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Abstrat. Computed x-ray tomography entails the reonstrution of a den-

sity funtion f from line integrals of f . Ordinary tomography is global sine

reonstrution at a point x requires integrals over lines far from x. Loal to-

mography uses only integrals over lines lose to x. This introdution reviews

a number of loal tomographi methods developed over the past deade, suh

as Lambda tomography, pseudoloal tomography, wavelet based methods, and

three-dimensional loal one-beam tomography.

1. Introdution

Computed tomography (CT) entails the reonstrution of a generalized density

funtion f from line integrals of f . This reonstrution is not loal in the sense

that reonstrution of f at a point x requires integrals over lines far from x. In a

number of appliations only part of an objet needs to be imaged. Thus it would be

desirable to only use integrals over lines interseting this region-of-interest (ROI).

This entails the loss of uniqueness, but it turns out that the null funtions are

nearly onstant inside the ROI and that the singularities of f inside the ROI an

be stably reovered from suh data; see, e.g., [31, xVI.4℄, [36℄.

Over the past deade a number of methods to `loalize' the reonstrution

have been proposed. These range from methods for 'region-of-interest tomography'

whih use integrals over all lines passing through a region slightly larger than the

ROI, to stritly loal methods where reonstrution at a point x only requires in-

tegrals over lines very lose to x. In this introdution we will review methods of

both types. The wavelet-based multiresolution loal tomography of [38℄, disussed

in setion x5, uses all lines passing through a region slightly larger than the ROI,

while Lambda tomography, reviewed in x3, is stritly loal. Pseudoloal tomog-

raphy, desribed in x4, an be used in both modes. Some other tehniques use a

limited amount of data outside the ROI [33℄, or extrapolate the missing data [31,

xVI.4℄. Extensions of loal tomographi methods to more general settings have

been presented in [22, 26, 29℄.
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This artile is organized as follows: In the next setion we review some bak-

ground material on the x-ray transform and its inversion.

Setion 3 is devoted to Lambda tomography. Here not the funtion f itself but

the related funtion Lf = �f + ��

�1

f is reonstruted, where � =

p

��, and

� denotes the Laplaian. This reonstrution is stritly loal, and our disussion

enters on what features of f an be found from reonstrutions of Lf . Partiular

attention will be given to the omputation of density jumps.

In setion 4 we disuss the pseudoloal tomography of [25, 37℄ and relate this

method for omputing density jumps to the methods based on Lambda tomography.

Setion 5 briey reviews wavelet based multiresolution tomography [38℄, one

of the wavelet based methods for region-of-interest tomography. The goal of this

method is to reonstrut the funtion f itself up to an almost onstant error. For

further appliations of wavelets in loal tomography see, e.g., [1, 2, 6, 33, 34, 52,

53℄.

In setion 6 we turn to the three dimensional ase and examine loal one-

beam tomography with soures on a urve. Here additional problems arise sine it

is usually impratial to ollet suÆiently many data to ensure stable reovery of

all singularities of f inside the region of interest. We disuss whih singularities are

stably determined and ompare the two leading reonstrution algorithms.

2. The x-ray transform

We begin by introduing some notation and bakground material. IR

n

onsists

of n-tuples of real numbers, usually designated by single letters, x = (x

1

; : : : ; x

n

),

y = (y

1

; : : : ; y

n

), et. The inner produt and absolute value are de�ned by hx; yi =

P

n

1

x

i

y

i

and jxj =

p

hx; xi. The unit sphere S

n�1

onsists of the points with

absolute value 1. C

1

0

(IR

n

) denotes the set of in�nitely di�erentiable funtions

on IR

n

with ompat support. A ontinuous linear funtional on C

1

0

is alled

a distribution. If X is a set, X

Æ

denotes its interior, X its losure, and X



its

omplement. �

X

and �

n

denote the harateristi funtions (indiator funtions)

of X , and of the unit ball in IR

n

, respetively. I.e., �

X

(x) = 1 if x 2 X , and

�

X

(x) = 0 if x 62 X . jX j denotes the n-dimensional Lebesgue measure of X � IR

n

.

However, when it is lear that X should be treated as a set of dimension m < n,

jX j is the m-dimensional area measure. Thus

jS

k�1

j = 2�

k=2

=�(k=2)

is the (k � 1)-dimensional area of the (k � 1)-dimensional sphere.

The onvolution of two funtions is given by

f � g(x) =

Z

IR

n

f(x� y)g(y)dy:

The Fourier transform is de�ned by

^

f(�) = (2�)

�n=2

Z

IR

n

f(x)e

�ihx;�i

dx

for integrable funtions f , and is extended to larger lasses of funtions or distri-

butions by ontinuity or duality.

The integral transform most relevant for loal tomography is the x-ray trans-

form.
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Definition 2.1. Let � 2 S

n�1

and �

?

the hyperplane through the origin

orthogonal to �. We parametrize a line l(�; y) in IR

n

by speifying its diretion

� 2 S

n�1

and the point y where the line intersets the hyperplane �

?

.

The x-ray transform of a funtion f 2 L

1

(IR

n

) is given by

Pf(�; y) = P

�

f(y) =

Z

IR

f(y + t�)dt; y 2 �

?

: (2.1)

We see that Pf(�; x) is the integral of f over the line l(�; y) parallel to � whih

passes through y 2 �

?

.

The inversion formula for the x-ray transform reads as follows:

f(x) =

�

2�jS

n�2

j

�

�1

Z

S

n�1

�P

�

f(E

�

?
x)d�; (2.2)

where E

�

?x denotes the orthogonal projetion of x onto the subspae �

?

, and

Calder�on's operator � is de�ned in terms of Fourier transforms by



�g(�) = j�jĝ(�); g 2 C

1

0

(IR

k

):

It is extended by duality to the lass of funtions g for whih (1 + jxj)

�1�k

g is

integrable [8℄. In (2.2) the operator � ats on the funtion g(y) = P

�

f(y) de�ned

on the subspae �

?

of dimension k = n� 1. Note that

�

2

= ��; � = Laplaian: (2.3)

For a derivation of (2.2) and its numerial implementation, as well as for other

inversion formulas see [31, xII.2 and Ch. V℄.

In two dimensions we parametrize � 2 S

1

by its polar angle ' and de�ne a

vetor �

?

orthogonal to � suh that

� = (os'; sin'); �

?

= (� sin'; os'): (2.4)

Then the points in the subspae �

?

are given by �

?

= fs�

?

; s 2 IRg. When

working in two dimensions, we will often use the simpli�ed notation Pf(�; s) or

P

�

f(s) instead of Pf(�; s�

?

). Oasionally we will also replae � by the polar

angle ' aording to (2.4) and write Pf('; s) .

For g a funtion of one variable we have �g = H�g, where �g denotes the

derivative of g and H denotes the Hilbert transform

Hg(s) =

1

�

Z

IR

g(t)

s� t

dt; (2.5)

where the integral is understood as a prinipal value.

In dimension n = 2, i.e., when f is a funtion of 2 variables, P

�

f is a funtion

of one variable and the inversion formula (2.2) beomes

f(x) =

1

4�

2

Z

2�

0

Z

IR

�

s

P

�

f(s)

hx; �

?

i � s

dsd': (2.6)

From equation (2.6) we see that omputation of f(x) requires integrals over

lines far from x, beause the Hilbert transform kernel has unbounded support.

Note that P

�

f(hx; �

?

i) is the integral over the line with diretion � whih passes

through x. Hene the inversion formula is not \loal". A loal inversion formula

would utilize only integrals over lines passing lose to x, i.e., values P

�

f(s) with s

lose to hx; �

?

i. For dimension n > 2 the inversion formula (2.2) is also not loal.

The operator � is not ontinuous in an L

2

setting. Hene, in order to use the

inversion formula in pratie we have to stabilize it. This involves a well-known
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trade-o� between stability and auray of the reonstrution. Here we give up

the goal of reovering the funtion f itself, and aim instead at reonstruting an

approximation e�f , where e is an approximate delta funtion whose Fourier trans-

form ê(�) deays suÆiently fast for large j�j. The prie to pay for the stabilization

is limited resolution, so e must be hosen arefully, depending on the amount and

auray of the available measurements.

In order to allow for loal reonstrution formulas we reonstrut �

m

f instead

of f , with m > �1 an integer. This yields the approximate inversion formula

e � �

m

f(x) =

Z

S

n�1

(k � P

�

f)(E

�

?
x)d�; m � �1; (2.7)

with the onvolution kernel

k(y) = (2�jS

n�2

j)

�1

�

m+1

P

�

e(y); y 2 �

?

: (2.8)

If e is a radial funtion, then P

�

e and the onvolution kernel k are independent of �.

Of greatest interest are the ase m = 0, whih gives the formulas for reonstruting

the funtion f itself, and the ases m = �1 whih give loal reonstrution formu-

las. The approximate inversion formula (2.7) is the basis for the popular �ltered

bakprojetion reonstrution algorithm (in dimension n = 2); see [10℄ for an error

analysis, and [31℄ for a general disussion and referenes.

Sine the parameters � and y 2 �

?

of a line passing through a point x must

satisfy the equation E

�

?x = y, reonstrution aording to (2.7) will be loal if

the kernel k is supported in a small neighborhood of the origin. However, for m

even and

R

IR

n

e(x)dx 6= 0,

^

k is not analyti, so k annot have ompat support.

This again reets the fat that ordinary tomography is global, not loal. On the

other hand, it follows from (2.8) and (2.3) that k does have ompat support if

m � �1 is odd and e has ompat support. This explains the interest in the ases

m = �1. Computing �

�1

f(x) onsists of taking the average of all integrals over

lines passing through x. This was done in early imaging tehniques preeding CT.

However, sine �

�1

, the inverse of �, is given by onvolution with the Riesz kernel

R

1

,

�

�1

f = R

1

� f; R

1

(x) = (�jS

n�2

j)

�1

jxj

1�n

; (2.9)

the result is a very blurry image of f whih by itself is of limited usefulness; see the

bottom left image in Fig. 1. Current Lambda tomography avoids this disadvantage

by omputing a linear ombination of �f and �

�1

f .

3. Lambda tomography

Lambda tomography was introdued independently in [49℄ and [46℄, further

developed in work inluding [8, 9, 10, 24, 37, 50℄, and generalized in [22, 26℄.

It does not attempt to reonstrut the funtion f itself but instead produes the

related funtion Lf = �f+��

�1

f . This has the advantage that the reonstrution

is stritly loal in the sense that omputation of Lf(x) requires only integrals over

lines passing arbitrarily lose to x. Lambda tomography has found appliations

in medial imaging [47℄, nondestrutive testing [42, 50℄, and mirotomography

[9, 10, 41, 43℄. (The term mirotomography refers to the use of x-ray tomography

to produe very high resolution images of small objets [13, 19℄. While the spatial

resolution in medial tomography is about 1 mm, the spatial resolution of miro-

tomographi images is a few mirometers.) Loal reonstrutions from eÆiently
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sampled data are analyzed in [10℄. The hoie of suitable onvolution kernels for

the �ltered bakprojetion algorithm has been investigated in [39, 40℄.

Intelligent use of Lambda tomography requires knowledge of what kind of useful

information about f is retained in Lf . Let us onsider an example. The upper

left of Fig. 1 shows an ordinary, global reonstrution of the density funtion f

of a alibration objet used by the Siemens ompany. The data ome from an

old generation Siemens hospital sanner. Units are suh that the radius of the

global reonstrution irle is one. The �gure displays the reonstrution inside the

retangle [�:5; :5℄

2

. The sanning geometry is a fan-beam geometry with soure

radius R = 2:868, p = 720 soure positions, and 2q = 512 rays per soure; f. [31,

p. 75℄. The upper right of Fig. 1 shows a reonstrution of �f . Reonstrutions

of �

�1

f and Lf = �f + 46�

�1

f are shown in the lower left and lower right,

respetively. The similarity between the images of f and �f is at �rst glane

surprising. We expet that a good loal reonstrution method should detet the

singularities of f , sine these are stably determined by the data. Indeed, sine � is

an invertible ellipti pseudo-di�erential operator, f and �f have preisely the same

singular set. However, we see that �f is upped where f is onstant, and that the

singularities are ampli�ed in �f . The image of �

�1

f by itself seems less useful,

but it provides a ounterup for the up in �f . Thus, the image of Lf shows less

upping and looks even more similar to f than the image of �f . For example, the

image of Lf indiates that the density just inside the boundary of the objet is

larger than the density outside the objet, while this an not be learly seen from

the image of �f . To ahieve this e�et, a good seletion of � is neessary. Here

� = 46 was hosen by trial and error. The following presription for seleting at

least a good starting value for � an be found in [9, x4℄. The idea is to hoose �

suh that the reonstrution of the harateristi funtion of a disk with radius r

0

is as at as possible in the interior of the disk. The radius r

0

should be hosen to lie

between the radius r

i

of the region of interest under onsideration, and the radius

r

w

of a ball irumsribing the whole objet, i.e., r

i

� r

0

� r

w

. Then � sales as

� = r

�2

0

, and experiments showed that  = 6 is a good hoie. For the alibration

objet in Figure 1 we have r

0

' 0:36, whih gives � = 45, in good agreement with

the experimental value � = 46.

A more detailed understanding of images of �f or Lf is obtained from studying

quantitative relations between �f , �

�1

f and f [8, 9℄. Some of the results for �f

are stated in Theorem 3.1 and disussed in Remark 3.2 below. For orresponding

results on �

�1

see [8℄.

Theorem 3.1. ([8℄) Let X and Y be measurable subsets of IR

n

, n � 2, and let

(1+jxj)

�1�n

f be integrable. Let X

Æ

and X



denote the interior and the omplement

of X, respetively, and X

Æ

the interior of X



.

(a) If f

r

(x) = f(x=r), then �f

r

(x) = r

�1

�f(x=r).

(b) ��

X

(x) > 0 on X

Æ

, and < 0 on X

Æ

; ��

X



= ���

X

.

() ��

X

is subharmoni (Laplaian � 0) on X

Æ

, and superharmoni on X

Æ

.

This implies that ��

X

annot have a loal maximum in X

Æ

, nor a loal minimum

in X

Æ

.

(d) If x is outside the support of f , then

�f(x) =

1� n

�jS

n�2

j

Z

IR

n

jx� yj

�1�n

f(y)dy:
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Figure 1. Top left: Global reonstrution of density f(x) of

alibration objet. Top right: Reonstrution of �f . Bottom

left: Reonstrution of �

�1

f . Bottom right: Reonstrution of

Lf = �f + ��

�1

f , � = 46.

(e) Near �X, j��

X

(y)j �

1

d(y;�X)

, where d(x; �X) denotes the distane of x to

�X.

Remark 3.2. The results for ��

X

are of pratial interest, sine in many

appliations the funtion f an be modeled as a linear ombination of harateristi

funtions.

� As a onsequene of (a), small features are ampli�ed in images of �f . This

is bene�ial for the detetion of small, low ontrast details. For example,

in Fig. 1 the small holes in the retangular piees are more learly visible

in the image of �f than in the image of f .

� Part (b) indiates that the jumps of �f at disontinuities of f have the

same diretion as those of f .

� Part () explains why there are no osillations whih ould be mistaken

for atual details in images of �f .
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� Part (d) shows that if f has ompat support, then �f annot. This

means that there are global e�ets in images of �f in the sense that the

value of �f(x

0

) depends on the values of f everywhere. However, Part d)

implies that �f(x) will deay at least as O(jxj

�1�n

) for jxj ! 1. More

re�ned estimates are derived in [9℄ and used to develop a proedure to

redue the global e�ets.

� Part (e) shows that a �nite jump in f auses an in�nite jump in �f . In a

neighborhood of �X , �f is not a funtion but a prinipal value distribution

[8℄.

While Lf retains the signs of jumps in density, it does not give diret infor-

mation about the size of these jumps. However, suh information about density

di�erenes may be extrated in ertain ases. In this and the following setions

we will desribe several methods. We assume that f is a linear ombination of a

smooth funtion and of harateristi funtions of sets:

f = f

0

+

X



i

�

X

i

; f

0

2 C

1

0

; j�X

i

j = 0; X

i

= X

Æ

i

; X

Æ

i

\X

Æ

j

= ; if i 6= j:

(3.1)

We are interested in estimating 

j

� 

i

when X

j

, X

i

have a ommon nontrivial

boundary �,

� = �X

i

\ �X

j

\W 6= ;; W = (X

i

[X

j

)

Æ

: (3.2)

We �rst disuss the method developed in [9℄. It is based on Theorem 3.3 below.

The theorem expresses the fat that for x suÆiently lose to �,



j

� 

i

=

�f(x)

��

X

j

(x)

+ O(d); and

j

j

� 

i

j =

jr�f(x)j

jr��

X

j

(x)j

+ O(d

2

);

where d is the distane from x to �.

We say that a set Y has urvature � 1=r along a subset Y

0

of �Y if for eah

point �y 2 Y

0

there are open balls B � Y and B

0

� Y



of radius r with �y 2

�

B \B

0

.

The distane of a point x to a set Y is denoted by d(x; Y ).

Theorem 3.3. ([9℄) Let f be as in (3.1). Fix i; j, let W = (X

i

[ X

j

)

Æ

and

assume that

� = �X

i

\ �X

j

\W 6= ;:

Let X

j

have urvature � 1=r, r > 0, along a losed subset �

0

of �. Let x 2 Wn�

be suh that d(x; �X

j

) = d(x;�

0

) = d. Then

�

�

�

�

�f(x)

��

X

j

(x)

� (

j

� 

i

)

�

�

�

�

� F

1

(d=r)

�

max j�f

0

j + C

1

(max

k 6=j

j

k

j)

d(x; �W )

�

d (3.3)

�

�

�

�

jr�f(x)j

jr��

X

j

(x)j

� j

j

� 

i

j

�

�

�

�

� F

2

(d=r)

�

max jr�f

0

j + C

2

(max

k 6=j

j

k

j)

d(x; �W )

2

�

d

2

(3.4)
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The onstants C

1

and C

2

and the funtions F

1

, F

2

an be given expliitly. E.g., for

n = 2, C

1

= 2, and C

2

= 3. Furthermore,

lim

t!0

+

F

1

(t) = lim

t!0

+

F

2

(t) = �:

The error terms on the right-hand sides of (3.3) and (3.4) indiate that in

general the estimate (3.4) should be more aurate than (3.3) when d is small. The

terms involving d(x; �W ) ome from the inuene of other boundaries than � and

reet the global e�ets mentioned above.

Numerial implementation of (3.3) or (3.4) requires omputation of reonstru-

tions of �f and ��

X

j

inside a region of interest R. In the following let

�

�f and

�

��

X

j

denote these reonstrutions, rather than the funtions �f and ��

X

j

them-

selves. It is also assumed that f has the form (3.1) with sets X

i

suh that X

i

� R

or X

i

\ R = ;: This entails no loss of generality sine any set X

i

violating this

ondition an be replaed by the two sets X

i

\ R and X

i

\ R



:

�

��

X

j

is omputed

using simulated x-ray data, after �X

j

has been found from

�

�f . In priniple, either

(3.3) or (3.4) an be used, but as mentioned above the method based on (3.4) is

likely to be more aurate. This gives only j

j

� 

i

j, but sine the sign of 

j

� 

i

is

preserved in �f , this is all that is needed.

The method onsists of the following steps:

(1) Compute

�

�f from loal data inside a region of interest R.

(2) Determine X

j

by �nding �X

j

from

�

�f .

(3) Compute

�

��

X

j

inside the region of interest from simulated x-ray data,

using the same sampling geometry as for the original data.

(4) If x 2 �X

j

, take the ratio jr

�

�f(x)j=jr

�

��

X

j

(x)j as an estimate for the

magnitude of the density jump. It is advisable to use suitable averages of

the gradients over points near the boundary of X

j

instead of the gradient

at a single point x. This redues e�ets due to measurement noise.

A detailed disussion of the implementation of this method and numerial tests

using real-world data have been reported in [9℄; see also [7, 41℄.

The method desribed above an be simpli�ed by making a priori assumptions

about the unknown boundary �X

j

. This an be used to simplify the edge detetion

in step 2 and to avoid the reonstrution from simulated data in step 3. For example,

X

j

ould be assumed to be a halfspae H . If the �ltered bakprojetion algorithm,

i.e., a disretization of the approximate inversion formula (2.7) is used, then the

reonstrution

�

�f will, apart from disretization errors, be equal to e � �f . Hene

�f and ��

X

j

in (3.3) and (3.4) an be replaed by e��f and e���

H

, respetively.

We an ompute e � ��

H

analytially in the following way: For x 62 �H one has

([8, Theorem 4.5℄)

��

H

(x) = (�

~

d(x))

�1

;

where

~

d(x) is the signed distane of x from �H , i.e.,

~

d(x) = d(x; �H) for x 2 H , and

~

d(x) = �d(x; �H) for x 62 H . Computing e ���

H

involves the Radon transform of

e. It is given by

R

�

e(s) =

Z

�

?

e(s� + y)dy; � 2 S

n�1

; s 2 IR:

We assume that e is radial, so that R

�

e does not depend on �. Therefore the

subsript � will be suppressed and Re(s) viewed as a funtion of the one variable
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s. It now follows that

e � ��

H

(x) = HRe(

~

d(x)); (3.5)

where H denotes the Hilbert transform as de�ned in (2.5). Realling that for

funtions g of one variable �g(t) =

d

dt

Hg(t) gives

jr(e � ��

H

(x))j = j�Re(

~

d(x))j: (3.6)

Replaing �f and ��

X

j

in (3.3) and (3.4) by e � �f and e � ��

H

, and using

(3.5) and (3.6) gives the approximate formulas



j

� 

i

'

e � �f(x)

HRe(

~

d(x))

; (3.7)

j

j

� 

i

j '

jr(e � �f(x))j

j�Re(

~

d(x))j

: (3.8)

These two formulas are the basis of two of the algorithms proposed in [24, 37℄ for

dimension n = 2, f. formulas (2.17) and (2.21) in [24℄. The derivation in [24, 37℄

is di�erent and employs an asymptoti expansion for �f , where f is smooth exept

for jumps aross smooth boundaries. An algorithm based on (3.8) given in [37℄

uses the fat that jr(e � �f(x))j will be maximal for x 2 �, and that

~

d(x) = 0 for

x 2 �. Hene one an �nd the points x 2 � by looking for the loal maxima of

jr

�

�f j and then estimate the jump by

j

j

� 

i

j '

jr

�

�f(x))j

j�Re(0)j

:

In our numerial experiments this algorithm tended to be somewhat less aurate

than the more elaborate method of [9℄.

4. Pseudoloal tomography

Another method to ompute jumps of a funtion from essentially loal data is

pseudoloal tomography. It was introdued in [25℄ and further developed in [37℄.

Here we follow the presentation given in [4℄ whih allows us to understand the

numerial implementation of this method in the framework of (3.7) and (3.8).

The starting point for pseudoloal tomography is the two-dimensional inversion

formula (2.6) whih we repeat here:

f(x) =

1

4�

Z

S

1

H�P

�

f(hx; �

?

i)d�

=

1

4�

2

Z

2�

0

Z

IR

d

ds

P

�

f(s)

hx; �

?

i � s

ds d':

Now trunate the Hilbert transform integral and de�ne

f

d

(x) =

1

4�

2

Z

2�

0

Z

hx;�

?

i+d

hx;�

?

i�d

d

ds

P

�

f(s)

hx; �

?

i � s

ds d': (4.1)

It was shown in [25℄ that f � f

d

is ontinuous, hene f

d

has the same jumps as f .

Realling that P

�

f(hx; �

?

i) is the integral over the line in diretion � whih passes

through x, we see that omputation of f

d

(x) requires only integrals over lines with

distane at most d from x (\pseudo-loal" reonstrution.)
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In pratie one has to use an approximate inversion formula and omputes

f

d;r

(x) = e

r

� f

d

(x) =

Z

2�

0

Z

IR

~

k

d;r

(hx; �

?

i � s)P

�

f(s) ds d'; (4.2)

~

k

d;r

(t) =

1

4�

2

Z

t+d

t�d

d

ds

P

�

e

r

(s)

t� s

ds;

where e

r

is a radial funtion satisfying

e

r

(x) = r

�2

e

1

(x=r); e

1

(x) = 0 for jxj > 1;

Z

IR

2

e

1

dx = 1:

Note that

~

k

d;r

(t) = 0 for jtj > d+ r, i.e., omputation of f

d;r

(x) requires inte-

grals over lines with distane at most d+ r from x. Furthermore, lim

d!1

~

k

d;r

(t) =

(4�)

�1

H�P

�

e

r

(t): Hene (2.7) gives that lim

d!1

f

d;r

(x) = e

r

� f(x). Indeed, the

onvolution kernel

~

k

d;r

an be obtained from the kernel k in (2.8) by letting m = 0

and trunating the Hilbert transform integral. The relation f

d;r

= e

r

�f

d

was shown

in [25℄.

It turns out that for small d (i.e., loal data), f

d

is signi�antly di�erent from

zero only in a narrow region near a boundary (f. [25, Fig. 3℄), and that the

onvolution with the point spread funtion e

r

alters these values so muh that the

jumps annot just be simply read o� the reonstruted image f

d;r

. We need an

algorithm to obtain information about the jumps of f . The methods developed by

Katsevih and Ramm [25, 37℄ an be understood in the framework developed for

Lambda tomography. Aording to (3.7) and (3.8) we have for x lose to �



j

� 

i

'

E � �f(x)

HRE(

~

d(x))

(4.3)

j

j

� 

i

j '

jrE � �f(x)j

j�RE(

~

d(x))j

(4.4)

The task now is to �nd E

d;r

suh that E

d;r

� �f = f

d;r

= e

r

� f

d

.

Proposition 4.1. ([37, 4℄) De�ne E

d;r

by

P

�

E

d;r

= (P

�

e

r

) �M

d

with

M

d

(s) = �

1

�

ln(js=dj)�

[�d;d℄

(s):

Then

f

d;r

(x) = E

d;r

� �f(x):

With this result (4.3) and (4.4) give



j

� 

i

'

f

d;r

(x)

HRE

d;r

(

~

d(x))

(4.5)

j

j

� 

i

j '

jrf

d;r

(x)j

j�RE

d;r

(

~

d(x))j

(4.6)

and we an apply the same algorithms for reovering the jumps as in Lambda

tomography.

Some remarks are in order.
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(1) Note that beause E

d;r

is radial, HRE

d;r

(0) = 0, so f

d;r

(x) ' 0 for x 2 �.

This makes it diÆult to use the relation (4.5) in pratie, sine �nding

~

d(x) is not easy, f. the algorithm given [25℄ and further disussed in [4℄.

However, sine jrf

d;r

j is maximal for x 2 � one an �nd the points x 2 �

by looking for the loal maxima of jrf

d;r

j and then estimate the jump by

j

j

� 

i

j '

jrf

d;r

(x)j

j�RE

d;r

(0)j

; x 2 �:

This approah has essentially been used in [37℄ for pseudoloal tomogra-

phy and in [24℄ for Lambda tomography.

(2) The property that f

d

has the same jumps as f is not used in the algorithm.

(3) E

d;r

(x) = 0 for jxj > d+ r. Hene our derivation of the algorithm is only

justi�ed for d+ r suÆiently small. In pratie the method seems to work

also for muh larger values of d+ r.

5. Wavelet-based multiresolution loal tomography

Wavelet-based multiresolution loal tomography is a method for region of in-

terest tomography developed in [38℄. The goal here is to reonstrut the funtion

f itself within the region of interest up to an almost onstant error. The method

illustrates the possible uses of wavelets to 'loalize' the x-ray transform, or, more

preisely, to separate the features whih are well determined by loal data from

those who are not. The following disussion assumes some bakground on wavelets

whih an be found in [51℄ or other texts on this subjet.

Consider a (two-dimensional) multiresolution analysis of nested subspaes V

j

,

j 2 ZZ of L

2

(IR

2

). We use the notation

f

j;k

(x) = 2

j

f(2

j

x� k); j 2 ZZ; k 2 ZZ

2

; x 2 IR

2

:

Let � be the saling funtion and 	

�

, � = 1; 2; 3 the assoiated wavelets. Sine the

�

j+1;k

, k 2 ZZ

2

are a Riesz basis of the subspae V

j+1

, a funtion f 2 V

j+1

an be

written as

f(x) =

X

k2ZZ

2

~

A

j+1;k

�

j+1;k

(x):

The so-alled approximation oeÆients

~

A

j;k

are given by

~

A

j;k

= hf;

e

�

j;k

i

where h; i denotes the inner produt in L

2

and

e

� is the biorthogonal saling funtion.

Alternatively we an use the relation V

j+1

= V

j

+W

j

and obtain the expansion

f(x) =

X

k2ZZ

2

~

A

j;k

�

j;k

(x) +

3

X

�=1

X

k2ZZ

2

~

D

�

j;k

	

�

j;k

(x):

We an interpret the �rst sum as an approximation to f in V

j

� V

j+1

, i.e., at a lower

resolution. The seond sum supplies the missing detail information. Therefore the

oeÆients

~

D

�

j;k

= hf;

~

	

�

j;k

i

are alled detail oeÆients. The Fast Wavelet Transform and its inverse allow

eÆient omputation of the

~

A

j;k

and

~

D

�

j;k

, k 2 ZZ

2

from the

~

A

j+1;k

, k 2 ZZ

2

, and

vie versa.
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We now observe that the approximation and detail oeÆients an be omputed

diretly from the x-ray data. Let f

_

(x) = f(�x). Then

~

A

j;k

= hf;

e

�

j;k

i =

�

f �

e

�

_

j;0

�

(2

�j

k) (5.1)

Similarly,

e

D

�

j;k

= hf;

e

 

�

j;k

i =

�

f �

�

e

	

�

j;0

�

_

�

(2

�j

k) (5.2)

Hene we an use the approximate inversion formula (2.7) with e(x) =

e

�

_

j;0

(x) and

reonstrution on the grid x = 2

�j

k, k 2 ZZ

2

, to obtain the approximation oeÆ-

ients diretly from the x-ray data. For the detail oeÆients we let e =

�

e

	

�

j;0

�

_

.

Alternatively one ould �rst ompute the approximation oeÆients

~

A

j+1;k

by let-

ting e(x) =

e

�

_

j+1;0

(x) and hoosing the �ner grid x = 2

�j�1

k, k 2 ZZ

2

, and then

use the Fast Wavelet Transform to obtain the approximation and detail oeÆients

at level j. Sine the additional omputational burden of applying the Fast Wavelet

Transform is negligible ompared to the e�ort required for the reonstrution from

the x-ray data, this alternative method seems preferable, sine only one point-

spread funtion and orresponding onvolution kernel need to be used. However, if

not all oeÆients on level j are needed, the �rst method will be more eÆient.

The next question is how this approah allows to `loalize' the x-ray transform,

i.e., to separate features whih are determined by loal data from those whih are

not. It was observed in [33℄ that the detail oeÆients for suÆiently large j should

be well determined by loal data, if the wavelets 	

�

have vanishing moments. Let

us see why.

Definition 5.1. A funtion f of n variables has vanishing moments of order

up to N, if

Z

IR

n

x

�

f(x)dx = 0

for all multiindies � = (�

1

; : : : ; �

n

) with j�j =

P

�

i

� N . Reall that the �

i

are

non-negative integers and that x

�

= x

�

1

1

x

�

2

2

: : : x

�

n

n

.

The nonloality in the approximate inversion formula omes from the onvo-

lution kernel k in (2.8) in ase of m = 0. In two dimensions this is aused by the

presene of the Hilbert transform in the formula k = (4�)

�1

�P

�

e = (4�)

�1

H�P

�

e.

The key observation now is that the Hilbert transform of a funtion with vanishing

moments deays fast.

Lemma 5.2. ([38, p. 1418℄) Let f(t) 2 L

2

(IR) vanish for jtj > A and have

vanishing moments of order up to N . Then, for jsj > A,

jHf(s)j �

1

�js�Aj

N+2

Z

A

�A

jf(t)t

N+1

jdt

It is well known how to onstrut wavelets with vanishing moments, and it

turns out that the funtions �P

�

�

e

	

�

j;0

�

_

inherit the vanishing moments from the

e

	

�

. Therefore the onvolution kernels k = (4�)

�1

H�P

�

�

e

	

�

j;0

�

_

will deay rapidly

outside the support of P

�

�

e

	

�

j;0

�

_

.
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So we see that the detail oeÆients for large j, when

e

	

�

j;0

has small support,

are well determined by loal data. This is intuitively plausible sine these o-

eÆients ontain high-frequeny information, and we know already from Lambda

tomography that high-frequeny information is well-determined. So the nonloality

shows its greatest impat in the approximation oeÆients.

If the saling funtion

e

�(x) is suÆiently smooth and has ompat support,

then the zero order moment of �

s

P

�

e

�(s) will vanish. However, sine the saling

funtion satis�es

R

e

�(x)dx = 1, the �rst order moment of �

s

P

�

e

� is always non-

zero. Hene the orresponding onvolution kernel k(s) will derease no faster than

O(s

�2

) for large jsj. One ould still hoose the saling

e

� so that its moments of

order 1 through N vanish. It is shown in [38, p. 1419℄ that in suh a ase the

resulting onvolution kernel k satis�es

jk(s)j = O(s

�2

) +O(s

�N�3

):

It seems that this does not ahieve muh, sine we annot remove the leading

O(s

�2

) term. Nevertheless, the authors of [38℄ found that some saling funtions

having vanishing moments lead to onvolution kernels with suÆiently rapid deay

for pratial purposes. In their reonstrutions the authors of [38℄ also extrapolated

the missing data by onstant values, thus reduing upping artifats. While it is

suggested in [38℄ to �rst ompute the approximation and detail oeÆients at level

j and then use an Inverse Fast Wavelet Transform to obtain the approximation

oeÆients at level j + 1, our numerial tests in [44℄ indiated that the simpler

approah of diretly omputing the approximation oeÆients at level j + 1 yields

equivalent results. We observe that this an be aomplished without using wavelets

in the algorithm, namely just by speifying the partiular point spread funtion

e =

e

�

_

j+1;0

in the standard reonstrution formula (2.7).

6. Cone-beam loal tomography with soures on a urve

A problem of great pratial interest whih still poses many open problems is

three-dimensional one-beam reonstrution with soures on a urve. See, e.g., [48℄

for an inversion formula, [12℄ for a general stability result, [36℄ for onditions to

detet singularities, and [5, 11, 14, 28, 32, 53℄ for reonstrution algorithms and

other developments.

To desribe data olletion with an x-ray soure moving on a urve, the param-

eterization of lines by � 2 S

n�1

and y 2 �

?

is less onvenient. It is more suitable

to introdue the divergent beam x-ray transform

Df(a; �) = D

a

f(�) =

Z

1

0

f(a+ t�)dt; � 2 S

n�1

; (6.1)

whih gives the integral of f over the ray with diretion � emanating from the soure

point a. If f is supported in the unit ball, and the soure points a lie on a sphere A

with enter in the origin and radius R > 1, then the approximate inversion formula

for the divergent beam x-ray transform reads [46℄

e � �

m

f(x) = R

�1

Z

A

Z

S

n�1

D

a

f(�) jha; �ij k(E

�

?(x� a)) d�da; (6.2)

with m � �1 and k as in (2.8). This formula is very useful in two dimensions, but

not so in three dimensions. It needs integrals over all lines, but in three dimensions

the lines form a four parameter family, so (6.2) requires far more data than should
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be needed to determine a funtion of three variables. In pratial 3D tomography an

x-ray soure moves on a urve, so only integrals over lines interseting the urve are

measured. The onditions on the soure urve � for stable inversion are restritive,

so that in most pratial situations one has an inomplete data problem.

Miroloal analysis has proved to be a useful tool in determining whih singu-

larities of f are stably determined by the available data. Based on the exposition in

[36℄ we now state the relevant miroloal onepts and apply them to this situation.

The reader interested in a deeper treatment may wish to �rst read [36℄ and [18℄,

and then proeed to artiles suh as [3, 15, 16, 17, 35℄.

The following onept of a wavefront set uses the fat that the Fourier transform

of a C

1

0

funtion deays rapidly. A loal version of this fat an be obtained by

�rst multiplying f with a C

1

0

ut-o� funtion � with small support, and seeing if

the Fourier transform of the produt �f deays rapidly. The wavefront set gives

even more spei�, so-alled miroloal information, inasmuh as it identi�es the

diretions in whih the Fourier transform of �f does not derease rapidly.

Definition 6.1. Let f be a distribution and let x

0

; �

0

2 IR

n

; �

0

6= 0: Then

(x

0

; �

0

) is in the wavefront set of f if and only if for eah ut-o� funtion � in C

1

0

with �(x

0

) 6= 0; the Fourier transform of �f does not derease rapidly in any oni

neighborhood of the ray ft�

0

; t > 0g:

Loosely speaking, we say that a singularity of f an be stably deteted from

available x-ray data, if there exists a orresponding singularity of omparable

strength in the data. The strength of a singularity an be quanti�ed miroloally

using Sobolev spae onepts:

Definition 6.2. A distribution f is in the Sobolev spae H

s

miroloally near

(x

0

; �

0

) if and only if there is a ut-o� funtion � 2 C

1

0

(IR

n

) with �(x

0

) 6= 0

and funtion u(�) homogeneous of degree zero and smooth on IR

n

nf0g and with

u(�

0

) 6= 0 suh that u(�)

d

(�f)(�) 2 L

2

(IR

n

; (1 + j�j

2

)

s

):

First, one loalizes near x

0

by multiplying f by �, then one miroloalizes near

�

0

by forming u



�f and sees how rapidly



�f deays at in�nity.

For 3D tomography with soures on a urve we have the following result:

Theorem 6.3. (f. [36, Theorem 4.1℄, and [3, 15℄) Let � be a smooth urve

in IR

3

and f a distribution whose support is ompat and disjoint from �. Then

any wavefront set of f at (x

0

; �

0

) is stably deteted from divergent beam x-ray data

Df with soures on � if and only if

the plane P through x

0

and orthogonal to �

0

, intersets � transversally.

If data are taken over an open set of rays with soures on �, then a ray in P

from � to x

0

must be in the data set for stable detetion to apply. In these ases

f is in H

s

miroloally near (x

0

; �

0

) if and only if the orresponding singularity of

Df is in H

s+1=2

:

We see that the orresponding singularities of Df are weaker by 1=2 Sobolev

order, but this is still strong enough to allow stable detetion in pratie.

It is now interesting to ask if the available numerial algorithms an atually

reonstrut all the stable singularities. The results for a general lass of restrited

x-ray transforms obtained in [15, 16, 17℄ show that miroloal analysis is also

a powerful tool to answer suh a question. For an introdution to these results
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see [18℄. Expliit alulations analysing an algorithm for ontour reonstrution

proposed by Louis and Maass in [28℄ and some losely related methods have reently

been given in [23, 27℄.

The algorithm of [28℄ aims to reonstrut the funtion

f

R

= ��D

�

Df; (6.3)

with

D

�

g(x) =

Z

�

k x� a k

�1

g

�

a;

x� a

k x� a k

�

da:

An advantage of the formula (6.3) is that reonstrution of f

R

is loal. In [28℄ it is

shown that f

R

approximates �f in ertain ases.

The results in [15, 23, 27℄ show that the wavefront set of f

R

onsists of two

parts. The �rst part ontains those wavefronts (x; �) of f for whih the plane

through x and normal to � intersets �. The seond part may introdue new

singularities, namely on the line from a soure point a 2 � to x, the loation of the

original singularity in f . This will happen if the plane through x and normal to �

ontains a and the tangent vetor to � at a is orthogonal to �, i.e., the plane touhes

� but does not interset � transversally. In addition, the aeleration vetor of the

urve at a should not be orthogonal to �. The Sobolev strength of these additional

singularities is the same as the reonstruted part of the original wavefront set

[16, 17, 23℄, and they appear as artifats in numerial simulations [21, 23℄.

Another, and apparently the historially �rst method for 3D loal tomography

is an adaptation of the algorithm by Feldkamp, Davis and Kress [11℄ (FDK algo-

rithm) whih was developed by P.J. Thomas at the Mayo Clini. While the details

of this loal FDK algorithm have not been published, it has been used in various

papers, e.g., [47, 8℄. A reent implementation of a loal FDK algorithm has been

reported in [20℄. The modi�ation from the original FDK algorithm onsists in

replaing the global onvolution kernel orresponding to m = 0 in (2.8) with a loal

kernel orresponding to m = 1. A di�erent adaptation using wavelet based kernels

has been given in [53℄.

Figures 2 and 3 provide a omparison of the two algorithms, using the im-

plementations in [21℄ and [20℄, respetively. The experiments use a mathematial

phantom onsisting of a superposition of four balls with the following parameters:

Center Radius Density

(0, 0, 0) 0.5 1

(0, 0, 0.125) 0.1 -1

(-0.3, 0, -0.125) 0.02 -1

(0.3, 0, 0.2) 0.01 -1

The soure is assumed to move on a irle in the x-y plane with radius R = 3

and enter in the origin. We used 400 equidistant soure positions and a 240� 240

detetor array. The loal FDK algorithm [20℄ used a planar detetor array, while

our ode for the Louis-Maass algorithm assumed a spherial array; see [21℄. The

images onsist of 131� 131 pixels.

Figure 2 shows reonstrutions in the vertial plane y = 0, with the Louis-Masss

method in the upper left, and the loal FDK algorithm in the upper right. The

additional singularities predited for the Louis-Mass algorithm by the referenes

given above are learly visible in the upper left image as lines tangential to eah ball

and interseting the soure urve. The reonstrution with the loal FDK algorithm
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Figure 2.

does not show these lines, but does appear to have greater distortions with regard

to the small objets. This is on�rmed in Figure 3 whih shows reonstrutions of

the horizontal plane z = 0:2.
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