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Abstra
t. Computed x-ray tomography entails the re
onstru
tion of a den-

sity fun
tion f from line integrals of f . Ordinary tomography is global sin
e

re
onstru
tion at a point x requires integrals over lines far from x. Lo
al to-

mography uses only integrals over lines 
lose to x. This introdu
tion reviews

a number of lo
al tomographi
 methods developed over the past de
ade, su
h

as Lambda tomography, pseudolo
al tomography, wavelet based methods, and

three-dimensional lo
al 
one-beam tomography.

1. Introdu
tion

Computed tomography (CT) entails the re
onstru
tion of a generalized density

fun
tion f from line integrals of f . This re
onstru
tion is not lo
al in the sense

that re
onstru
tion of f at a point x requires integrals over lines far from x. In a

number of appli
ations only part of an obje
t needs to be imaged. Thus it would be

desirable to only use integrals over lines interse
ting this region-of-interest (ROI).

This entails the loss of uniqueness, but it turns out that the null fun
tions are

nearly 
onstant inside the ROI and that the singularities of f inside the ROI 
an

be stably re
overed from su
h data; see, e.g., [31, xVI.4℄, [36℄.

Over the past de
ade a number of methods to `lo
alize' the re
onstru
tion

have been proposed. These range from methods for 'region-of-interest tomography'

whi
h use integrals over all lines passing through a region slightly larger than the

ROI, to stri
tly lo
al methods where re
onstru
tion at a point x only requires in-

tegrals over lines very 
lose to x. In this introdu
tion we will review methods of

both types. The wavelet-based multiresolution lo
al tomography of [38℄, dis
ussed

in se
tion x5, uses all lines passing through a region slightly larger than the ROI,

while Lambda tomography, reviewed in x3, is stri
tly lo
al. Pseudolo
al tomog-

raphy, des
ribed in x4, 
an be used in both modes. Some other te
hniques use a

limited amount of data outside the ROI [33℄, or extrapolate the missing data [31,

xVI.4℄. Extensions of lo
al tomographi
 methods to more general settings have

been presented in [22, 26, 29℄.
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This arti
le is organized as follows: In the next se
tion we review some ba
k-

ground material on the x-ray transform and its inversion.

Se
tion 3 is devoted to Lambda tomography. Here not the fun
tion f itself but

the related fun
tion Lf = �f + ��

�1

f is re
onstru
ted, where � =

p

��, and

� denotes the Lapla
ian. This re
onstru
tion is stri
tly lo
al, and our dis
ussion


enters on what features of f 
an be found from re
onstru
tions of Lf . Parti
ular

attention will be given to the 
omputation of density jumps.

In se
tion 4 we dis
uss the pseudolo
al tomography of [25, 37℄ and relate this

method for 
omputing density jumps to the methods based on Lambda tomography.

Se
tion 5 brie
y reviews wavelet based multiresolution tomography [38℄, one

of the wavelet based methods for region-of-interest tomography. The goal of this

method is to re
onstru
t the fun
tion f itself up to an almost 
onstant error. For

further appli
ations of wavelets in lo
al tomography see, e.g., [1, 2, 6, 33, 34, 52,

53℄.

In se
tion 6 we turn to the three dimensional 
ase and examine lo
al 
one-

beam tomography with sour
es on a 
urve. Here additional problems arise sin
e it

is usually impra
ti
al to 
olle
t suÆ
iently many data to ensure stable re
overy of

all singularities of f inside the region of interest. We dis
uss whi
h singularities are

stably determined and 
ompare the two leading re
onstru
tion algorithms.

2. The x-ray transform

We begin by introdu
ing some notation and ba
kground material. IR

n


onsists

of n-tuples of real numbers, usually designated by single letters, x = (x

1

; : : : ; x

n

),

y = (y

1

; : : : ; y

n

), et
. The inner produ
t and absolute value are de�ned by hx; yi =

P

n

1

x

i

y

i

and jxj =

p

hx; xi. The unit sphere S

n�1


onsists of the points with

absolute value 1. C

1

0

(IR

n

) denotes the set of in�nitely di�erentiable fun
tions

on IR

n

with 
ompa
t support. A 
ontinuous linear fun
tional on C

1

0

is 
alled

a distribution. If X is a set, X

Æ

denotes its interior, X its 
losure, and X




its


omplement. �

X

and �

n

denote the 
hara
teristi
 fun
tions (indi
ator fun
tions)

of X , and of the unit ball in IR

n

, respe
tively. I.e., �

X

(x) = 1 if x 2 X , and

�

X

(x) = 0 if x 62 X . jX j denotes the n-dimensional Lebesgue measure of X � IR

n

.

However, when it is 
lear that X should be treated as a set of dimension m < n,

jX j is the m-dimensional area measure. Thus

jS

k�1

j = 2�

k=2

=�(k=2)

is the (k � 1)-dimensional area of the (k � 1)-dimensional sphere.

The 
onvolution of two fun
tions is given by

f � g(x) =

Z

IR

n

f(x� y)g(y)dy:

The Fourier transform is de�ned by

^

f(�) = (2�)

�n=2

Z

IR

n

f(x)e

�ihx;�i

dx

for integrable fun
tions f , and is extended to larger 
lasses of fun
tions or distri-

butions by 
ontinuity or duality.

The integral transform most relevant for lo
al tomography is the x-ray trans-

form.
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Definition 2.1. Let � 2 S

n�1

and �

?

the hyperplane through the origin

orthogonal to �. We parametrize a line l(�; y) in IR

n

by spe
ifying its dire
tion

� 2 S

n�1

and the point y where the line interse
ts the hyperplane �

?

.

The x-ray transform of a fun
tion f 2 L

1

(IR

n

) is given by

Pf(�; y) = P

�

f(y) =

Z

IR

f(y + t�)dt; y 2 �

?

: (2.1)

We see that Pf(�; x) is the integral of f over the line l(�; y) parallel to � whi
h

passes through y 2 �

?

.

The inversion formula for the x-ray transform reads as follows:

f(x) =

�

2�jS

n�2

j

�

�1

Z

S

n�1

�P

�

f(E

�

?
x)d�; (2.2)

where E

�

?x denotes the orthogonal proje
tion of x onto the subspa
e �

?

, and

Calder�on's operator � is de�ned in terms of Fourier transforms by




�g(�) = j�jĝ(�); g 2 C

1

0

(IR

k

):

It is extended by duality to the 
lass of fun
tions g for whi
h (1 + jxj)

�1�k

g is

integrable [8℄. In (2.2) the operator � a
ts on the fun
tion g(y) = P

�

f(y) de�ned

on the subspa
e �

?

of dimension k = n� 1. Note that

�

2

= ��; � = Lapla
ian: (2.3)

For a derivation of (2.2) and its numeri
al implementation, as well as for other

inversion formulas see [31, xII.2 and Ch. V℄.

In two dimensions we parametrize � 2 S

1

by its polar angle ' and de�ne a

ve
tor �

?

orthogonal to � su
h that

� = (
os'; sin'); �

?

= (� sin'; 
os'): (2.4)

Then the points in the subspa
e �

?

are given by �

?

= fs�

?

; s 2 IRg. When

working in two dimensions, we will often use the simpli�ed notation Pf(�; s) or

P

�

f(s) instead of Pf(�; s�

?

). O

asionally we will also repla
e � by the polar

angle ' a

ording to (2.4) and write Pf('; s) .

For g a fun
tion of one variable we have �g = H�g, where �g denotes the

derivative of g and H denotes the Hilbert transform

Hg(s) =

1

�

Z

IR

g(t)

s� t

dt; (2.5)

where the integral is understood as a prin
ipal value.

In dimension n = 2, i.e., when f is a fun
tion of 2 variables, P

�

f is a fun
tion

of one variable and the inversion formula (2.2) be
omes

f(x) =

1

4�

2

Z

2�

0

Z

IR

�

s

P

�

f(s)

hx; �

?

i � s

dsd': (2.6)

From equation (2.6) we see that 
omputation of f(x) requires integrals over

lines far from x, be
ause the Hilbert transform kernel has unbounded support.

Note that P

�

f(hx; �

?

i) is the integral over the line with dire
tion � whi
h passes

through x. Hen
e the inversion formula is not \lo
al". A lo
al inversion formula

would utilize only integrals over lines passing 
lose to x, i.e., values P

�

f(s) with s


lose to hx; �

?

i. For dimension n > 2 the inversion formula (2.2) is also not lo
al.

The operator � is not 
ontinuous in an L

2

setting. Hen
e, in order to use the

inversion formula in pra
ti
e we have to stabilize it. This involves a well-known
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trade-o� between stability and a

ura
y of the re
onstru
tion. Here we give up

the goal of re
overing the fun
tion f itself, and aim instead at re
onstru
ting an

approximation e�f , where e is an approximate delta fun
tion whose Fourier trans-

form ê(�) de
ays suÆ
iently fast for large j�j. The pri
e to pay for the stabilization

is limited resolution, so e must be 
hosen 
arefully, depending on the amount and

a

ura
y of the available measurements.

In order to allow for lo
al re
onstru
tion formulas we re
onstru
t �

m

f instead

of f , with m > �1 an integer. This yields the approximate inversion formula

e � �

m

f(x) =

Z

S

n�1

(k � P

�

f)(E

�

?
x)d�; m � �1; (2.7)

with the 
onvolution kernel

k(y) = (2�jS

n�2

j)

�1

�

m+1

P

�

e(y); y 2 �

?

: (2.8)

If e is a radial fun
tion, then P

�

e and the 
onvolution kernel k are independent of �.

Of greatest interest are the 
ase m = 0, whi
h gives the formulas for re
onstru
ting

the fun
tion f itself, and the 
ases m = �1 whi
h give lo
al re
onstru
tion formu-

las. The approximate inversion formula (2.7) is the basis for the popular �ltered

ba
kproje
tion re
onstru
tion algorithm (in dimension n = 2); see [10℄ for an error

analysis, and [31℄ for a general dis
ussion and referen
es.

Sin
e the parameters � and y 2 �

?

of a line passing through a point x must

satisfy the equation E

�

?x = y, re
onstru
tion a

ording to (2.7) will be lo
al if

the kernel k is supported in a small neighborhood of the origin. However, for m

even and

R

IR

n

e(x)dx 6= 0,

^

k is not analyti
, so k 
annot have 
ompa
t support.

This again re
e
ts the fa
t that ordinary tomography is global, not lo
al. On the

other hand, it follows from (2.8) and (2.3) that k does have 
ompa
t support if

m � �1 is odd and e has 
ompa
t support. This explains the interest in the 
ases

m = �1. Computing �

�1

f(x) 
onsists of taking the average of all integrals over

lines passing through x. This was done in early imaging te
hniques pre
eding CT.

However, sin
e �

�1

, the inverse of �, is given by 
onvolution with the Riesz kernel

R

1

,

�

�1

f = R

1

� f; R

1

(x) = (�jS

n�2

j)

�1

jxj

1�n

; (2.9)

the result is a very blurry image of f whi
h by itself is of limited usefulness; see the

bottom left image in Fig. 1. Current Lambda tomography avoids this disadvantage

by 
omputing a linear 
ombination of �f and �

�1

f .

3. Lambda tomography

Lambda tomography was introdu
ed independently in [49℄ and [46℄, further

developed in work in
luding [8, 9, 10, 24, 37, 50℄, and generalized in [22, 26℄.

It does not attempt to re
onstru
t the fun
tion f itself but instead produ
es the

related fun
tion Lf = �f+��

�1

f . This has the advantage that the re
onstru
tion

is stri
tly lo
al in the sense that 
omputation of Lf(x) requires only integrals over

lines passing arbitrarily 
lose to x. Lambda tomography has found appli
ations

in medi
al imaging [47℄, nondestru
tive testing [42, 50℄, and mi
rotomography

[9, 10, 41, 43℄. (The term mi
rotomography refers to the use of x-ray tomography

to produ
e very high resolution images of small obje
ts [13, 19℄. While the spatial

resolution in medi
al tomography is about 1 mm, the spatial resolution of mi
ro-

tomographi
 images is a few mi
rometers.) Lo
al re
onstru
tions from eÆ
iently
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sampled data are analyzed in [10℄. The 
hoi
e of suitable 
onvolution kernels for

the �ltered ba
kproje
tion algorithm has been investigated in [39, 40℄.

Intelligent use of Lambda tomography requires knowledge of what kind of useful

information about f is retained in Lf . Let us 
onsider an example. The upper

left of Fig. 1 shows an ordinary, global re
onstru
tion of the density fun
tion f

of a 
alibration obje
t used by the Siemens 
ompany. The data 
ome from an

old generation Siemens hospital s
anner. Units are su
h that the radius of the

global re
onstru
tion 
ir
le is one. The �gure displays the re
onstru
tion inside the

re
tangle [�:5; :5℄

2

. The s
anning geometry is a fan-beam geometry with sour
e

radius R = 2:868, p = 720 sour
e positions, and 2q = 512 rays per sour
e; 
f. [31,

p. 75℄. The upper right of Fig. 1 shows a re
onstru
tion of �f . Re
onstru
tions

of �

�1

f and Lf = �f + 46�

�1

f are shown in the lower left and lower right,

respe
tively. The similarity between the images of f and �f is at �rst glan
e

surprising. We expe
t that a good lo
al re
onstru
tion method should dete
t the

singularities of f , sin
e these are stably determined by the data. Indeed, sin
e � is

an invertible ellipti
 pseudo-di�erential operator, f and �f have pre
isely the same

singular set. However, we see that �f is 
upped where f is 
onstant, and that the

singularities are ampli�ed in �f . The image of �

�1

f by itself seems less useful,

but it provides a 
ounter
up for the 
up in �f . Thus, the image of Lf shows less


upping and looks even more similar to f than the image of �f . For example, the

image of Lf indi
ates that the density just inside the boundary of the obje
t is

larger than the density outside the obje
t, while this 
an not be 
learly seen from

the image of �f . To a
hieve this e�e
t, a good sele
tion of � is ne
essary. Here

� = 46 was 
hosen by trial and error. The following pres
ription for sele
ting at

least a good starting value for � 
an be found in [9, x4℄. The idea is to 
hoose �

su
h that the re
onstru
tion of the 
hara
teristi
 fun
tion of a disk with radius r

0

is as 
at as possible in the interior of the disk. The radius r

0

should be 
hosen to lie

between the radius r

i

of the region of interest under 
onsideration, and the radius

r

w

of a ball 
ir
ums
ribing the whole obje
t, i.e., r

i

� r

0

� r

w

. Then � s
ales as

� = 
r

�2

0

, and experiments showed that 
 = 6 is a good 
hoi
e. For the 
alibration

obje
t in Figure 1 we have r

0

' 0:36, whi
h gives � = 45, in good agreement with

the experimental value � = 46.

A more detailed understanding of images of �f or Lf is obtained from studying

quantitative relations between �f , �

�1

f and f [8, 9℄. Some of the results for �f

are stated in Theorem 3.1 and dis
ussed in Remark 3.2 below. For 
orresponding

results on �

�1

see [8℄.

Theorem 3.1. ([8℄) Let X and Y be measurable subsets of IR

n

, n � 2, and let

(1+jxj)

�1�n

f be integrable. Let X

Æ

and X




denote the interior and the 
omplement

of X, respe
tively, and X


Æ

the interior of X




.

(a) If f

r

(x) = f(x=r), then �f

r

(x) = r

�1

�f(x=r).

(b) ��

X

(x) > 0 on X

Æ

, and < 0 on X


Æ

; ��

X




= ���

X

.

(
) ��

X

is subharmoni
 (Lapla
ian � 0) on X

Æ

, and superharmoni
 on X


Æ

.

This implies that ��

X


annot have a lo
al maximum in X

Æ

, nor a lo
al minimum

in X


Æ

.

(d) If x is outside the support of f , then

�f(x) =

1� n

�jS

n�2

j

Z

IR

n

jx� yj

�1�n

f(y)dy:
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Figure 1. Top left: Global re
onstru
tion of density f(x) of


alibration obje
t. Top right: Re
onstru
tion of �f . Bottom

left: Re
onstru
tion of �

�1

f . Bottom right: Re
onstru
tion of

Lf = �f + ��

�1

f , � = 46.

(e) Near �X, j��

X

(y)j �

1

d(y;�X)

, where d(x; �X) denotes the distan
e of x to

�X.

Remark 3.2. The results for ��

X

are of pra
ti
al interest, sin
e in many

appli
ations the fun
tion f 
an be modeled as a linear 
ombination of 
hara
teristi


fun
tions.

� As a 
onsequen
e of (a), small features are ampli�ed in images of �f . This

is bene�
ial for the dete
tion of small, low 
ontrast details. For example,

in Fig. 1 the small holes in the re
tangular pie
es are more 
learly visible

in the image of �f than in the image of f .

� Part (b) indi
ates that the jumps of �f at dis
ontinuities of f have the

same dire
tion as those of f .

� Part (
) explains why there are no os
illations whi
h 
ould be mistaken

for a
tual details in images of �f .
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� Part (d) shows that if f has 
ompa
t support, then �f 
annot. This

means that there are global e�e
ts in images of �f in the sense that the

value of �f(x

0

) depends on the values of f everywhere. However, Part d)

implies that �f(x) will de
ay at least as O(jxj

�1�n

) for jxj ! 1. More

re�ned estimates are derived in [9℄ and used to develop a pro
edure to

redu
e the global e�e
ts.

� Part (e) shows that a �nite jump in f 
auses an in�nite jump in �f . In a

neighborhood of �X , �f is not a fun
tion but a prin
ipal value distribution

[8℄.

While Lf retains the signs of jumps in density, it does not give dire
t infor-

mation about the size of these jumps. However, su
h information about density

di�eren
es may be extra
ted in 
ertain 
ases. In this and the following se
tions

we will des
ribe several methods. We assume that f is a linear 
ombination of a

smooth fun
tion and of 
hara
teristi
 fun
tions of sets:

f = f

0

+

X




i

�

X

i

; f

0

2 C

1

0

; j�X

i

j = 0; X

i

= X

Æ

i

; X

Æ

i

\X

Æ

j

= ; if i 6= j:

(3.1)

We are interested in estimating 


j

� 


i

when X

j

, X

i

have a 
ommon nontrivial

boundary �,

� = �X

i

\ �X

j

\W 6= ;; W = (X

i

[X

j

)

Æ

: (3.2)

We �rst dis
uss the method developed in [9℄. It is based on Theorem 3.3 below.

The theorem expresses the fa
t that for x suÆ
iently 
lose to �,




j

� 


i

=

�f(x)

��

X

j

(x)

+ O(d); and

j


j

� 


i

j =

jr�f(x)j

jr��

X

j

(x)j

+ O(d

2

);

where d is the distan
e from x to �.

We say that a set Y has 
urvature � 1=r along a subset Y

0

of �Y if for ea
h

point �y 2 Y

0

there are open balls B � Y and B

0

� Y




of radius r with �y 2

�

B \B

0

.

The distan
e of a point x to a set Y is denoted by d(x; Y ).

Theorem 3.3. ([9℄) Let f be as in (3.1). Fix i; j, let W = (X

i

[ X

j

)

Æ

and

assume that

� = �X

i

\ �X

j

\W 6= ;:

Let X

j

have 
urvature � 1=r, r > 0, along a 
losed subset �

0

of �. Let x 2 Wn�

be su
h that d(x; �X

j

) = d(x;�

0

) = d. Then

�

�

�

�

�f(x)

��

X

j

(x)

� (


j

� 


i

)

�

�

�

�

� F

1

(d=r)

�

max j�f

0

j + C

1

(max

k 6=j

j


k

j)

d(x; �W )

�

d (3.3)

�

�

�

�

jr�f(x)j

jr��

X

j

(x)j

� j


j

� 


i

j

�

�

�

�

� F

2

(d=r)

�

max jr�f

0

j + C

2

(max

k 6=j

j


k

j)

d(x; �W )

2

�

d

2

(3.4)
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The 
onstants C

1

and C

2

and the fun
tions F

1

, F

2


an be given expli
itly. E.g., for

n = 2, C

1

= 2, and C

2

= 3. Furthermore,

lim

t!0

+

F

1

(t) = lim

t!0

+

F

2

(t) = �:

The error terms on the right-hand sides of (3.3) and (3.4) indi
ate that in

general the estimate (3.4) should be more a

urate than (3.3) when d is small. The

terms involving d(x; �W ) 
ome from the in
uen
e of other boundaries than � and

re
e
t the global e�e
ts mentioned above.

Numeri
al implementation of (3.3) or (3.4) requires 
omputation of re
onstru
-

tions of �f and ��

X

j

inside a region of interest R. In the following let

�

�f and

�

��

X

j

denote these re
onstru
tions, rather than the fun
tions �f and ��

X

j

them-

selves. It is also assumed that f has the form (3.1) with sets X

i

su
h that X

i

� R

or X

i

\ R = ;: This entails no loss of generality sin
e any set X

i

violating this


ondition 
an be repla
ed by the two sets X

i

\ R and X

i

\ R




:

�

��

X

j

is 
omputed

using simulated x-ray data, after �X

j

has been found from

�

�f . In prin
iple, either

(3.3) or (3.4) 
an be used, but as mentioned above the method based on (3.4) is

likely to be more a

urate. This gives only j


j

� 


i

j, but sin
e the sign of 


j

� 


i

is

preserved in �f , this is all that is needed.

The method 
onsists of the following steps:

(1) Compute

�

�f from lo
al data inside a region of interest R.

(2) Determine X

j

by �nding �X

j

from

�

�f .

(3) Compute

�

��

X

j

inside the region of interest from simulated x-ray data,

using the same sampling geometry as for the original data.

(4) If x 2 �X

j

, take the ratio jr

�

�f(x)j=jr

�

��

X

j

(x)j as an estimate for the

magnitude of the density jump. It is advisable to use suitable averages of

the gradients over points near the boundary of X

j

instead of the gradient

at a single point x. This redu
es e�e
ts due to measurement noise.

A detailed dis
ussion of the implementation of this method and numeri
al tests

using real-world data have been reported in [9℄; see also [7, 41℄.

The method des
ribed above 
an be simpli�ed by making a priori assumptions

about the unknown boundary �X

j

. This 
an be used to simplify the edge dete
tion

in step 2 and to avoid the re
onstru
tion from simulated data in step 3. For example,

X

j


ould be assumed to be a halfspa
e H . If the �ltered ba
kproje
tion algorithm,

i.e., a dis
retization of the approximate inversion formula (2.7) is used, then the

re
onstru
tion

�

�f will, apart from dis
retization errors, be equal to e � �f . Hen
e

�f and ��

X

j

in (3.3) and (3.4) 
an be repla
ed by e��f and e���

H

, respe
tively.

We 
an 
ompute e � ��

H

analyti
ally in the following way: For x 62 �H one has

([8, Theorem 4.5℄)

��

H

(x) = (�

~

d(x))

�1

;

where

~

d(x) is the signed distan
e of x from �H , i.e.,

~

d(x) = d(x; �H) for x 2 H , and

~

d(x) = �d(x; �H) for x 62 H . Computing e ���

H

involves the Radon transform of

e. It is given by

R

�

e(s) =

Z

�

?

e(s� + y)dy; � 2 S

n�1

; s 2 IR:

We assume that e is radial, so that R

�

e does not depend on �. Therefore the

subs
ript � will be suppressed and Re(s) viewed as a fun
tion of the one variable



INTRODUCTION TO LOCAL TOMOGRAPHY 9

s. It now follows that

e � ��

H

(x) = HRe(

~

d(x)); (3.5)

where H denotes the Hilbert transform as de�ned in (2.5). Re
alling that for

fun
tions g of one variable �g(t) =

d

dt

Hg(t) gives

jr(e � ��

H

(x))j = j�Re(

~

d(x))j: (3.6)

Repla
ing �f and ��

X

j

in (3.3) and (3.4) by e � �f and e � ��

H

, and using

(3.5) and (3.6) gives the approximate formulas




j

� 


i

'

e � �f(x)

HRe(

~

d(x))

; (3.7)

j


j

� 


i

j '

jr(e � �f(x))j

j�Re(

~

d(x))j

: (3.8)

These two formulas are the basis of two of the algorithms proposed in [24, 37℄ for

dimension n = 2, 
f. formulas (2.17) and (2.21) in [24℄. The derivation in [24, 37℄

is di�erent and employs an asymptoti
 expansion for �f , where f is smooth ex
ept

for jumps a
ross smooth boundaries. An algorithm based on (3.8) given in [37℄

uses the fa
t that jr(e � �f(x))j will be maximal for x 2 �, and that

~

d(x) = 0 for

x 2 �. Hen
e one 
an �nd the points x 2 � by looking for the lo
al maxima of

jr

�

�f j and then estimate the jump by

j


j

� 


i

j '

jr

�

�f(x))j

j�Re(0)j

:

In our numeri
al experiments this algorithm tended to be somewhat less a

urate

than the more elaborate method of [9℄.

4. Pseudolo
al tomography

Another method to 
ompute jumps of a fun
tion from essentially lo
al data is

pseudolo
al tomography. It was introdu
ed in [25℄ and further developed in [37℄.

Here we follow the presentation given in [4℄ whi
h allows us to understand the

numeri
al implementation of this method in the framework of (3.7) and (3.8).

The starting point for pseudolo
al tomography is the two-dimensional inversion

formula (2.6) whi
h we repeat here:

f(x) =

1

4�

Z

S

1

H�P

�

f(hx; �

?

i)d�

=

1

4�

2

Z

2�

0

Z

IR

d

ds

P

�

f(s)

hx; �

?

i � s

ds d':

Now trun
ate the Hilbert transform integral and de�ne

f

d

(x) =

1

4�

2

Z

2�

0

Z

hx;�

?

i+d

hx;�

?

i�d

d

ds

P

�

f(s)

hx; �

?

i � s

ds d': (4.1)

It was shown in [25℄ that f � f

d

is 
ontinuous, hen
e f

d

has the same jumps as f .

Re
alling that P

�

f(hx; �

?

i) is the integral over the line in dire
tion � whi
h passes

through x, we see that 
omputation of f

d

(x) requires only integrals over lines with

distan
e at most d from x (\pseudo-lo
al" re
onstru
tion.)
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In pra
ti
e one has to use an approximate inversion formula and 
omputes

f

d;r

(x) = e

r

� f

d

(x) =

Z

2�

0

Z

IR

~

k

d;r

(hx; �

?

i � s)P

�

f(s) ds d'; (4.2)

~

k

d;r

(t) =

1

4�

2

Z

t+d

t�d

d

ds

P

�

e

r

(s)

t� s

ds;

where e

r

is a radial fun
tion satisfying

e

r

(x) = r

�2

e

1

(x=r); e

1

(x) = 0 for jxj > 1;

Z

IR

2

e

1

dx = 1:

Note that

~

k

d;r

(t) = 0 for jtj > d+ r, i.e., 
omputation of f

d;r

(x) requires inte-

grals over lines with distan
e at most d+ r from x. Furthermore, lim

d!1

~

k

d;r

(t) =

(4�)

�1

H�P

�

e

r

(t): Hen
e (2.7) gives that lim

d!1

f

d;r

(x) = e

r

� f(x). Indeed, the


onvolution kernel

~

k

d;r


an be obtained from the kernel k in (2.8) by letting m = 0

and trun
ating the Hilbert transform integral. The relation f

d;r

= e

r

�f

d

was shown

in [25℄.

It turns out that for small d (i.e., lo
al data), f

d

is signi�
antly di�erent from

zero only in a narrow region near a boundary (
f. [25, Fig. 3℄), and that the


onvolution with the point spread fun
tion e

r

alters these values so mu
h that the

jumps 
annot just be simply read o� the re
onstru
ted image f

d;r

. We need an

algorithm to obtain information about the jumps of f . The methods developed by

Katsevi
h and Ramm [25, 37℄ 
an be understood in the framework developed for

Lambda tomography. A

ording to (3.7) and (3.8) we have for x 
lose to �




j

� 


i

'

E � �f(x)

HRE(

~

d(x))

(4.3)

j


j

� 


i

j '

jrE � �f(x)j

j�RE(

~

d(x))j

(4.4)

The task now is to �nd E

d;r

su
h that E

d;r

� �f = f

d;r

= e

r

� f

d

.

Proposition 4.1. ([37, 4℄) De�ne E

d;r

by

P

�

E

d;r

= (P

�

e

r

) �M

d

with

M

d

(s) = �

1

�

ln(js=dj)�

[�d;d℄

(s):

Then

f

d;r

(x) = E

d;r

� �f(x):

With this result (4.3) and (4.4) give




j

� 


i

'

f

d;r

(x)

HRE

d;r

(

~

d(x))

(4.5)

j


j

� 


i

j '

jrf

d;r

(x)j

j�RE

d;r

(

~

d(x))j

(4.6)

and we 
an apply the same algorithms for re
overing the jumps as in Lambda

tomography.

Some remarks are in order.
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(1) Note that be
ause E

d;r

is radial, HRE

d;r

(0) = 0, so f

d;r

(x) ' 0 for x 2 �.

This makes it diÆ
ult to use the relation (4.5) in pra
ti
e, sin
e �nding

~

d(x) is not easy, 
f. the algorithm given [25℄ and further dis
ussed in [4℄.

However, sin
e jrf

d;r

j is maximal for x 2 � one 
an �nd the points x 2 �

by looking for the lo
al maxima of jrf

d;r

j and then estimate the jump by

j


j

� 


i

j '

jrf

d;r

(x)j

j�RE

d;r

(0)j

; x 2 �:

This approa
h has essentially been used in [37℄ for pseudolo
al tomogra-

phy and in [24℄ for Lambda tomography.

(2) The property that f

d

has the same jumps as f is not used in the algorithm.

(3) E

d;r

(x) = 0 for jxj > d+ r. Hen
e our derivation of the algorithm is only

justi�ed for d+ r suÆ
iently small. In pra
ti
e the method seems to work

also for mu
h larger values of d+ r.

5. Wavelet-based multiresolution lo
al tomography

Wavelet-based multiresolution lo
al tomography is a method for region of in-

terest tomography developed in [38℄. The goal here is to re
onstru
t the fun
tion

f itself within the region of interest up to an almost 
onstant error. The method

illustrates the possible uses of wavelets to 'lo
alize' the x-ray transform, or, more

pre
isely, to separate the features whi
h are well determined by lo
al data from

those who are not. The following dis
ussion assumes some ba
kground on wavelets

whi
h 
an be found in [51℄ or other texts on this subje
t.

Consider a (two-dimensional) multiresolution analysis of nested subspa
es V

j

,

j 2 ZZ of L

2

(IR

2

). We use the notation

f

j;k

(x) = 2

j

f(2

j

x� k); j 2 ZZ; k 2 ZZ

2

; x 2 IR

2

:

Let � be the s
aling fun
tion and 	

�

, � = 1; 2; 3 the asso
iated wavelets. Sin
e the

�

j+1;k

, k 2 ZZ

2

are a Riesz basis of the subspa
e V

j+1

, a fun
tion f 2 V

j+1


an be

written as

f(x) =

X

k2ZZ

2

~

A

j+1;k

�

j+1;k

(x):

The so-
alled approximation 
oeÆ
ients

~

A

j;k

are given by

~

A

j;k

= hf;

e

�

j;k

i

where h; i denotes the inner produ
t in L

2

and

e

� is the biorthogonal s
aling fun
tion.

Alternatively we 
an use the relation V

j+1

= V

j

+W

j

and obtain the expansion

f(x) =

X

k2ZZ

2

~

A

j;k

�

j;k

(x) +

3

X

�=1

X

k2ZZ

2

~

D

�

j;k

	

�

j;k

(x):

We 
an interpret the �rst sum as an approximation to f in V

j

� V

j+1

, i.e., at a lower

resolution. The se
ond sum supplies the missing detail information. Therefore the


oeÆ
ients

~

D

�

j;k

= hf;

~

	

�

j;k

i

are 
alled detail 
oeÆ
ients. The Fast Wavelet Transform and its inverse allow

eÆ
ient 
omputation of the

~

A

j;k

and

~

D

�

j;k

, k 2 ZZ

2

from the

~

A

j+1;k

, k 2 ZZ

2

, and

vi
e versa.
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We now observe that the approximation and detail 
oeÆ
ients 
an be 
omputed

dire
tly from the x-ray data. Let f

_

(x) = f(�x). Then

~

A

j;k

= hf;

e

�

j;k

i =

�

f �

e

�

_

j;0

�

(2

�j

k) (5.1)

Similarly,

e

D

�

j;k

= hf;

e

 

�

j;k

i =

�

f �

�

e

	

�

j;0

�

_

�

(2

�j

k) (5.2)

Hen
e we 
an use the approximate inversion formula (2.7) with e(x) =

e

�

_

j;0

(x) and

re
onstru
tion on the grid x = 2

�j

k, k 2 ZZ

2

, to obtain the approximation 
oeÆ-


ients dire
tly from the x-ray data. For the detail 
oeÆ
ients we let e =

�

e

	

�

j;0

�

_

.

Alternatively one 
ould �rst 
ompute the approximation 
oeÆ
ients

~

A

j+1;k

by let-

ting e(x) =

e

�

_

j+1;0

(x) and 
hoosing the �ner grid x = 2

�j�1

k, k 2 ZZ

2

, and then

use the Fast Wavelet Transform to obtain the approximation and detail 
oeÆ
ients

at level j. Sin
e the additional 
omputational burden of applying the Fast Wavelet

Transform is negligible 
ompared to the e�ort required for the re
onstru
tion from

the x-ray data, this alternative method seems preferable, sin
e only one point-

spread fun
tion and 
orresponding 
onvolution kernel need to be used. However, if

not all 
oeÆ
ients on level j are needed, the �rst method will be more eÆ
ient.

The next question is how this approa
h allows to `lo
alize' the x-ray transform,

i.e., to separate features whi
h are determined by lo
al data from those whi
h are

not. It was observed in [33℄ that the detail 
oeÆ
ients for suÆ
iently large j should

be well determined by lo
al data, if the wavelets 	

�

have vanishing moments. Let

us see why.

Definition 5.1. A fun
tion f of n variables has vanishing moments of order

up to N, if

Z

IR

n

x

�

f(x)dx = 0

for all multiindi
es � = (�

1

; : : : ; �

n

) with j�j =

P

�

i

� N . Re
all that the �

i

are

non-negative integers and that x

�

= x

�

1

1

x

�

2

2

: : : x

�

n

n

.

The nonlo
ality in the approximate inversion formula 
omes from the 
onvo-

lution kernel k in (2.8) in 
ase of m = 0. In two dimensions this is 
aused by the

presen
e of the Hilbert transform in the formula k = (4�)

�1

�P

�

e = (4�)

�1

H�P

�

e.

The key observation now is that the Hilbert transform of a fun
tion with vanishing

moments de
ays fast.

Lemma 5.2. ([38, p. 1418℄) Let f(t) 2 L

2

(IR) vanish for jtj > A and have

vanishing moments of order up to N . Then, for jsj > A,

jHf(s)j �

1

�js�Aj

N+2

Z

A

�A

jf(t)t

N+1

jdt

It is well known how to 
onstru
t wavelets with vanishing moments, and it

turns out that the fun
tions �P

�

�

e

	

�

j;0

�

_

inherit the vanishing moments from the

e

	

�

. Therefore the 
onvolution kernels k = (4�)

�1

H�P

�

�

e

	

�

j;0

�

_

will de
ay rapidly

outside the support of P

�

�

e

	

�

j;0

�

_

.
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So we see that the detail 
oeÆ
ients for large j, when

e

	

�

j;0

has small support,

are well determined by lo
al data. This is intuitively plausible sin
e these 
o-

eÆ
ients 
ontain high-frequen
y information, and we know already from Lambda

tomography that high-frequen
y information is well-determined. So the nonlo
ality

shows its greatest impa
t in the approximation 
oeÆ
ients.

If the s
aling fun
tion

e

�(x) is suÆ
iently smooth and has 
ompa
t support,

then the zero order moment of �

s

P

�

e

�(s) will vanish. However, sin
e the s
aling

fun
tion satis�es

R

e

�(x)dx = 1, the �rst order moment of �

s

P

�

e

� is always non-

zero. Hen
e the 
orresponding 
onvolution kernel k(s) will de
rease no faster than

O(s

�2

) for large jsj. One 
ould still 
hoose the s
aling

e

� so that its moments of

order 1 through N vanish. It is shown in [38, p. 1419℄ that in su
h a 
ase the

resulting 
onvolution kernel k satis�es

jk(s)j = O(s

�2

) +O(s

�N�3

):

It seems that this does not a
hieve mu
h, sin
e we 
annot remove the leading

O(s

�2

) term. Nevertheless, the authors of [38℄ found that some s
aling fun
tions

having vanishing moments lead to 
onvolution kernels with suÆ
iently rapid de
ay

for pra
ti
al purposes. In their re
onstru
tions the authors of [38℄ also extrapolated

the missing data by 
onstant values, thus redu
ing 
upping artifa
ts. While it is

suggested in [38℄ to �rst 
ompute the approximation and detail 
oeÆ
ients at level

j and then use an Inverse Fast Wavelet Transform to obtain the approximation


oeÆ
ients at level j + 1, our numeri
al tests in [44℄ indi
ated that the simpler

approa
h of dire
tly 
omputing the approximation 
oeÆ
ients at level j + 1 yields

equivalent results. We observe that this 
an be a

omplished without using wavelets

in the algorithm, namely just by spe
ifying the parti
ular point spread fun
tion

e =

e

�

_

j+1;0

in the standard re
onstru
tion formula (2.7).

6. Cone-beam lo
al tomography with sour
es on a 
urve

A problem of great pra
ti
al interest whi
h still poses many open problems is

three-dimensional 
one-beam re
onstru
tion with sour
es on a 
urve. See, e.g., [48℄

for an inversion formula, [12℄ for a general stability result, [36℄ for 
onditions to

dete
t singularities, and [5, 11, 14, 28, 32, 53℄ for re
onstru
tion algorithms and

other developments.

To des
ribe data 
olle
tion with an x-ray sour
e moving on a 
urve, the param-

eterization of lines by � 2 S

n�1

and y 2 �

?

is less 
onvenient. It is more suitable

to introdu
e the divergent beam x-ray transform

Df(a; �) = D

a

f(�) =

Z

1

0

f(a+ t�)dt; � 2 S

n�1

; (6.1)

whi
h gives the integral of f over the ray with dire
tion � emanating from the sour
e

point a. If f is supported in the unit ball, and the sour
e points a lie on a sphere A

with 
enter in the origin and radius R > 1, then the approximate inversion formula

for the divergent beam x-ray transform reads [46℄

e � �

m

f(x) = R

�1

Z

A

Z

S

n�1

D

a

f(�) jha; �ij k(E

�

?(x� a)) d�da; (6.2)

with m � �1 and k as in (2.8). This formula is very useful in two dimensions, but

not so in three dimensions. It needs integrals over all lines, but in three dimensions

the lines form a four parameter family, so (6.2) requires far more data than should
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be needed to determine a fun
tion of three variables. In pra
ti
al 3D tomography an

x-ray sour
e moves on a 
urve, so only integrals over lines interse
ting the 
urve are

measured. The 
onditions on the sour
e 
urve � for stable inversion are restri
tive,

so that in most pra
ti
al situations one has an in
omplete data problem.

Mi
rolo
al analysis has proved to be a useful tool in determining whi
h singu-

larities of f are stably determined by the available data. Based on the exposition in

[36℄ we now state the relevant mi
rolo
al 
on
epts and apply them to this situation.

The reader interested in a deeper treatment may wish to �rst read [36℄ and [18℄,

and then pro
eed to arti
les su
h as [3, 15, 16, 17, 35℄.

The following 
on
ept of a wavefront set uses the fa
t that the Fourier transform

of a C

1

0

fun
tion de
ays rapidly. A lo
al version of this fa
t 
an be obtained by

�rst multiplying f with a C

1

0


ut-o� fun
tion � with small support, and seeing if

the Fourier transform of the produ
t �f de
ays rapidly. The wavefront set gives

even more spe
i�
, so-
alled mi
rolo
al information, inasmu
h as it identi�es the

dire
tions in whi
h the Fourier transform of �f does not de
rease rapidly.

Definition 6.1. Let f be a distribution and let x

0

; �

0

2 IR

n

; �

0

6= 0: Then

(x

0

; �

0

) is in the wavefront set of f if and only if for ea
h 
ut-o� fun
tion � in C

1

0

with �(x

0

) 6= 0; the Fourier transform of �f does not de
rease rapidly in any 
oni


neighborhood of the ray ft�

0

; t > 0g:

Loosely speaking, we say that a singularity of f 
an be stably dete
ted from

available x-ray data, if there exists a 
orresponding singularity of 
omparable

strength in the data. The strength of a singularity 
an be quanti�ed mi
rolo
ally

using Sobolev spa
e 
on
epts:

Definition 6.2. A distribution f is in the Sobolev spa
e H

s

mi
rolo
ally near

(x

0

; �

0

) if and only if there is a 
ut-o� fun
tion � 2 C

1

0

(IR

n

) with �(x

0

) 6= 0

and fun
tion u(�) homogeneous of degree zero and smooth on IR

n

nf0g and with

u(�

0

) 6= 0 su
h that u(�)

d

(�f)(�) 2 L

2

(IR

n

; (1 + j�j

2

)

s

):

First, one lo
alizes near x

0

by multiplying f by �, then one mi
rolo
alizes near

�

0

by forming u




�f and sees how rapidly




�f de
ays at in�nity.

For 3D tomography with sour
es on a 
urve we have the following result:

Theorem 6.3. (
f. [36, Theorem 4.1℄, and [3, 15℄) Let � be a smooth 
urve

in IR

3

and f a distribution whose support is 
ompa
t and disjoint from �. Then

any wavefront set of f at (x

0

; �

0

) is stably dete
ted from divergent beam x-ray data

Df with sour
es on � if and only if

the plane P through x

0

and orthogonal to �

0

, interse
ts � transversally.

If data are taken over an open set of rays with sour
es on �, then a ray in P

from � to x

0

must be in the data set for stable dete
tion to apply. In these 
ases

f is in H

s

mi
rolo
ally near (x

0

; �

0

) if and only if the 
orresponding singularity of

Df is in H

s+1=2

:

We see that the 
orresponding singularities of Df are weaker by 1=2 Sobolev

order, but this is still strong enough to allow stable dete
tion in pra
ti
e.

It is now interesting to ask if the available numeri
al algorithms 
an a
tually

re
onstru
t all the stable singularities. The results for a general 
lass of restri
ted

x-ray transforms obtained in [15, 16, 17℄ show that mi
rolo
al analysis is also

a powerful tool to answer su
h a question. For an introdu
tion to these results
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see [18℄. Expli
it 
al
ulations analysing an algorithm for 
ontour re
onstru
tion

proposed by Louis and Maass in [28℄ and some 
losely related methods have re
ently

been given in [23, 27℄.

The algorithm of [28℄ aims to re
onstru
t the fun
tion

f

R

= ��D

�

Df; (6.3)

with

D

�

g(x) =

Z

�

k x� a k

�1

g

�

a;

x� a

k x� a k

�

da:

An advantage of the formula (6.3) is that re
onstru
tion of f

R

is lo
al. In [28℄ it is

shown that f

R

approximates �f in 
ertain 
ases.

The results in [15, 23, 27℄ show that the wavefront set of f

R


onsists of two

parts. The �rst part 
ontains those wavefronts (x; �) of f for whi
h the plane

through x and normal to � interse
ts �. The se
ond part may introdu
e new

singularities, namely on the line from a sour
e point a 2 � to x, the lo
ation of the

original singularity in f . This will happen if the plane through x and normal to �


ontains a and the tangent ve
tor to � at a is orthogonal to �, i.e., the plane tou
hes

� but does not interse
t � transversally. In addition, the a

eleration ve
tor of the


urve at a should not be orthogonal to �. The Sobolev strength of these additional

singularities is the same as the re
onstru
ted part of the original wavefront set

[16, 17, 23℄, and they appear as artifa
ts in numeri
al simulations [21, 23℄.

Another, and apparently the histori
ally �rst method for 3D lo
al tomography

is an adaptation of the algorithm by Feldkamp, Davis and Kress [11℄ (FDK algo-

rithm) whi
h was developed by P.J. Thomas at the Mayo Clini
. While the details

of this lo
al FDK algorithm have not been published, it has been used in various

papers, e.g., [47, 8℄. A re
ent implementation of a lo
al FDK algorithm has been

reported in [20℄. The modi�
ation from the original FDK algorithm 
onsists in

repla
ing the global 
onvolution kernel 
orresponding to m = 0 in (2.8) with a lo
al

kernel 
orresponding to m = 1. A di�erent adaptation using wavelet based kernels

has been given in [53℄.

Figures 2 and 3 provide a 
omparison of the two algorithms, using the im-

plementations in [21℄ and [20℄, respe
tively. The experiments use a mathemati
al

phantom 
onsisting of a superposition of four balls with the following parameters:

Center Radius Density

(0, 0, 0) 0.5 1

(0, 0, 0.125) 0.1 -1

(-0.3, 0, -0.125) 0.02 -1

(0.3, 0, 0.2) 0.01 -1

The sour
e is assumed to move on a 
ir
le in the x-y plane with radius R = 3

and 
enter in the origin. We used 400 equidistant sour
e positions and a 240� 240

dete
tor array. The lo
al FDK algorithm [20℄ used a planar dete
tor array, while

our 
ode for the Louis-Maass algorithm assumed a spheri
al array; see [21℄. The

images 
onsist of 131� 131 pixels.

Figure 2 shows re
onstru
tions in the verti
al plane y = 0, with the Louis-Masss

method in the upper left, and the lo
al FDK algorithm in the upper right. The

additional singularities predi
ted for the Louis-Mass algorithm by the referen
es

given above are 
learly visible in the upper left image as lines tangential to ea
h ball

and interse
ting the sour
e 
urve. The re
onstru
tion with the lo
al FDK algorithm
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Louis−Maass: Plane y=0
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Figure 2.

does not show these lines, but does appear to have greater distortions with regard

to the small obje
ts. This is 
on�rmed in Figure 3 whi
h shows re
onstru
tions of

the horizontal plane z = 0:2.
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