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Abstra
t. The �ltered ba
kproje
tion algorithm is probably the most often used re
on-

stru
tion algorithm in 2D-
omputerized tomography. For a semi-dis
rete version in the

parallel s
anning geometry we prove optimal L

2

-
onvergen
e rates for density distributions

in Sobolev spa
es. Additionally we show L

2

-
onvergen
e without rates when the density

distribution is only in L

2

. The key to su

ess is a new representation of the �ltered ba
k-

proje
tion whi
h enables us to apply te
hniques from approximation theory. Our analysis

provides further a modi�
ation of the Shepp-Logan re
onstru
tion �lter with an improved


onvergen
e behavior. Numeri
al experiments in the fully dis
rete setting reprodu
e the

theoreti
al predi
tions.
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1. Filters in Tomography. Tomographi
 re
onstru
tion means �nd-

ing a density distribution f from all its line integrals g = Rf . Here, R

denotes the Radon transform,

Rf(s; #) :=

Z

L(s;#)\


f(x) d�(x);

mapping a fun
tion to its integrals over the lines L(s; #) = f� !

?

(#) +

s !(#) j � 2 Rg where s 2 R, !(#) = (
os #; sin #)

t

, and !

?

(#) = (� sin #;


os #)

t

for # 2 ℄0; �[. This parameterization of lines gives rise to the parallel

s
anning geometry. The Radon transform R maps L

2

(
) boundedly to

L

2

(Z) where 
 is the unit ball in R

2


entered about the origin and Z is the

re
tangle Z = ℄� 1; 1[� ℄0; �[.

Analyti
ally tomographi
 re
onstru
tion is represented by the inversion

formula

f = (2�)

�1

R

�

� g (1.1)
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2 A. RIEDER AND A. FARIDANI

where the ba
kproje
tion operator R

�

: L

2

(Z)! L

2

(
) is the adjoint to R,

R

�

�(x) :=

Z

�

0

�(x

t

!(#); #) d#:

Formally, � is the square root of the 1D Lapla
ian ��: � = (��)

1=2

. In

(1.1), � a
ts on the variable s of g. For a proof of (1.1) see, e.g., Natterer [14℄.

Due to the 
ompa
tness of R the re
onstru
tion of f from noisy Radon

data g by (1.1) is unstable (� ampli�es high frequen
ies). A stable algorithm

of tomographi
 re
onstru
tion is therefore based on

f ? e




= R

�

(�




?

s

g); e




= R

�

�




; (1.2)

where ? denotes 
onvolution and ?

s

denotes 
onvolution with respe
t to the

variable s. In (1.2) e




(x) = e(x=
)=


2

, 
 > 0, and e = e

1

is a molli�er,

that is, a smooth fun
tion with normalized mean value. Thus, f ? e




is a

smoothed or molli�ed approximation to f . The fun
tion � = �

1

is 
alled

re
onstru
tion kernel or re
onstru
tion �lter whi
h is independent of the

angle # for radially symmetri
 molli�ers (whi
h we assume in the sequel).

Note that �




(s) = �(s=
)=


2

. By the inversion formula (1.1) we 
an 
ompute

the re
onstru
tion kernel from a molli�er e:

� =

1

2�

�Re (1.3)

The 
onvolution �




?

s

g realizes a low pass �ltered version of �g=(2�).

A straightforward dis
retization of (1.2) together with an interpolation

step yields the �ltered ba
kproje
tion algorithm (FBA) whi
h is the most fre-

quently used algorithm in 
omputerized tomography, see, e.g., Natterer [14,


hap. V℄. In the sequel let f be a density distribution 
ompa
tly supported

in 
. If we assume to know the dis
rete Radon data g

k;j

:= Rf(s

k

; #

j

) for

s

k

= k=q, k = �q; : : : ; q, and #

j

= j �=p, j = 0; : : : ; p � 1, then the FBA

re
onstru
ts f

FB

by

f

FB

(x) := R

�

p

I

h

(w ?

q

g)(x): (1.4)

In the FBA, �rst the dis
rete 
onvolution

(w ?

q

g)

`;j

:=

1

q

X

k2Z

w

`�k

g

k;j

�

�

�




?

s

g(�; #

j

)

�

(s

`

) (1.5)

is performed where fw

k

g is a weight sequen
e asso
iated with the 
hosen

kernel �




. In the se
ond step, an interpolation operator I

h

is applied (with

respe
t to `). Finally, the dis
rete ba
kproje
tion operator

R

�

p

�(x) :=

�

p

p�1

X

j=0

�(x

t

!(#

j

); #

j

) (1.6)
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is evaluated.

Ex
ept for the interpolation pro
ess, the dis
rete 
onvolution (1.5) is the

most deli
ate step in the FBA: the dis
rete 
onvolution kernel fw

k

g has to

be 
hosen 
arefully from the 
ontinuous kernel �




. For instan
e, a 
ommon


hoi
e is

w

k

= �




(s

k

): (1.7)

Here 
 has to be adjusted to the dis
retization step size h = 1=q. The

sensitivity of the re
onstru
ted image to 
 has been noti
ed probably for the

�rst time by Smith in [22, p. 20℄. Rules for sele
ting 
 have been suggested

by Smith and Keinert [23, se
. VI℄, Natterer [14℄ and Rieder [16℄. For lo
al

tomography, see Faridani [8℄ and Rieder et al. [17℄.

Smith [22, pp. 18-19℄ propagated a di�erent way to de�ne the w

k

's. He

intended the dis
rete 
onvolution (1.5) to be exa
t for a large 
lass of fun
-

tions. Let E

h

u be an approximation to the fun
tion u given as superposition

of translated and s
aled versions of a fun
tion B, that is,

E

h

u(s) =

X

k2Z

u(s

k

)B

h

(s� s

k

) where B

h

(s) = B(s=h): (1.8)

For instan
e, E

h


ould be an interpolation operator. De�ning

w

k

:=

1

h

Z

�




(s) B

h

(s

k

� s) ds =

1

h

�




? B

h

(s

k

); k 2 Z; (1.9)

we have that

(w ?

q

u)

`

= �




?

s

E

h

u(s

`

); ` 2 Z:

Moreover, if E

h

is interpolating then

(w ?

q

E

h

u)

`

= �




?

s

E

h

u(s

`

); ` 2 Z;

that is, the dis
rete 
onvolution (1.5) is exa
t for E

h

u. Numeri
al as well

as theoreti
al 
onsiderations, see [16, 22℄, showed that the re
onstru
ted

images f

FB

are less sensitive to 
hanges in 
 when working with (1.9) rather

than working with (1.7). Indeed, we will show in the next se
tion that the

dis
rete �lter fw

k

g from (1.9) 
onverges for 
 ! 0 and that its limit fw

1

k

g

is again a re
onstru
tion �lter belonging to a 
ompa
tly supported molli�er.

This limit �lter has an interesting feature: 
omputing �E

h

u(s

`

)=(2�) 
an

now be realized by the dis
rete 
onvolution

1

2�

�E

h

u(s

`

) = (w

1

?

q

u)

`

:

The latter equation is the starting point in Se
tion 3 for a re-formulation

of the FBA leading to optimal L

2

-
onvergen
e rates in a semi-dis
rete set-

ting (Theorem 3.7) where in (1.4) the dis
rete ba
kproje
tion operator R

�

p

is repla
ed by the 
ontinuous one R

�

. We see how the re
onstru
tion �l-

ter, the interpolation pro
ess (I

h

in (1.4)), and the Sobolev regularity of the
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sear
hed-for density distribution in
uen
e the 
onvergen
e rate. As a by-

produ
t of our analysis we dis
over a new re
onstru
tion �lter (Example 4.1)

with an improved 
onvergen
e behavior 
ompared to the widely used Shepp-

Logan �lter [21℄ (Se
tions 4 and 5). Indeed, our modi�ed Shepp-Logan �lter

yields optimal 
onvergen
e for Sobolev orders up to 5=2 whereas the 
onver-

gen
e order of the original Shepp-Logan �lter saturates at 2 (Example 5.1).

Numeri
al experiments in the fully dis
rete setting of (1.4) agree 
ompletely

with our theoreti
al predi
tions and are presented in Se
tion 6. Auxiliary

but new approximation properties of (quasi) interpolation operators, whi
h

we need for the analysis, are proved in several appendi
es.

2. The limit. We will now investigate the 
onvergen
e in Sobolev

spa
es of �




? B as 
 tends to zero. We de�ne the Sobolev spa
es H

�

(R

d

),

� 2 R, to be the 
losure of L

2

(R

d

) with respe
t to the norm

kfk

2

�

:=

Z

R

d

�

1 + k�k

2

�

�

j

b

f(�)j

2

d�

where

b

f(�) := (2�)

�d=2

R

R

d

f(x) e

�{ �

t

x

dx is the Fourier transform of a fun
-

tion f in L

1

(R

d

) \ L

2

(R

d

). The Fourier transform 
an be extended to L

2

-

fun
tions and tempered distributions by 
ontinuity and duality, respe
tively.

The �-operator,




�f(�) := k�k

b

f(�);

maps H

�

(R

d

) boundedly to H

��1

(R

d

).

The latter mapping property of � together with a smoothing e�e
t of R,

see [14, 
hap. II, th. 5.1℄, and the Sobolev embedding theorem show that

� from (1.3) is 
ontinuous whenever e is a radially symmetri
 
ompa
tly

supported molli�er in H

�

(R

2

), � > 1. Furthermore, � 2 L

1

(R), see [16,

lemma 3.1℄. Thus, �




? B is well de�ned in H

t

(R) for B 2 H

t

(R), t 2 R,

see, e.g., Aubin [1, proposition 9.3.2℄.

Lemma 2.1. Let e 2 H

�

(R

2

), � > 1, be a radially symmetri
 
ompa
tly

supported molli�er and let � be the 
orresponding re
onstru
tion kernel (1.3).

Then,

lim


!0










�




�

1

2�

�Æ










��

= 0 for any � > 3=2 (2.1)

where Æ denotes the Dira
 generalized fun
tion. Moreover, if B 2 H

t

(R),

t 2 R, then

lim


!0










�




? B �

1

2�

�B










t�1

= 0: (2.2)

For values of s su
h that �B is 
ontinuous near s we have

lim


!0

�




? B(s) =

1

2�

�B(s):



SEMI-DISCRETE FILTERED BACKPROJECTION IS OPTIMAL 5

Proof. We prove (2.2) whi
h then implies (2.1) when setting B = Æ and

re
alling that Æ 2 H

t

(R) for t < �1=2. With

I(�; 
) = (1 + j�j

2

)

t�1

�

�

p

2� 
�




(�)

b

B(�)� j�j

b

B(�)=(2�)

�

�

2

we obtain that










�




? B �

1

2�

�B










2

t�1

=

Z

R

I(�; 
) d�:

By the proje
tion sli
e theorem, see, e.g., Natterer [14, 
hap. II, th. 1.1℄, we

�nd (e is a radially symmetri
 fun
tion)


�




(�) =

1

2�

j�j

d

Re




(�) =

1

p

2�

j�j be




(�; 0) =

1

p

2�

j�j be(
 �; 0)

whi
h yields

I(�; 
) � (1 + j�j

2

)

t

�

�
b

B(�)

�

�

2

�

�

be(
 �; 0)� 1=(2�)

�

�

2

:

The stated 
onvergen
e follows now from be(0; 0) = 1=(2�), the Riemann-

Lebesgue lemma, and the dominated 
onvergen
e theorem.

Let us look at an example. For � being the indi
ator fun
tion of the

interval [�1=2; 1=2℄ we are able to 
ompute �� by

��(s) = �

1

�

Z

R

js� tj

�2

�(t) dt; jsj > 1=2; (2.3)

see Faridani et al. [9, formula (2.1)℄. Evaluating the integral gives

��(s) =

4

�

1

1� 4 s

2

: (2.4)

The above formula holds for all s 2 R n f�1=2; 1=2g. This 
an be veri�ed

using the relation �(1��) = ��� and applying formula (2.1) of [9℄ to 1��,

the indi
ator fun
tion of R n [�1=2; 1=2℄. So we have that

lim


!0

�




? �(s) =

2

�

2

1

1� 4 s

2

; jsj 6= 1=2:

In weaker Sobolev norms we even 
an give 
onvergen
e rates. For for-

mulating the respe
tive result and later in the paper we use the following


onvenient notation: A . B indi
ates the existen
e of a generi
 
onstant 


su
h that A � 
B holds uniformly with respe
t to all parameters A and B

may depend on.

Corollary 2.2. Let 0 � s � 2. Under the assumptions of Lemma 2.1

we have that










�




? B �

1

2�

�B










t�1�s

. 


s

kBk

t

:
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Proof. As in the proof of Lemma 2.1 we obtain that










�




? B �

1

2�

�B










2

t�1�s

�

Z

R

(1 + j�j

2

)

t�s

�

� b

B(�)

�

�

2

M(
 �; 0) d�

where M(z) := jbe(z) � 1=(2�)j

2

, z 2 R

2

. Sin
e e is an even fun
tion all

its �rst order moments vanish. Therefore, all �rst order derivatives of be are

zero at the origin. Thus the Taylor expansion of be about the origin be
omes

be(z) =

1

2�

+

X

�2N

2

0

�

1

+�

2

=2

D

�

be(�

z

z)

�!

z

�

for a �

z

2 [0; 1℄

whi
h yields M(z) . kzk

4

. Now let s 2 [0; 2℄. Then,










�




? B �

1

2�

�B










2

t�1�s

.

Z

j�j�1=


�

�
b

B(�)

�

�

2

(1 + j�j

2

)

t�s

M(
 �; 0) d�

+

Z

j�j>1=


�

� b

B(�)

�

�

2

(1 + j�j

2

)

t�s

d�

. 


4

Z

j�j�1=


�

� b

B(�)

�

�

2

(1 + j�j

2

)

t

j�j

4�2s

d�

+

Z

j�j>1=


�

� b

B(�)

�

�

2

(1 + j�j

2

)

t

j�j

�2s

d�:

Both latter terms 
an be bounded by 


2s

kBk

2

t

.

Remark 2.3. The generalization of Corollary 2.2 to re
onstru
tion

kernels � belonging to molli�ers with higher order vanishing moments is

obvious.

3. The FBA is optimal. We will re-formulate the FBA (1.4) for the

limit �lters 
onsidered in the former se
tion, see (3.2) below. This new

representation of the FBA allows us to introdu
e a novel error analysis

whi
h shows that the FBA is optimal for tomographi
 inversion.

3.1. A new representation of the FBA. We start with the follow-

ing simple observation.

Lemma 3.1. Let B be in H

t

(R) for a t 2 R su
h that �B(s) is 
ontin-

uous near integer values of s. For  (s) =

P

k2Z




k

B

h

(s� h k), where f


k

g

is a �nite sequen
e and h is positive, we have

� (h `) = h

�1

X

k2Z




k

�B(`� k); ` 2 Z:
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Proof. The statement follows dire
tly from the relations �B

h

(s) =

�B(s=h)=h and �T

a

= T

a

� where T

a

is the translation operator T

a

u(s) =

u(s� a).

Remark 3.2. Relying on Lemma 3.1 we easily derive that

2

�

1

q + 1=2

=

q

X

k=�q

��(k) for any q 2 N

0

where � is as in (2.3). To prove the above identity we only mention that

P

q

k=�q

�(� �k) is the 
hara
teristi
 fun
tion of the interval [�q�1=2; q+1=2℄.

Let the operator E

h

be given by (1.8) with B as in Lemma 3.1. De�ne

the dis
rete re
onstru
tion kernel fw

1

k

g by

w

1

k

=

1

2� h

2

�B(k) = �

1

h

(h k) (3.1)

where �

1

h

(s) = �

1

(s=h)=h

2

and �

1

(s) := �B(s)=(2�). Then, the dis
rete


onvolution (1.5) 
an be written as the �-operator applied exa
tly to a fun
-

tion approximating g from dis
rete values:

(w

1

?

q

g)

`;j

=

1

2�

�

�E

h

g(�; #

j

)

�

(h `); ` 2 Z:

Thus, the re
onstru
ted image f

FB

may be re-written as

f

FB

(x) =

1

2�

R

�

p

I

h

�E

h

g(x); (3.2)

see (1.4). Please observe that the three operators E

h

, �, and I

h

a
t on the

�rst variable of the data g = Rf .

Example 3.3. Let B = � be the 
hara
teristi
 fun
tion of [�1=2; 1=2℄.

Then, the re
onstru
tion kernel w

1

used for evaluating (3.2) is

w

1

k

=

2

�

2

h

2

1

1� 4 k

2

whi
h follows from (2.4) and (3.1). Here, w

1

is the dis
rete Shepp-Logan

re
onstru
tion �lter [21℄. |

Remark 3.4. Let the dis
rete re
onstru
tion kernel fw

k

g be given

by (1.9). Due to Lemma 2.1 we obtain lim


!0

w

k

= w

1

k

implying that

lim


!0

(w ?

q

g)

`;j

=

1

2�

�

�E

h

g(�; #

j

)

�

(h `); ` 2 Z:
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1

3

1

1

Fig. 3.1. Radial part of limit molli�er e

1

(3.4) where B is the linear (left) and the

quadrati
 (right) B-spline, respe
tively.

We next ask the question whi
h molli�er e

1

belongs to the re
onstru
-

tion kernel �

1

(3.1)? By (1.3) and the proje
tion sli
e theorem we �nd

that




e

1

(�) =

b

B(k�k)=

p

2�; � 2 R

2

; (3.3)

whi
h yields (J

0

denoting the Bessel fun
tion of the �rst kind of order 0)

e

1

(x) =

1

p

2�

Z

1

0

r

b

B(r) J

0

(kxk r) dr: (3.4)

In view of (3.3) the molli�er e

1

is in L

2

(R

2

) if lim

r!1

r j

b

B(r)j = 0. Further,

a 
ompa
t support of B implies a 
ompa
t support of e

1

. More pre
isely,

let B be even with suppB � [�R;R℄ then supp e

1

� fx 2 R

2

j kxk � Rg.

The latter statement is a 
onsequen
e from the Paley-Wiener theorems, see,

e.g., Rudin [19, 
hap. 7℄.

Example 3.5. Let B = � be the 
hara
teristi
 fun
tion of the interval

[�1=2; 1=2℄. By formula 6.671.7 from [11℄ we �nd that

e

1

(x) =

(

2

�

1

p

1�4 kxk

2

: kxk < 1=2

0 : otherwise

whi
h is the molli�er belonging to �

1

(s) =

1

2�

��(s) =

2

�

2

(1 � 4 s

2

)

�1

, see

(2.4). The graphs of the radial parts of e

1

with respe
t to the linear and

quadrati
 B-splines are plotted in Figure 3.1.

3.2. A novel error estimate. The new representation (3.2) of the

FBA gives us the freedom to provide a novel error analysis based on prin-


iples from approximation theory. Indeed, we will be able to prove L

2

-


onvergen
e of the FBA with optimal rates.

In 
ontrast, the error estimates based on Fourier analysis, see Nat-

terer [14, 
hap. V℄ and Faridani and Ritman [10℄ are of qualitative nature in

terms of essentially band limited fun
tions. Sin
e the used main tool is the

Poisson summation formula the 
onsidered density distributions are required
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to be 
ontinuous fun
tions at least (

b

f 2 L

1

). Convergen
e has been shown

before: Popov [15℄ established pointwise 
onvergen
e restri
ted to a small


lass of fun
tions (pie
ewise C

1

with jumps a
ross smooth 
urves). The ap-

proa
h of Rieder and S
huster [18℄ leads to L

2

-
onvergen
e for f 2 H

�

0

(
),

� > 1=2, however, with suboptimal rates.

In our analysis below we will not take into a

ount the error introdu
ed

by dis
retizing the ba
kproje
tion R

�

, that is, our model of the FBA re
on-

stru
ts

e

f

FB

by

e

f

FB

(x) :=

1

2�

R

�

I

h

�E

h

Rf(x); (3.5)


ompare (3.2).

Before bounding the re
onstru
tion error of

e

f

FB

we generalize both op-

erators E

h

and I

h

. For u 2 H

�

(R), � 2 R, we de�ne

E

h

u(s) := h

�1

X

k2Z




u; �

h

(� � s

k

)

�

B

h

(s� s

k

) (3.6)

where �

h

(s) = �(s=h) with � 2 H

��

(R) being even and b�(0) = 1=

p

2�. Fur-

ther, h�; �i denotes the duality pairing in H

�

(R) �H

��

(R). For u 2 H

�

(R),

� > 1=2, we may 
hoose � = Æ (Dira
 distribution). Thus, h

�1

hu; �

h

(� �

s

k

)i = u(s

k

) and the general form (3.6) of E

h


oin
ides with its former

de�nition (1.8). We extended the domain of de�nition of E

h

to 
over (gen-

eralized) fun
tions in H

�

(R) with � � 1=2.

The re-de�nition of E

h

was ne
essary be
ause we apply E

h

to Rf(�; #),

see (3.5), and we only have that Rf(�; #) 2 H

1=2

0

(�1; 1) for f 2 L

2

(
)

and almost all #. Moreover, our new model allows for �nite width of the

rays and dete
tor inhomogeneities in the observed semi-dis
rete Radon data,

see Natterer [14, 
hap. V.5.1℄. Indeed, for � being a non-negative fun
tion


ompa
tly supported in [�1=2; 1=2℄ with a normalized mean value we obtain

h

�1




Rf(�; #); �

h

(� � s

k

)

�

= h

�1

s

k

+h=2

Z

s

k

�h=2

Rf(s; #) �

h

(s� s

k

) ds: (3.7)

Hen
e, � 
an be seen as the sensitivity pro�le of the X-ray dete
tors.

In a very similar way we de�ne I

h

by

I

h

u(s) := h

�1

X

k2Z




u; �

h

(� � s

k

)

�

A

h

(s� s

k

) (3.8)

where � and A are like � and B from (3.6), respe
tively.

Our modi�
ations of E

h

and I

h

do not a�e
t the eÆ
ient 
omputation of

I

h

�E

h

Rf(�; #)=(2�) by dis
rete 
onvolution. A straight forward 
al
ulation

reveals that

1

2�

�

I

h

�E

h

Rf(�; #)

�

(s) =

X

`2Z

�

w ?

q

g

�

(�; #)

�

`

A

h

(s� s

`

)
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where g

�

(s; #) =

�

Rf(�; #)?

s

�

h

�

(s)=h, see (3.7), and the dis
rete re
onstru
-

tion kernel w is given by

w

r

= �(r)=h

2

; r 2 Z;

with �(s) :=

1

�

Z

1

0

�

b

B(�) b�(�) 
os(s �) d�:

(3.9)

The above integral exists as a duality pairing whenever B 2 H

t

(R) and

� 2 H

1�t

(R).

Example 3.6. We will give the Shepp-Logan re
onstru
tion �lter a

new interpretation. To this end, let B(s) = sin
(� s) be the interpolating

fun
tion used to de�ne E

h

. In I

h

let � be the 
hara
teristi
 fun
tion of

the interval [�1=2; 1=2℄. We obtain

b

B = �

[��;�℄

=

p

2� (�

D


hara
teristi


fun
tion of interval D) and b�(�) = sin
(�=2)=

p

2�. Hen
e,

�(s) =

2

�

2

2 s sin(� s)� 1

4 s

2

� 1

and w

k

= �(k)=h

2

=

2

�

2

h

2

1

1� 4 k

2

;

see Example 3.3 and 
ompare formula (1.22) on page 111 in [14℄. |

In estimating the re
onstru
tion error below we will need that the inver-

sion formula (1.1) holds true for fun
tions in L

2

(
), that is,

f = (2�)

�1

R

�

�Rf for any f 2 L

2

(
): (3.10)

As far as we know the most general version of (1.1) is due to Smith et

al. [24, p. 1257℄ requiring a 
ompa
tly supported f 2 H

�

(R

2

) with � � 1=2.

To verify (3.10) we re
all the following mapping property of the Radon

transform,

R : H

�

0

(
)! H

(�+1=2;0)

is bounded for any � � 0; (3.11)

whi
h is due to Louis and Natterer [13, th. 3.1℄, see also [14, th. II.5.1℄.

Above, H

�

0

(
) is the 
losure of C

1

0

(
), the spa
e of in�nitely di�erentiable

fun
tions 
ompa
tly supported in 
, with respe
t to the norm k�k

�

. Further,

H

(�;0)

is the tensor produ
t spa
e H

�

(R)

b


L

2

(0; �).

Now the validity of (3.10) 
an be seen from the following three fa
ts:

1. The operatorR

�

�R : L

2

(
)! L

2

(
) is bounded sin
e all three mappings

R : L

2

(
) ! H

(1=2;0)

, � : H

(1=2;0)

! H

(�1=2;0)

, and R

�

: H

(�1=2;0)

!

L

2

(
) are bounded.

�

2. Formula (3.10) applies to all f 2 C

1

0

(
), see, e.g.,

Natterer [14, th. II.2.1℄. 3. The spa
e C

1

0

(
) is dense in L

2

(
).

�

The 
ontinuity of R

�

: H

(�1=2;0)

! L

2

(
) follows from (3.11) by duality.
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After these preparations we 
on
entrate on the re
onstru
tion error for

f in H

�

0

(
), � � 0. Relying on (3.10) we begin with







e

f

FB

� f







L

2

(
)

=

1

2�







R

�

I

h

�E

h

Rf �R

�

�Rf







L

2

(
)

�







�

R

�

I

h

�R

�

�

�E

h

Rf







L

2

(
)

+







R

�

�

�

E

h

Rf �Rf

�







L

2

(
)

and pro
eed by estimating both norms on the right hand side.

We saw above that R

�

� maps H

(1=2;0)

boundedly to L

2

(
). Hen
e,







R

�

�

�

E

h

Rf �Rf

�







L

2

(
)

.







E

h

Rf �Rf







H

(1=2;0)

:

Now we need an approximation property of E

h

. Therefore, we assume there

are non-negative 
onstants �

max

and �

min

� �

max

su
h that







E

h

u� u







�

. h

���

kuk

�

as h! 0 (3.12a)

for �

min

� � � �

max

; 0 � � � �; � � �

max

; u 2 H

�

0

(�1; 1): (3.12b)

For instan
e, if E

h

represents pie
ewise linear interpolation

y

then (3.12)

holds with �

max

= 2, �

min

> 1=2, and �

max

< 3=2. For pie
ewise linear

interpolation the approximation property (3.12) is a 
lassi
al result when

� 2 f0; 1g and � = 2, see, e.g., Strang and Fix [25, th. 1.3℄. Also band-

limited interpolation

z

yields (3.12) with �

min

> 1=2 and any �

max

= �

max

<

1. In Appendi
es A and B we prove (3.12) for more general interpolation-

like operators E

h

where �

min

= 0.

Estimates of terms from above by powers of h (like (3.12)) are in the

sequel always understood asymptoti
ally in the sense of h! 0.

Assume (3.12) to hold with �

max

� 1=2 and �

max

� 1=2. If maxf0; �

min

�

1=2g � � � �

max

� 1=2 then







R

�

�

�

E

h

Rf �Rf

�







L

2

(
)

. h

�

kRfk

H

(1=2+�;0)

(3.11)

. h

�

kfk

�

:

Now we turn to k(R

�

I

h

�R

�

)�E

h

Rfk

L

2

(
)

whi
h we estimate a

ording to







R

�

�

I

h

� I

�

�E

h

Rf







L

2

(
)

�

kR

�

k

H

(�1=2;0)

!L

2

(
)

kI

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

� k�k

H

�+1=2

(R)!H

��1=2

(R)

kE

h

Rfk

H

(1=2+�;0)

where I : H

��1=2

(R) ,! H

�1=2

(R) is the 
anoni
al in
lusion. Observe that

(3.12) implies the boundedness of E

h

: H

1=2+�

0

(�1; 1) ! H

1=2+�

(R) uni-

formly in h for 0 � � � minf�

max

; �

max

g � 1=2. Thus,

kE

h

Rfk

H

(1=2+�;0)

. kRfk

H

(1=2+�;0)

(3.11)

. kfk

�

:

y

� is the Dira
 distribution and B is the linear B-spline.

z

� is the Dira
 distribution and B(x) = sin
(�x).
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For the operator I

h

we require that

kI

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

. h

�

as h! 0 for 0 � � � �

I

: (3.13)

whi
h yields that







�

R

�

I

h

�R

�

�

�E

h

Rf







L

2

(
)

. h

�

kfk

�

:

Thus, we have proven the following theorem.

Theorem 3.7. Assume (3.12) to hold with �

max

� 1=2 and �

max

� 1=2.

Further, let there exist an �

I

> 0 su
h that (3.13) holds true.

If maxf0; �

min

� 1=2g � � � min

�

�

I

; �

max

� 1=2; �

max

� 1=2

	

and f 2

H

�

0

(
) then










f �

1

2�

R

�

I

h

�E

h

Rf










L

2

(
)

. h

�

kfk

�

as h! 0: (3.14)

The best possible L

2

-
onvergen
e rate for the re
onstru
tion of f 2

H

�

0

(
) from Radon data sampled at distan
e h is h

�

as h ! 0, see Nat-

terer [14, 
hap. IV, th. 2.2℄. So we just proved that the FBA with an

`averaged' limit kernel (3.9) is an optimal re
onstru
tion algorithm (at least

for semi-dis
rete data). The range of Sobolev orders yielding optimal 
on-

vergen
e depends on the 
hosen �lter and the used interpolation pro
edure.

Example 3.8. Here we provide a simple example for (3.13) whi
h results

in a 
onvergen
e proof of the FBA with Shepp-Logan �lter and nearest-

neighbor interpolation.

To this end let both � and A be �rst order B-splines, that is, � =

A = �

[�1=2;1=2[

. In this situation (3.13) applies with �

I

= 3=2 as we will

demonstrate now. By Theorem A.2,

kI

h

u� uk

�

. h

���

kuk

�

(3.15)

for 0 � � � � � 1 and � < 1=2. To estimate kI

h

u� uk

�1=2

we use a duality

argument and the symmetry I

h

= I

�

h

where I

�

h

is the L

2

-adjoint of I

h

. We

�nd that, for 0 � � � 1=2,

kI

h

u� uk

�1=2

= sup

v2H

1=2

(R)

hI

h

u� u; vi

kvk

1=2

= sup

v2H

1=2

(R)

hu; I

h

v � vi

kvk

1=2

� kuk

��1=2

sup

v2H

1=2

(R)

kI

h

v � vk

1=2��

kvk

1=2

(3.15)

. h

�

kuk

��1=2

:

(3.16)
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For 1=2 < � � 3=2 we estimate similarly relying on I

2

h

= I

h

:

kI

h

u� uk

�1=2

= sup

v2H

1=2

(R)

h(I

h

� I)

2

u; vi

kvk

1=2

= sup

v2H

1=2

(R)

hI

h

u� u; I

h

v � vi

kvk

1=2

� kI

h

u� uk

L

2

(R)

sup

v2H

1=2

(R)

kI

h

v � vk

L

2

(R)

kvk

1=2

(3.17)

(3.15)

. h

��1=2

kuk

��1=2

h

1=2

:

Hen
e, (3.13) holds for �

I

= 3=2.

Re
alling Example 3.6 we observe that FBA with Shepp-Logan �lter

and nearest-neighbor interpolation is represented by B(s) = sin
(� s) and

� = A = �

[�1=2;1=2[

in our framework (3.5). Therefore, our results from

Appendix B give that






e

f

FB

� f







L

2

(
)

. h

minf3=2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

as long as � is either an even, 
ompa
tly supported and normalized L

2

-

fun
tion (Theorem B.2) or the Dira
 distribution (Theorem B.4). |

In the next se
tion we will generalize the above example 
overing espe-


ially pie
ewise linear interpolation in I

h

.

So far we have not shown L

2

-
onvergen
e of the FBA when the sear
hed-

for density distribution is only in L

2

(
). However, we possess all tools to

do this.

Corollary 3.9. Assume (3.12) to hold with �

min

� 1=2, �

max

> 1=2

and �

max

> 1=2. Further, let there exist an �

I

> 0 su
h that (3.13) holds

true. Then,

lim

h!0










f �

1

2�

R

�

I

h

�E

h

Rf










L

2

(
)

= 0 for any f 2 L

2

(
): (3.18)

Proof. We will use that R

�

I

h

�E

h

R : L

2

(
) ! L

2

(
) is uniformly

bounded in h > 0. This follows by setting � = 0 in (3.14) whi
h is al-

lowed sin
e �

min

� 1=2. Thus, kR

�

I

h

�E

h

Rk

L

2

(
)!L

2

(
)

. 1.

Fix an � with 0 < � � minf�

I

; �

max

� 1=2; �

max

� 1=2g. By assumption

the upper bound on � is positive. Sin
e H

�

0

(
) is dense in L

2

(
) there

exists a family ff

�

g

�>0

� H

�

0

(
) whi
h 
onverges to f in L

2

(
) as � ! 0.

Without loss of generality we may assume that f is not an element of H

�

0

(
)

for any � > 0 (otherwise we apply Theorem 3.7 to obtain (3.18)). Therefore,

the fun
tion �(�) := kf

�

k

�

explodes: �(�)!1 as �! 0. Now we 
hoose

a family f�

h

g

h>0

satisfying

lim

h!0

�

h

= 0 as well as lim

h!0

h

�

�(�

h

) = 0:
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We pro
eed with










f �

1

2�

R

�

I

h

�E

h

Rf










L

2

(
)

� kf � f

�

h

k

L

2

(
)

+










f

�

h

�

1

2�

R

�

I

h

�E

h

Rf

�

h










L

2

(
)

+ kR

�

I

h

�E

h

R(f

�

h

� f)k

L

2

(
)

. kf � f

�

h

k

L

2

(
)

+ h

�

�(�

h

)

where we applied Theorem 3.7 in the last step. Finally, the limit h ! 0

implies (3.18).

Example 3.10. We re-
onsider Example 3.8 in the light of Corollary 3.9.

The 
onvergen
e (3.18) holds true when using the Shepp-Logan �lter with

nearest-neighbor interpolation for I

h

and band-limited quasi-interpolation

for E

h

, that is, � = A = �

[�1=2;1=2[

, B(s) = sin
(� s), and � is an even,


ompa
tly supported and normalized L

2

-fun
tion (Theorem B.2). Please

note that band-limited interpolation for E

h

(� is the Dira
 distribution),

whi
h requires �

min

> 1=2, is not 
overed by Corollary 3.9.

4. Verifying (3.13) for interpolation-like operators I

h

based on

orthogonalized B-splines. We 
onsider a spe
ial 
hoi
e for I

h

(3.8): let

e� and A be the B-splines of order M � 1 and N � 1, respe
tively. De�ne �

by

b�(�) :=

b

e�(�)

a(�)

=

1

p

2�

sin


M

(�=2)

a(�)

(4.1)

where

a(�) =

X

`2Z

a

`

e

�{ `�

with a

`

=

Z

R

e�(s) A(`� s) ds: (4.2)

Note that a is a positive even real trigonometri
 polynomial with a(0) = 1,

see Appendix C.1. Further, � and A are dual fun
tions, that is,




�(� � k); A(�)

�

= Æ

k;0

; (4.3)

see Appendix C.2. Espe
ially,

(I � I

h

) (I �

e

I

h

) = I � I

h

(4.4)

where

e

I

h

u(s) := h

�1

P

k2Z

hu; e�

h

(� � s

k

)iA

h

(s� s

k

).

As in (3.16) we obtain

kI

h

u� uk

�1=2

� kuk

��1=2

sup

v2H

1=2

(R)

kI

�

h

v � vk

1=2��

kvk

1=2

; 0 � � � 1=2:
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A

ordingly we have to investigate the approximation power of the L

2

-

adjoint operator I

�

h

u(s) = h

�1

P

k2Z

hu;A

h

(� � s

k

)i �

h

(s� s

k

) whi
h is done

in Appendix C.3. By (C.3),

kI

h

u� uk

�1=2

. h

�

kuk

��1=2

; 0 � � � 1=2:

The range � > 1=2 we approa
h as in (3.18) with the help of (4.4):

kI

h

u� uk

�1=2

. h

1=2

k

e

I

h

u� uk

L

2

(R)

:

Applying Theorem A.2 to the above right hand side implies (3.13) with

�

I

=

(

3=2 : N = 1

5=2 : N � 2

:

The re
onstru
tion �lter belonging to I

h


onsidered in this se
tion is

�(s) =

1

�

p

2�

Z

1

0

�

sin


M

(�=2)

a(�)

b

B(�) 
os(s �) d�:

To �nd an expli
it representation of a poses no problem sin
e a

`

= B(`)

where B is the B-spline of order M + N . So, a

`

2 Q 
an be found by the

B-spline re
ursion or expli
it representations of B-splines. Nevertheless, �


annot be evaluated expli
itely in general. However, the needed values of �

at integers 
an be 
omputed numeri
ally to any desired a

ura
y.

Example 4.1. Let M = 1, N = 2, and B(s) = sin
(� s). Then,

a(�) =

3

4

+

1

4


os(�) and

�(s) =

4

�

2

Z

�

0

sin(�=2) 
os(s �)

3 + 
os(�)

d�:

Using this �lter in the FBA together with pie
ewise linear interpolation in I

h

yields






e

f

FB

� f







L

2

(
)

. h

minf5=2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

sin
e band-limited interpolation (B.4) is 
onsidered for E

h

(�

max

= �

max

>

3). |

Remark 4.2. The bi-orthogonalization pro
edure (4.1) is the same

used in the 
onstru
tion of orthogonal spline wavelets, see Lemari�e [12℄. The


onne
tion between wavelets and re
onstru
tion �lters 
an even be extended

to in
rease �

I

. Choosing A to be a B-spline of order N and � to be a

suitable 
ompa
tly supported dual s
aling fun
tion, see Cohen, Daube
hies

and Feaveau [4℄, yields an operator I

h

with an �

I

in
reasing with N . The

needed approximation properties of I

h

and I

?

h

are reported, for instan
e, by

Dahmen [5, Prop. 5.1℄.
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5. Verifying (3.13) for interpolation-like operators I

h

based on

B-splines. Our analysis presented so far does not 
over operators I

h

where

� and A are B-splines of order M and N , respe
tively. We will now investi-

gate this situation.

Let E

h

and I

h

be de�ned as earlier with respe
t to �, B, �, and A.

Moreover, let a be given as in (4.2), however, e� is repla
ed by �. Further,

de�ne the operator A

h

: L

2

(R) ! L

2

(R), h > 0, by

d

A

h

u(�) := a(h�) bu(�).

Note that

\

A

�1

h

u(�) = bu(�)=a(h�). Now the key observation is that

e

f

FB

=

1

2�

R

�

I

h

�E

h

Rf =

1

2�

R

�

I

h

A

�1

h

�A

h

E

h

Rf:

Consequently, we have to study the approximation powers of the produ
ts

A

h

E

h

and I

h

A

�1

h

. The latter produ
t is exa
tly the operator I

h

studied in

the former se
tion. Hen
e,

kI

h

A

�1

h

� Ik

H

��1=2

(R)!H

�1=2

(R)

. h

�

; 0 � � � �

I

=

(

3=2 : N = 1

5=2 : N � 2

:

The produ
t A

h

E

h

requires a little bit more attention. We begin with

kA

h

E

h

u� uk

�

. kE

h

u� uk

�

+ kA

h

u� uk

�

:

In view of (3.12) and (C.2) we obtain

kA

h

E

h

u� uk

�

. h

���

kuk

�

; u 2 H

�

0

(�1; 1);

for �

min

� � � minf�

max

; 2 + �g, 0 � � � �, � � �

max

. The parameters

�

min

, �

max

, and �

max


orrespond to E

h

.

Theorem 3.7 holds a

ordingly, however, with the following restri
tions

on �:

maxf0; �

min

� 1=2g < � � min

�

�

I

; 2; �

max

� 1=2; �

max

� 1=2

	

;

that is, the maximal 
onvergen
e order 
annot ex
eed 2 whi
h is a tribute

to the operator A

h

in front of E

h

.

Example 5.1. Using the Shepp-Logan �lter (� = �

[�1=2;1=2[

, B(s) =

sin
(� s)) in the FBA together with pie
ewise linear interpolation in I

h

(A

is the linear B-spline) yields






e

f

FB

� f







L

2

(
)

. h

minf2; �g

kfk

�

for f 2 H

�

0

(
); � > 0;

when � is either an even, 
ompa
tly supported and normalized L

2

-fun
tion

(Theorem B.2) or the Dira
 distribution (Theorem B.4). |
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Fig. 6.1. The fun
tion f from (6.1) (left) and its 
ross se
tion f(�; 0) (right).

6. Numeri
al illustrations. We provide numeri
al experiments to il-

lustrate the 
onvergen
e results proved in the former se
tions. Espe
ially,

we will see that the 
onvergen
e rates saturate indeed at the given bounds.

To this end we need an f 2 L

2

(
) with a pres
ribed Sobolev order and

with an analyti
ally 
omputable Radon transform. We favor the following


onstru
tion. Let p

n

be de�ned by p

n

(x) = (1 � kxk

2

)

n

, kxk � 1, and

p

n

(x) = 0, otherwise. We have that p

n

2 H

�

0

(
) for any � < n+ 1=2. The

fun
tion f for the �rst numeri
al experiment is then given by

f(x) :=

3

X

k=1

d

k

p

3

�

U

k

(x� b

k

)

�

2 H

�

0

(
) for any � < 7=2 (6.1)

where d

1

= 1, d

2

= �1:5, d

3

= 1:5, and b

1

= (0:22; 0)

t

, b

2

= (�0:22; 0)

t

,

b

3

= (0; 0:2)

t

. Further, U

k

= U('

k

; Æ

k

; 


k

), k = 1; 2; 3, with

U('; Æ; 
) :=

 


os(')=Æ sin(')=Æ

� sin(')=
 
os(')=


!

(6.2)

and

Æ

1

= 0:51; 


1

= 0:31; '

1

= 72�=180;

Æ

2

= 0:51; 


2

= 0:36; '

2

= 108�=180;

Æ

3

= 0:5; 


3

= 0:8; '

3

= �=2:

See Figure 6.1 for a graphi
al representation of f . We re
onstru
ted f on

the grid X

q

:= 
 \ f(i=q; j=q) j � q � i; j � qg by

f

FB;q

(x) :=

1

2�

R

�

3q

I

1=q

�E

1=q

Rf(x); x 2 X

q

;

where R

�

p

is de�ned in (1.6). We have 
hosen the number of dire
tions (3q)


lose to its optimal value, see, e.g., Natterer [14, p. 84℄.
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q=1/h

e
(q

)

~q
−5/2

 

Fig. 6.2. The relative `

2

-errors e (6.3) for re
onstru
ting f (6.1) by the FBA using the

Shepp-Logan �lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-

Logan �lter with pie
ewise linear interpolation (dashed with 4), and the modi�ed Shepp-

Logan �lter with pie
ewise linear interpolation (solid with Æ). The auxiliary solid line

indi
ates exa
t de
ay q

�5=2

.

Now we de�ne the relative `

2

-re
onstru
tion error e by

e(q) :=

�

X

x2X

q

�

f

FB;q

(x)� f(x)

�

2

.

X

x2X

q

f(x)

2

�

1=2

: (6.3)

In Figure 6.2 we plotted e as fun
tion of q 2 f25; 50; 75; 100; 125; 150; 175; 200g

on a double logarithmi
 s
ale with respe
t to three di�erent settings in the

FBA:

� Shepp-Logan �lter with nearest neighbor interpolation (Example 3.8).

Here, the expe
ted and observed 
onvergen
e rate is e(q) � q

�3=2

,

see the dot-dashed line marked with �.

� Shepp-Logan �lter with pie
ewise linear interpolation (Example 5.1).

Here, the expe
ted and observed 
onvergen
e rate is e(q) � q

�2

, see

the dashed line marked with 4.

� modi�ed Shepp-Logan �lter with pie
ewise linear interpolation (Ex-

ample 4.1). Here, the expe
ted and observed 
onvergen
e rate is

e(q) � q

�5=2

, see the solid line marked with Æ. We also plotted an

auxiliary 
urve de
aying exa
tly like q

�5=2

(solid line in light gray).

In the light of the 
omputational experiments we may 
on
lude that our

bounds for the maximal 
onvergen
e orders 
annot be improved (at least

for the settings underlying the experiments).
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Fig. 6.3. Top: head phantom due to Shepp-Logan [21℄. Bottom: the relative `

2

-errors

e (6.3) for re
onstru
ting the Shepp-Logan phantom by the FBA using the Shepp-Logan

�lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-Logan �lter

with pie
ewise linear interpolation (dashed with 4), and the modi�ed Shepp-Logan �lter

with pie
ewise linear interpolation (solid with Æ). The auxiliary solid line indi
ates exa
t

de
ay q

�1=2

.

Next, we present the relative `

2

-errors in re
onstru
ting the Shepp-Logan

head phantom, see Figure 6.3. The Shepp-Logan head phantom f

SL

simu-

lates the geometry and the density relations in a human skull. It 
onsists

of superimposed indi
ator fun
tions of ellipses. Hen
e, f

SL

2 H

�

0

(
) for

any � < 1=2.

x

We therefore expe
t and observe e(q) � q

�1=2

for all three

settings from above.

Both experiments agree 
ompletely with our theoreti
al results although

a dis
retization of the ba
kproje
tion operator was not investigated. With

our last experiment we justify this simpli�
ation on
e more by 
onsidering

x

In general pi
ture densities in medi
al imaging 
an be 
onsidered elements in H

�

0

(
)

with � < 1=2 but 
lose to 1=2, see Natterer [14, p. 92�.℄.
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Fig. 6.4. The fun
tion f from (6.4) (left) and its proje
tion Rf(�; 0) (right). The

jumps of Rf(�; 0) in �2=5 are 
learly visible.

a setting whi
h might 
ause trouble in a 
onvergen
e analysis in
luding the

dis
rete ba
kproje
tion operator.

The fun
tion to be re
onstru
ted 
onsists of indi
ator fun
tions of two

re
tangles R

1

and R

2

:

f(x) := �

R

1

(x) + 0:5�

R

2

(x) (6.4)

with

R

1

:= [�2=5; 2=5℄ � [�3=5; 3=5℄

and (U as in (6.2))

R

2

:=

�

x 2 R

2

�

�

U(�=3; 0:7; 0:4)(x � b) 2 [�1; 1℄

2

	

; b = (�0:1;�0:1)

t

;

see Figure 6.4 (left). Note that f is in H

�

0

(
) for any � < 1=2. So what is

the di�eren
e to the Shepp-Logan head phantom? While the fa
t that Rf

as a fun
tion of two variables lies in H

�

0

(�1; 1)

b


L

2

(0; �) implies that the

fun
tions of one variable Rf(�; #) lie in H

�

0

(�1; 1) for almost all #, there

may be a null-set of ex
eptional angles # where Rf(�; #) has less Sobolev

regularity. For f given in (6.4) we have that Rf is in H

�

0

(�1; 1)

b


L

2

(0; �)

for any � < 1 but there exist four angles # where Rf(�; #) is less smooth.

Indeed,

Rf(�; #) 2 H

�

0

(�1; 1); � < 1=2; for # 2 f0; �=3; �=2; 5�=6g;

see Figure 6.4 (right). The bound on � is maximal (there are no su
h patho-

logi
al angles for the Shepp-Logan head phantom, however, one expe
ts su
h

angles in real measurements from medi
al imaging).

In Figure 6.5 we plotted the relative re
onstru
tion error (6.3) for the

same q-values as before. Please note that the dis
rete Radon data for all q


ontain integrals over lines whi
h run along the boundary of R

1

. Further, all
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Fig. 6.5. The relative `

2

-errors e (6.3) for re
onstru
ting f (6.4) by the FBA using the

Shepp-Logan �lter with nearest neighbor interpolation (dot-dashed with �), the Shepp-

Logan �lter with pie
ewise linear interpolation (dashed with 4), and the modi�ed Shepp-

Logan �lter with pie
ewise linear interpolation (solid with Æ). The auxiliary solid line

indi
ates exa
t de
ay q

�1=2

.

used re
onstru
tion grids X

q

have suÆ
iently many points on the boundary

of R

1

, indeed, the 
ardinality of X

q

\ �R

1

in
reases like O(q).

We observe that even `pathologi
al' proje
tions do not deteriorate the


onvergen
e rate obtained by using the 
ontinuous ba
kproje
tion operator

for the analysis.

A. Appendix: proof of (3.12) for interpolation-like operators

E

h

based on B-splines. We 
onsider E

h

as de�ned in (3.6) where B is

the 
ardinal B-spline of order N � 1, that is, B is the N -fold 
onvolution of

�

[�1=2;1=2℄

with itself. The fun
tional � 2 H

��

min

0

(R), �

min

� 0, is supposed

to be even, 
ompa
tly supported in � = [�a; a℄, a > 0, and normalized by

h1; �i = 1 where h�; �i denotes the duality pairing in H

�

min

(�)�H

��

min

0

(�).

The te
hniques we use below are standard in approximation theory, yet,

we are not aware of any referen
e suitable for our setting, however, see

Aubin [1, se
. 8.6℄.

First, we show that E

h

reprodu
es aÆne linear fun
tions if N � 2.

Lemma A.1. If N � 2 then E

h

p = p for any p 2 �

1

. For N = 1 E

h

reprodu
es only 
onstants.

Proof. Note that the a
tion of E

h

on p is well de�ned sin
e � has 
ompa
t

support. Constants are preserved by h1; �(��k)i = 1 and

P

k2Z

B(s�k) = 1,

see, e.g., S
hoenberg [20, p. 16℄. Let p(s) = s then hp(�); �(��k)i = k due to

the evenness of �. By s =

P

k2Z

k B(s�k), N � 2, see, e.g., S
hoenberg [20,

p. 16℄, we are done.
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Theorem A.2. Let �

min

� � � minf2; Ng, � < N�1=2, and 0 � � � �.

Then,

kE

h

u� uk

�

. h

���

kuk

�

as h! 0:

Proof. We restri
t the proof to N � 2 and we show �rst a lo
al version

of the approximation property. Therefore, let �

h;k

:= h (�+2a k) for k 2 Z.

We will rely on the Bramble-Hilbert like estimate (A.1): there is an aÆne

linear fun
tion P = P (u) su
h that

ku� Pk

H

�

(�

h;k

)

. h

���

kuk

H

�

(�

h;k

)

; 0 � � � � � 2: (A.1)

For � = 0, (A.1) redu
es to the original estimate by Bramble and Hilbert [2℄.

For positive real � , see Dupont and S
ott [7, th. 6.1℄ or Brenner and S
ott [3,

lem. 4.3.8℄. By Lemma A.1 and (A.1) we have

kE

h

u� uk

H

�

(�

h;k

)

. kE

h

(u� p)k

H

�

(�

h;k

)

+ h

���

kuk

H

�

(�

h;k

)

:

Let J

h;k

:= fr 2 Z j suppB

h

(��s

r

)\�

h;k

6= ;g. The 
ardinality of J

h;k

does

neither depend on h nor on k. We pro
eed with

kE

h

(u� p)k

H

�

(�

h;k

)

.

X

r2J

h;k

h

�1

�

�




u� P; �

h

(� � s

r

)

�

�

�

kB

h

(� � s

r

)k

H

�

(R)

. h

��

X

r2J

h;k

h

�1=2

�

�




u� P; �

h

(� � s

r

)

�

�

�

:

From the proof of Lemma 5.2 by Dahmen, Pr�ossdorf and S
hneider [6℄ we

know that

�

�




u� P; h

�1=2

�

h

(� � s

r

)

�

�

�

2

. ku� Pk

2

L

2

(�

h;r

)

+ h

2�

min

ku� Pk

2

H

�

min

(�

h;r

)

whi
h, by (A.1), gives

kE

h

u� uk

H

�

(�

h;k

)

. h

���

X

r2J

h;k

kuk

H

�

(�

h;r

)

. h

���

�

X

r2J

h;k

kuk

2

H

�

(�

h;r

)

�

1=2

. h

���

kuk

H

�

(

e

�

h;k

)

where

e

�

h;k

:=

S

r2J

h;k

�

h;r

. Thus,

kE

h

u� uk

H

�

(�

h;k

)

. h

���

kuk

H

�

(

e

�

h;k

)

:

Squaring both sides of the latter lo
al approximation property and summing

over k 2 Z yields �nally the stated global approximation property.

Summary. The above theorem 
overs espe
ially the 
ases � = Æ (Dira


distribution), where �

min

> 1=2, and � 2 L

2

(�) being even with

R

�

�(s) ds =

1 where �

min

= 0. Hen
e, for both latter 
ases (3.12) holds with �

max

= 2

and �

max

< N � 1=2.
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B. Appendix: proof of (3.12) for interpolation-like operators E

h

based on the sin
-fun
tion. We 
onsider E

h

as de�ned in (3.6) where B

is the sinus 
ardinalis, that is, B(x) := sin
(� x) where sin
(x) = sin(x)=x,

x 6= 0, and sin
(0) = 1. Further, � 2 L

1

(R)\L

2

(R) is an even fun
tion with


ompa
t support and a normalized mean value,

R

�(x) dx = 1. Here, h�; �i

denotes the L

2

(R)-inner produ
t.

First we bound E

h

uniformly in h.

Lemma B.1. a) The operators E

h

: L

2

(R) ! L

2

(R), h > 0, are uni-

formly bounded in h.

b) Let w be in L

2

(R) with supp bw � [��=h; �=h℄. Then, we have the inverse

estimate kwk

�

� 2

�=2

�

�

h

��

kwk

L

2

(R)

for 0 < h � � and any � � 0.

Proof. a) Set �

h;k

= h (supp �+ k). The L

2

(R)-orthogonality of fB

h

(� �

s

k

)g

k2Z

gives

kE

h

uk

2

L

2

(R)

= h

�1

X

k2Z

jhu; �

h

(� � s

k

)ij

2

�

X

k2Z

kuk

2

L

2

(�

h;k

)

k�k

2

L

2

(R)

. kuk

2

L

2

(R)

:

b) The inverse estimate results from a straight forward estimate of kwk

2

�

taking into a

ount the 
ompa
t support of bw.

After the above preparatory results we are able to prove the 
laimed


onvergen
e estimate.

Theorem B.2. Let 0 � � � �, � � � � 2. Under the assumptions from

above we have that

kE

h

u� uk

�

. h

���

kuk

�

as h! 0:

Proof. De�ne an auxiliary operator P

h

: L

2

(R) ! L

2

(R) by

d

P

h

w(�) := �

�

h

(�) bw(�):

{

(B.1)

It is an easy exer
ise to obtain

kP

h

u� uk

�

. h

���

kuk

�

for 0 � � � � <1 (B.2)

whenever the right hand side is �nite.

In a �rst step we 
onsider kE

h

P

h

u� P

h

uk

�

. We have

\

E

h

P

h

u(�) =

1

p

2�

�

�

h

(�)

X

k2Z

hP

h

u; �

h

(� � s

k

)i e

�{ hk�

{

A
tually, P

h

is the orthogonal proje
tor onto the 
losed subspa
e of band-limited

fun
tions with band-width �=h.
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and

h

1=2

hP

h

u; �

h

(� � s

k

)i = h

1=2

Z

�

h

d

P

h

u(�) b�

h

(�) e

{ hk�

d�

=

�

h

2�

�

1=2

Z

�

h

\

P

h

u ? �

h

(�) e

{ hk�

d�

whi
h is the k-th Fourier 
oeÆ
ient of

\

P

h

u ? �

h

. Hen
e,

\

E

h

P

h

u(�) = h

�1

�

�

h

(�)

\

P

h

u ? �

h

(�):

Therefore,

kE

h

P

h

u� P

h

uk

2

�

=

Z

�

h

(1 + �

2

)

�

�

�

h

�1

\

P

h

u ? �

h

(�)�

d

P

h

u(�)

�

�

2

d�

.

Z

�

h

(1 + �

2

)

�

�

�

bu(�)

�

�

2

M(h�) d�

where M(z) = jb�(z)� 1=

p

2�j

2

, z 2 R. As in the proof of Corollary 2.2 one

shows that M(z) . z

4

using a Taylor expansion of b� about the origin. Now

let 0 � � � � � 2. Then,

kE

h

P

h

u� P

h

uk

2

�

. h

4

Z

�

h

(1 + �

2

)

�

�

�

bu(�)

�

�

2

�

4�2(���)

d� (B.3a)

. h

2(���)

kuk

2

�

: (B.3b)

In the �nal step we use both statements from Lemma B.1 as well as (B.2)

and (B.3):

kE

h

u� uk

�

� kE

h

u�E

h

P

h

uk

�

+ kE

h

P

h

u� P

h

uk

�

+ kP

h

u� uk

�

. h

��

ku� P

h

uk

L

2

(R)

+ h

���

kuk

�

:

Applying (B.2) again we 
on
lude with the proof of Theorem B.2.

Remark B.3. The upper bound 2 on � � � in Theorem B.2 may be

relaxed by imposing higher order vanishing moments on �.

Now we investigate band-limited interpolation, that is, E

h

is de�ned by

E

h

u(s) =

X

k2Z

u(s

k

) sin


�

�

h

(s� s

k

)

�

: (B.4)

Theorem B.4. Let �

max

2 N. Then, for 1=2 < � <1, 0 � � � � with

� � � � �

max

, we have that

kE

h

u� uk

�

. h

���

kuk

�

as h! 0
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whenever u 2 H

�

(R) is 
ompa
tly supported. The 
onstant in the above

estimate may depend on �

max

.

Proof. Band-limited interpolation is well de�ned under the assumptions

on u. We introdu
e an auxiliary operator E

(m)

h

. To this end let � 2 L

2

(R)

be 
ompa
tly supported with normalized mean value (

R

�(x) dx = 1) and

vanishing moments up to order �

max

(

R

x

k

�(x) dx = 1, k = 1; : : : ; �

max

).

Thus, b�(0) = 1=

p

2� and b�

(�)

(0) = 0, � = 1; : : : ; �

max

. De�ne �

(m)

(s) :=

m�(ms), m 2 N, and

E

(m)

h

u(s) := h

�1

X

k2Z




u; �

(m)

h

(� � s

k

)

�

sin


�

�

h

(s� s

k

)

�

:

Observe that E

(m)

h

: L

2

(R) ! L

2

(R) is uniformly bounded in h and m, see

proof of Lemma B.1. Hen
e, we may apply Theorem B.2 to obtain

kE

(m)

h

u� uk

�

. h

���

kuk

�

(B.5)

where the 
onstant is bounded in m as a 
areful inspe
tion of the proof of

Theorem B.2 shows. Moreover, the upper bound on � � � in (B.5) is �

max

sin
e all derivatives of b� up to order �

max

vanish about 0, see Remark B.3.

By (B.5),

kE

h

u� uk

�

. kE

h

u�E

(m)

h

uk

�

+ h

���

kuk

�

: (B.6)

Further,

kE

h

u�E

(m)

h

uk

�

� ksin


h=�

k

�

X

k2J

m;h

(u)

�

�

u(s

k

)�




u; h

�1

�

(m)

h

(� � s

k

)

�

�

�

with J

m;h

(u) = fk 2 Z j s

k

2 suppug[fk 2 Z j supp u\h(m

�1

supp �+k)g.

The set J

m;h

(u) is �nite and its 
ardinality is bounded in m. So we have

that lim

m!1

kE

h

u � E

(m)

h

uk

�

= 0 and the stated estimate is readily seen

from (B.6).

Summary. The band-limited interpolation-like operators 
onsidered in

Theorem B.2 satisfy (3.12) with �

min

= 0, �

max

= 2+ � and any �

max

<1.

For the band-limited interpolation (B.4) we have (3.12) with �

min

> 1=2

and any positive �

max

and any �xed �

max

> 1=2.

C. Appendix: Complement to Se
tion 4. This appendix is de-

voted to the proof of various auxiliary results from Se
tion 4. Throughout

this appendix let e� and A be B-splines of order M � 1 and N � 1, respe
-

tively. Further, let � be de�ned by (4.1).

C.1. The trigonometri
 polynomial a. Re
all that

a(�) =

X

`2Z

a

`

e

�{ `�

with a

`

=

Z

R

e�(s) A(`� s) ds:
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Sin
e e� and A are even, so are fa

`

g

`2Z

and a. By

P

`2Z

A(� � `) = 1,

and

R

e�(s)ds = 1, see, e.g., S
hoenberg [20, p. 16 and p. 2℄, we have that

a(0) = 1. In the remainder of this appendix we verify that a has no zeros.

Then we have established all properties of a 
laimed and needed in Se
tion 4.

Straightforward 
al
ulations reveal that the a

`

's are the Fourier 
oeÆ-


ients of the 2�-periodi
 fun
tion 2�

P

k2Z

b

e�(� + 2� k)

b

A(� + 2� k). Hen
e,

a(�) = 2�

X

k2Z

b

e�(�+2� k)

b

A(�+2� k) =

X

k2Z

sin


M+N

(�=2+� k): (C.1)

If M + N is even, a 
learly has no zeros be
ause there is no � su
h that

sin


M+N

(�=2+� k) = 0 for all k 2 Z. It remains to investigate the odd 
ase

M +N = 2L+ 1, L 2 N. We fa
torize a a

ording to

a(�) = sin

2L

(�=2) �

2L+1

(�) with �

2L+1

(�) :=

X

k2Z

(�1)

k

(�=2 + � k)

2L+1

:

As multiples of 2� are not zeros of a it suÆ
es to show that �

2L+1

has no

zeros in ℄0; 2�[. Separating even from odd indi
es we �nd

�

2L+1

(�) = 2

�(2L+1)

�

S

2L+1

(�=4) � S

2L+1

(�=4 + �=2)

�

where S

l

(�) :=

P

k2Z

(� + � k)

�l

, l � 2. Observe that S

2l

(�) > 0, l 2 N.

Now,

d

d�

S

2L+1

(�) = �(2L+ 1) S

2L+2

(�) < 0; � 2 ℄0; 2�[:

Therefore S

2L+1

is strongly de
reasing in ℄0; 2�[ whi
h gives �

2L+1

> 0 in

℄0; 2�[.

C.2. Biorthogonality (4.3). By (4.1) and (C.1) we obtain




�(� � k); A(�)

�

=

Z

R

b�(�)

b

A(�) e

{ k�

d�

=

Z

2�

0

X

n2Z

b�(� + 2� n)

b

A(� + 2� n) e

{ k�

d�

=

Z

2�

0

1

a(�)

X

n2Z

b

e�(� + 2� n)

b

A(� + 2� n) e

{ k�

d� =

Z

2�

0

e

{ k�

2�

d�

whi
h is (4.3).

C.3. Approximation power of I

�

h

. We are not able to apply Theo-

rem A.2 dire
tly to I

�

h

as � from (4.1) does not have 
ompa
t support in

general. Nevertheless, we will show that the approximation power of

e

I

�

h


arries over to I

�

h

(for the notation see Se
tion 4). Sin
e




I

�

h

u(�) =




e

I

�

h

u(�)=a(h�)
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we have that

ku� I

�

h

uk

2

�

.

Z

R

(1 + �

2

)

�

�

�

a(h�) bu(�)�




e

I

�

h

u(�)

�

�

2

d�:

Thus,

ku� I

�

h

uk

�

. kA

h

u�

e

I

�

h

A

h

uk

�

+ k

e

I

�

h

A

h

u�

e

I

�

h

uk

�

where

d

A

h

u(�) = a(h�) bu(�). Theorem A.2 provides

kA

h

u�

e

I

�

h

A

h

uk

�

. h

���

kA

h

uk

�

. h

���

kuk

�

for 0 � � � minf2;Mg, � < M � 1=2, and 0 � � � �. Further, also by

Theorem A.2,

k

e

I

�

h

A

h

u�

e

I

�

h

uk

�

. kA

h

u� uk

�

whenever 0 � � < M � 1=2, for M � 2, and 0 � � � 2, otherwise. A Taylor

expansion of a about 0 proves that ja(�) � 1j . �

2

. Now we may 
opy the

proof of Corollary 2.2 to obtain

kA

h

u� uk

�

. h

minf2;���g

kuk

�

; 0 � � � �: (C.2)

Colle
ting the pie
es we �nd

ku� I

�

h

uk

�

. h

���

kuk

�

as h! 0 (C.3)

for 0 � � � minf2;Mg, � < minf2;M � 1=2g, and 0 � � � �.
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