf2;M � 1=2g, and 0 � � � �.
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