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Introduction to Local Tomography
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and Jeanette McGrath

ABSTRACT. Computed x-ray tomography entails the reconstruction of a den-
sity function f from line integrals of f. Ordinary tomography is global since
reconstruction at a point z requires integrals over lines far from z. Local to-
mography uses only integrals over lines close to . This introduction reviews
a number of local tomographic methods developed over the past decade, such
as Lambda tomography, pseudolocal tomography, wavelet based methods, and
three-dimensional local cone-beam tomography.

1. Introduction

Computed tomography (CT) entails the reconstruction of a generalized density
function f from line integrals of f. This reconstruction is not local in the sense
that reconstruction of f at a point x requires integrals over lines far from z. In a
number of applications only part of an object needs to be imaged. Thus it would be
desirable to only use integrals over lines intersecting this region-of-interest (ROT).
This entails the loss of uniqueness, but it turns out that the null functions are
nearly constant inside the ROI and that the singularities of f inside the ROI can
be stably recovered from such data; see, e.g., [31, §VL.4], [36].

Over the past decade a number of methods to ‘localize’ the reconstruction
have been proposed. These range from methods for region-of-interest tomography’
which use integrals over all lines passing through a region slightly larger than the
ROI, to strictly local methods where reconstruction at a point z only requires in-
tegrals over lines very close to . In this introduction we will review methods of
both types. The wavelet-based multiresolution local tomography of [38], discussed
in section §5, uses all lines passing through a region slightly larger than the ROI,
while Lambda tomography, reviewed in §3, is strictly local. Pseudolocal tomog-
raphy, described in §4, can be used in both modes. Some other techniques use a
limited amount of data outside the ROI [33], or extrapolate the missing data [31,
§VIL.4]. Extensions of local tomographic methods to more general settings have
been presented in [22, 26, 29].
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This article is organized as follows: In the next section we review some back-
ground material on the x-ray transform and its inversion.

Section 3 is devoted to Lambda tomography. Here not the function f itself but
the related function Lf = Af + uA~1f is reconstructed, where A = v/—A, and
A denotes the Laplacian. This reconstruction is strictly local, and our discussion
centers on what features of f can be found from reconstructions of Lf. Particular
attention will be given to the computation of density jumps.

In section 4 we discuss the pseudolocal tomography of [25, 37] and relate this
method for computing density jumps to the methods based on Lambda tomography.

Section 5 briefly reviews wavelet based multiresolution tomography [38], one
of the wavelet based methods for region-of-interest tomography. The goal of this
method is to reconstruct the function f itself up to an almost constant error. For
further applications of wavelets in local tomography see, e.g., [1, 2, 6, 33, 34, 52,
53].

In section 6 we turn to the three dimensional case and examine local cone-
beam tomography with sources on a curve. Here additional problems arise since it
is usually impractical to collect sufficiently many data to ensure stable recovery of
all singularities of f inside the region of interest. We discuss which singularities are
stably determined and compare the two leading reconstruction algorithms.

2. The x-ray transform

We begin by introducing some notation and background material. IR consists
of n-tuples of real numbers, usually designated by single letters, = (x1,..., %),
y = (y1,---,Yn), etc. The inner product and absolute value are defined by (z,y) =
YUy and |z] = \/(z,z). The unit sphere S"! consists of the points with
absolute value 1. C§°(IR™) denotes the set of infinitely differentiable functions
on IR"™ with compact support. A continuous linear functional on C§° is called
a distribution. If X is a set, X° denotes its interior, X its closure, and X°¢ its
complement. xx and x, denote the characteristic functions (indicator functions)
of X, and of the unit ball in IR", respectively. Le., xx(z) = 1if z € X, and
xx(z) =0if z € X. | X| denotes the n-dimensional Lebesgue measure of X C IR".
However, when it is clear that X should be treated as a set of dimension m < n,
| X| is the m-dimensional area measure. Thus

|55 = 202 /T (k/2)

is the (k — 1)-dimensional area of the (k — 1)-dimensional sphere.
The convolution of two functions is given by

Frote) = [ fw—vat)dy

The Fourier transform is defined by

f©=@m™2 | f@)e " du
mn
for integrable functions f, and is extended to larger classes of functions or distri-
butions by continuity or duality.
The integral transform most relevant for local tomography is the x-ray trans-
form.
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DEFINITION 2.1. Let § € S™ ! and ©1 the hyperplane through the origin
orthogonal to #. We parametrize a line [(f,y) in IR"™ by specifying its direction
# € S"~! and the point y where the line intersects the hyperplane ©+.

The x-ray transform of a function f € L;(IR") is given by

Pf8,y)=Psf(y /fy+t0 , y€cot (2.1)

We see that Pf(6,x) is the integral of f over the line [(6,y) parallel to 6 which
passes through y € ©+.
The inversion formula for the x-ray transform reads as follows:

f(@) = (2r|s" ) " /SH AP f(Ee. x)df, (2.2)

where Eg.iz denotes the orthogonal projection of z onto the subspace ©+, and
Calderén’s operator A is defined in terms of Fourier transforms by

Ag(€) = [€lg(€), g € CF(RY).
It is extended by duality to the class of functions g for which (1 + |z|)~' *g is
integrable [8]. In (2.2) the operator A acts on the function g(y) = Py f(y) defined
on the subspace ©+ of dimension k = n — 1. Note that

A? = —A, A = Laplacian. (2.3)
For a derivation of (2.2) and its numerical implementation, as well as for other
inversion formulas see [31, §I1.2 and Ch. V].

In two dimensions we parametrize # € S* by its polar angle ¢ and define a
vector -+ orthogonal to 6 such that

6 = (cosp, sing), B+ = (—singp, cosyp). (2.4)
Then the points in the subspace ©1 are given by ©1 = {s61, s € R}. When
working in two dimensions, we will often use the simplified notation Pf(8,s) or
Pyf(s) instead of Pf(f,s0+). Occasionally we will also replace § by the polar
angle ¢ according to (2.4) and write Pf(y,s) .

For g a function of one variable we have Ag = HOg, where Jg denotes the
derivative of ¢ and H denotes the Hilbert transform

Ha(s) = l/]RS(_)t dt, (2.5)

where the integral is understood as a principal value.
In dimension n = 2, i.e., when f is a function of 2 variables, Py f is a function

of one variable and the inversion formula (2.2) becomes
2
0s Pof
d dy 2.
sl / (, 01- (2:6)

From equation (2.6) we see that computatlon of f(xz) requires integrals over
lines far from z, because the Hilbert transform kernel has unbounded support.
Note that Ppf({x,0%)) is the integral over the line with direction § which passes
through z. Hence the inversion formula is not “local”. A local inversion formula
would utilize only integrals over lines passing close to z, i.e., values Py f(s) with s
close to (z,6+). For dimension n > 2 the inversion formula (2.2) is also not local.

The operator A is not continuous in an Lo setting. Hence, in order to use the
inversion formula in practice we have to stabilize it. This involves a well-known
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trade-off between stability and accuracy of the reconstruction. Here we give up
the goal of recovering the function f itself, and aim instead at reconstructing an
approximation e * f, where e is an approximate delta function whose Fourier trans-
form é(€) decays sufficiently fast for large |£]. The price to pay for the stabilization
is limited resolution, so e must be chosen carefully, depending on the amount and
accuracy of the available measurements.

In order to allow for local reconstruction formulas we reconstruct A™ f instead
of f, with m > —1 an integer. This yields the approximate inversion formula

ex A" f(z) = /Sn_l(k*ng)(E@m:)d& m > —1, (2.7)

with the convolution kernel
k(y) = 2n|S" )T A™ T Pe(y), y € O (2.8)

If e is a radial function, then Pye and the convolution kernel &k are independent of 6.
Of greatest interest are the case m = 0, which gives the formulas for reconstructing
the function f itself, and the cases m = +1 which give local reconstruction formu-
las. The approximate inversion formula (2.7) is the basis for the popular filtered
backprojection reconstruction algorithm (in dimension n = 2); see [10] for an error
analysis, and [31] for a general discussion and references.

Since the parameters § and y € O+ of a line passing through a point x must
satisfy the equation Egiz = y, reconstruction according to (2.7) will be local if
the kernel k is supported in a small neighborhood of the origin. However, for m
even and f]R" e(z)dz # 0, k is not analytic, so k cannot have compact support.
This again reflects the fact that ordinary tomography is global, not local. On the
other hand, it follows from (2.8) and (2.3) that k& does have compact support if
m > —1 is odd and e has compact support. This explains the interest in the cases
m = £1. Computing A1 f(z) consists of taking the average of all integrals over
lines passing through . This was done in early imaging techniques preceding CT.
However, since A~!, the inverse of A, is given by convolution with the Riesz kernel
R17

AT f=Rixf, Ri(e) = (n|S" %) a7, (2.9)
the result is a very blurry image of f which by itself is of limited usefulness; see the
bottom left image in Fig. 1. Current Lambda tomography avoids this disadvantage
by computing a linear combination of Af and A~ f.

3. Lambda tomography

Lambda tomography was introduced independently in [49] and [46], further
developed in work including [8, 9, 10, 24, 37, 50], and generalized in [22, 26].
It does not attempt to reconstruct the function f itself but instead produces the
related function Lf = Af+pA~! f. This has the advantage that the reconstruction
is strictly local in the sense that computation of L f(z) requires only integrals over
lines passing arbitrarily close to . Lambda tomography has found applications
in medical imaging [47], nondestructive testing [42, 50], and microtomography
[9, 10, 41, 43]. (The term microtomography refers to the use of x-ray tomography
to produce very high resolution images of small objects [13, 19]. While the spatial
resolution in medical tomography is about 1 mm, the spatial resolution of micro-
tomographic images is a few micrometers.) Local reconstructions from efficiently
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sampled data are analyzed in [10]. The choice of suitable convolution kernels for
the filtered backprojection algorithm has been investigated in [39, 40].

Intelligent use of Lambda tomography requires knowledge of what kind of useful
information about f is retained in Lf. Let us consider an example. The upper
left of Fig. 1 shows an ordinary, global reconstruction of the density function f
of a calibration object used by the Siemens company. The data come from an
old generation Siemens hospital scanner. Units are such that the radius of the
global reconstruction circle is one. The figure displays the reconstruction inside the
rectangle [—.5,.5]%2. The scanning geometry is a fan-beam geometry with source
radius R = 2.868, p = 720 source positions, and 2¢g = 512 rays per source; cf. [31,
p. 75]. The upper right of Fig. 1 shows a reconstruction of Af. Reconstructions
of A™'f and Lf = Af + 46A~'f are shown in the lower left and lower right,
respectively. The similarity between the images of f and Af is at first glance
surprising. We expect that a good local reconstruction method should detect the
singularities of f, since these are stably determined by the data. Indeed, since A is
an invertible elliptic pseudo-differential operator, f and A f have precisely the same
singular set. However, we see that Af is cupped where f is constant, and that the
singularities are amplified in Af. The image of A~'f by itself seems less useful,
but it provides a countercup for the cup in Af. Thus, the image of Lf shows less
cupping and looks even more similar to f than the image of Af. For example, the
image of Lf indicates that the density just inside the boundary of the object is
larger than the density outside the object, while this can not be clearly seen from
the image of Af. To achieve this effect, a good selection of i is necessary. Here
= 46 was chosen by trial and error. The following prescription for selecting at
least a good starting value for p can be found in [9, §4]. The idea is to choose u
such that the reconstruction of the characteristic function of a disk with radius rq
is as flat as possible in the interior of the disk. The radius r¢ should be chosen to lie
between the radius r; of the region of interest under consideration, and the radius
ry Of a ball circumscribing the whole object, i.e., r; < rg < ry. Then p scales as
n= cro_2, and experiments showed that ¢ = 6 is a good choice. For the calibration
object in Figure 1 we have ry ~ 0.36, which gives p = 45, in good agreement with
the experimental value p = 46.

A more detailed understanding of images of Af or Lf is obtained from studying
quantitative relations between Af, A=l f and f [8, 9]. Some of the results for Af
are stated in Theorem 3.1 and discussed in Remark 3.2 below. For corresponding
results on A1 see [8].

THEOREM 3.1. ([8]) Let X and Y be measurable subsets of R™, n > 2, and let
(1+]z|)~r="f be integrable. Let X° and X° denote the interior and the complement
of X, respectively, and X°° the interior of X°€.

(a) If fo(w) = f(/r), then Afy(w) = r Af(a/r).

(b) Axx(z) >0 on X°, and <0 on X°°; Axx. = —Axx.

(¢) Axx is subharmonic (Laplacian > 0) on X°, and superharmonic on X°°.
This implies that Axx cannot have a local maximum in X°, nor a local minimum
in X°°.

(d) If © is outside the support of f, then

1—n

- _ —1—n d .
1577 |z -yl f(y)dy

Af(x) =
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Ficure 1. Top left: Global reconstruction of density f(z) of
calibration object. Top right: Reconstruction of Af . Bottom
left: Reconstruction of A=*f. Bottom right: Reconstruction of
Lf =Af+pA=tf, p=46.

(e) Near 0X, |Axx(y)| ~ m, where d(z,0X) denotes the distance of x to
0X.

REMARK 3.2. The results for Axx are of practical interest, since in many
applications the function f can be modeled as a linear combination of characteristic
functions.

e As a consequence of (a), small features are amplified in images of A f. This
is beneficial for the detection of small, low contrast details. For example,
in Fig. 1 the small holes in the rectangular pieces are more clearly visible
in the image of Af than in the image of f.

e Part (b) indicates that the jumps of Af at discontinuities of f have the
same direction as those of f.

e Part (c) explains why there are no oscillations which could be mistaken
for actual details in images of Af.
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e Part (d) shows that if f has compact support, then Af cannot. This
means that there are global effects in images of Af in the sense that the
value of Af(zp) depends on the values of f everywhere. However, Part d)
implies that Af(z) will decay at least as O(|z|~1™™) for |z] = co. More
refined estimates are derived in [9] and used to develop a procedure to
reduce the global effects.

e Part (e) shows that a finite jump in f causes an infinite jump in Af. In a
neighborhood of 0.X, A f is not a function but a principal value distribution

[8].

While Lf retains the signs of jumps in density, it does not give direct infor-
mation about the size of these jumps. However, such information about density
differences may be extracted in certain cases. In this and the following sections
we will describe several methods. We assume that f is a linear combination of a
smooth function and of characteristic functions of sets:

F=fo+> cxx, fo€Cq, [0Xi|=0, X;=X7, XPNX;=0ifi#].
(3.1)
We are interested in estimating c¢; — ¢; when X;, X; have a common nontrivial
boundary T,
F=0X;NoX;NW #0, W=(X;UX;)". (3.2)
We first discuss the method developed in [9]. It is based on Theorem 3.3 below.
The theorem expresses the fact that for = sufficiently close to T,

_ Ai@)
Cj—¢ = m + O(d), and
. VA ()| :
el = Fa G T O

where d is the distance from z to T'.

We say that a set Y has curvature < 1/r along a subset Yy of 9Y if for each
point § € Yj there are open balls B C Y and B’ C Y° of radius r with j € BN B'.
The distance of a point x to a set Y is denoted by d(z,Y).

THEOREM 3.3. ([9]) Let f be as in (3.1). Fixi,j, let W = (X; U X;)° and
assume that
F=8X108X10W75@

Let X; have curvature < 1/r, r > 0, along a closed subset I'y of I'. Let x € W\I'
be such that d(xz,0X;) = d(z,I'o) =d. Then

‘L@f) (e — )
AXXj (I) ! '
< Fi(d/r) ( max|Afo| + 01%> d (3.3)

VM@
IVAXx; ()] o

< F2(d/7‘) <max|VAf0| + C2%> d2 (34)
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The constants C1 and Cy and the functions Fy, F» can be given explicitly. E.g., for
n =2, Cy =2, and Cy = 3. Furthermore,

t—0+ t—0+

The error terms on the right-hand sides of (3.3) and (3.4) indicate that in
general the estimate (3.4) should be more accurate than (3.3) when d is small. The
terms involving d(z, 0W) come from the influence of other boundaries than I" and
reflect the global effects mentioned above.

Numerical implementation of (3.3) or (3.4) requires computation of reconstruc-
tions of Af and Axx, inside a region of interest R. In the following let Af and
Ay x; denote these reconstructions, rather than the functions Af and Axx, them-
selves. It is also assumed that f has the form (3.1) with sets X; such that X; C R
or X; N R = (). This entails no loss of generality since any set X; violating this
condition can be replaced by the two sets X; N R and X; N R°. AXX], is computed
using simulated x-ray data, after X has been found from Af. In principle, either
(3.3) or (3.4) can be used, but as mentioned above the method based on (3.4) is
likely to be more accurate. This gives only |c; — ¢;|, but since the sign of ¢; —¢; is
preserved in A f, this is all that is needed.

The method consists of the following steps:

(1) Compute Af from local data inside a region of interest R.

(2) Determine X; by finding 0X; from Af.

(3) Compute AXX], inside the region of interest from simulated x-ray data,
using the same sampling geometry as for the original data.

(4) If z € 0Xj, take the ratio [VAf(z)|/|VAxx,(z)| as an estimate for the
magnitude of the density jump. It is advisable to use suitable averages of
the gradients over points near the boundary of X; instead of the gradient
at a single point x. This reduces effects due to measurement noise.

A detailed discussion of the implementation of this method and numerical tests
using real-world data have been reported in [9]; see also [7, 41].

The method described above can be simplified by making a priori assumptions
about the unknown boundary 0.X;. This can be used to simplify the edge detection
in step 2 and to avoid the reconstruction from simulated data in step 3. For example,
X could be assumed to be a halfspace H. If the filtered backprojection algorithm,
i.e., a discretization of the approximate inversion formula (2.7) is used, then the
reconstruction Af will, apart from discretization errors, be equal to e * Af. Hence
Af and Axx; in (3.3) and (3.4) can be replaced by ex Af and e* Axp, respectively.
We can compute e * Axy analytically in the following way: For z ¢ O0H one has
([8, Theorem 4.5])

Axm(z) = (rd(2) 7,
where d(z) is the signed distance of x from dH, i.e., d(z) = d(z, 0H) for z € H, and

d(z) = —d(z,0H) for x ¢ H. Computing e * Axy involves the Radon transform of
e. It is given by

Rye(s) = / e(sf +y)dy, 6 € S"*, seR.
oL

We assume that e is radial, so that Rye does not depend on 6. Therefore the
subscript 6 will be suppressed and Re(s) viewed as a function of the one variable
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s. It now follows that
e Axp(z) = HRe(d(x)), (3.5)
where #H denotes the Hilbert transform as defined in (2.5). Recalling that for
functions g of one variable Ag(t) = L7g(t) gives
V(e x Axr(2))] = |ARe(d(x))!. (3.6)

Replacing Af and Axx; in (3.3) and (3.4) by e x Af and e * Axy, and using
(3.5) and (3.6) gives the approximate formulas

G — s exAf(x) (3.7)
HRe(d(r))’

P CLEY (COIY (3.8)
|ARe(d())]

These two formulas are the basis of two of the algorithms proposed in [24, 37] for
dimension n = 2, cf. formulas (2.17) and (2.21) in [24]. The derivation in [24, 37]
is different and employs an asymptotic expansion for A f, where f is smooth except
for jumps across smooth boundaries. An algorithm based on (3.8) given in [37]
uses the fact that |V(e * Af(z))| will be maximal for z € T', and that d(z) = 0 for
x € I'. Hence one can find the points « € I' by looking for the local maxima of
|VAf| and then estimate the jump by

o o = V@)
I R ReO)]

In our numerical experiments this algorithm tended to be somewhat less accurate
than the more elaborate method of [9].

4. Pseudolocal tomography

Another method to compute jumps of a function from essentially local data is
pseudolocal tomography. It was introduced in [25] and further developed in [37].
Here we follow the presentation given in [4] which allows us to understand the
numerical implementation of this method in the framework of (3.7) and (3.8).

The starting point for pseudolocal tomography is the two-dimensional inversion
formula (2.6) which we repeat here:

@) = / HOP, f((x,6%))d8

2T d 0f
471'2 / xs 6-+) ds dp.

Now truncate the Hilbert transform integral and define

2w Y+d Pé'f( )
ds dep. 4.1
fal@) 471'2/ /9L>d ;v0i-> (w, 05y —s 7% (4.1)

It was shown in [25] that f — fg is continuous, hence f; has the same jumps as f.
Recalling that P f({x,0")) is the integral over the line in direction # which passes
through z, we see that computation of fy(x) requires only integrals over lines with
distance at most d from z (“pseudo-local” reconstruction.)
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In practice one has to use an approximate inversion formula and computes

farl@) = ens fale) = /0 i /}R Far ((2,05) — )Py f(s) ds dp,  (42)

d d
1 /t+ s Poer(s) s
t

ka,(t —
r(?) ar2 Ji_q t—s

where e, is a radial function satisfying
er(z) =r~2ei(x/r), ei(z) =0 for |z| > 1, / erdr = 1.
R2

Note that kq.(t) = 0 for |t| > d + r, i.e., computation of fq () requires inte-
grals over lines with distance at most d 4+ r from x. Furthermore, limg_, l;d7r(t) =
(4m) "' HOPye,(t). Hence (2.7) gives that limg_yoo fa,r(x) = €, x f(x). Indeed, the
convolution kernel kq . can be obtained from the kernel k in (2.8) by letting m = 0
and truncating the Hilbert transform integral. The relation fq, = e, * fg was shown
in [25].

It turns out that for small d (i.e., local data), fq is significantly different from
zero only in a narrow region near a boundary (cf. [25, Fig. 3]), and that the
convolution with the point spread function e, alters these values so much that the
jumps cannot just be simply read off the reconstructed image fq,. We need an
algorithm to obtain information about the jumps of f. The methods developed by
Katsevich and Ramm [25, 37] can be understood in the framework developed for
Lambda tomography. According to (3.7) and (3.8) we have for z close to I'

ExA
Cj—¢ X *7{(1-) (43)
HRE(d(x))
VE xAf(x
|Cj — Ci| ﬂ (44)
|ARE(d(x))|
The task now is to find E4, such that Eg, x Af = fi, = e, * fg.
PROPOSITION 4.1. ([37, 4]) Define Eq4, by
PgEdﬂa = (Pger) * Md
with
1
Mg(s) = - In(|s/d[) X[—a,q(s)-
Then
far(x) = Eqrx Af(x).
With this result (4.3) and (4.4) give
Cj — ¢ =X L@ (45)
HRE - (d(z))
Vfar(x
lej — ¢ _Nfar @l (4.6)
|AREq,,(d(z))|
and we can apply the same algorithms for recovering the jumps as in Lambda

tomography.
Some remarks are in order.
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(1) Note that because Ey , is radial, HREq (0) =0, so fq,r(zr) ~0for x € T
This makes it difficult to use the relation (4.5) in practice, since finding
d(z) is not easy, cf. the algorithm given [25] and further discussed in [4].
However, since |V fq,r| is maximal for « € T" one can find the points € T’
by looking for the local maxima of |V fg »| and then estimate the jump by

|V far(2)|
IAREq,(0)]

This approach has essentially been used in [37] for pseudolocal tomogra-
phy and in [24] for Lambda tomography.
(2) The property that f; has the same jumps as f is not used in the algorithm.
(3) Eg,,(xz) =0 for |z| > d+ r. Hence our derivation of the algorithm is only
justified for d + r sufficiently small. In practice the method seems to work
also for much larger values of d + r.

lej — ci| ~ zel.

5. Wavelet-based multiresolution local tomography

Wavelet-based multiresolution local tomography is a method for region of in-
terest tomography developed in [38]. The goal here is to reconstruct the function
f itself within the region of interest up to an almost constant error. The method
illustrates the possible uses of wavelets to ’localize’ the x-ray transform, or, more
precisely, to separate the features which are well determined by local data from
those who are not. The following discussion assumes some background on wavelets
which can be found in [51] or other texts on this subject.

Consider a (two-dimensional) multiresolution analysis of nested subspaces V;,
j € Z of Ly(IR?). We use the notation

fin(@) =27f27z — k), j€Z, keZ® zeR”.

Let @ be the scaling function and ¥*, u = 1,2, 3 the associated wavelets. Since the
Qi1 k€ Z* are a Riesz basis of the subspace Vjt1, a function f € Vj4, can be
written as

F@) =Y Aj1a®iii(e).

kez?

The so-called approximation coefficients fIM are given by
Aje = (f, ®58)

where (, ) denotes the inner product in Ly and  is the biorthogonal scaling function.
Alternatively we can use the relation Vi1 = V; + W; and obtain the expansion

3
f@) =Y Ajr@ik(@) + D Y- D ¥y (o).
kez? =1 gez?
We can interpret the first sum as an approximation to f in V; C Vj41, i.e., at a lower
resolution. The second sum supplies the missing detail information. Therefore the
coefficients
D;'L,k = (f > ‘I’ik>

are called detail coefficients. The Fast Wavelet Transform and its inverse allow
efficient computation of the A;; and D;ﬁk, k € Z* from the Ajfik, k € Z?, and
vice versa.
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We now observe that the approximation and detail coefficients can be computed
directly from the x-ray data. Let fV(z) = f(—z). Then

A = (£, 8500 = (£ 2 8),) @77R) (5.1)
Similarly,
L e T\ (9-i
Dr = (f, k) = (f* (%40) )(2 k) (5.2)
Hence we can use the approximate inversion formula (2.7) with e(z) = ~—V0(m) and

reconstruction on the grid « = 277k, k € Z*, to obtain the approximation coeff/i—
cients directly from the x-ray data. For the detail coefficients we let e = (\fff 0) .
Alternatively one could first compute the approximation coefficients Aj+17k by let-
ting e(z) = a;-/ﬂp(m) and choosing the finer grid z = 2771k, k € Z*, and then
use the Fast Wavelet Transform to obtain the approximation and detail coefficients
at level j. Since the additional computational burden of applying the Fast Wavelet
Transform is negligible compared to the effort required for the reconstruction from
the x-ray data, this alternative method seems preferable, since only one point-
spread function and corresponding convolution kernel need to be used. However, if
not all coefficients on level j are needed, the first method will be more efficient.

The next question is how this approach allows to ‘localize’ the x-ray transform,
i.e., to separate features which are determined by local data from those which are
not. It was observed in [33] that the detail coeflicients for sufficiently large j should
be well determined by local data, if the wavelets ¥# have vanishing moments. Let
us see why.

DEeFINITION 5.1. A function f of n variables has vanishing moments of order
up to N, if

/n x® f(x)de =0

for all multiindices o = (a1, ..., a,) with || = Y a; < N. Recall that the «; are

non-negative integers and that z* = z{*z5? ... z%".

The nonlocality in the approximate inversion formula comes from the convo-
lution kernel k in (2.8) in case of m = 0. In two dimensions this is caused by the
presence of the Hilbert transform in the formula k = (47)"tAPye = (47) "L HOPye.
The key observation now is that the Hilbert transform of a function with vanishing
moments decays fast.

LEMMA 5.2. ([38, p. 1418]) Let f(t) € L2(IR) vanish for |t| > A and have
vanishing moments of order up to N. Then, for |s| > A,

1 4 N+1
A [ o

It is well known how to construct wavelets with vanishing moments, and it

[Hf(s)] <

—\V
turns out that the functions 0P (\I!é-‘,o) inherit the vanishing moments from the
~ —\ V

U#, Therefore the convolution kernels k = (47) 1 HOP, (\II;-‘,O) will decay rapidly

~ \V
outside the support of Py (‘I’;'L,o) .
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So we see that the detail coefficients for large j, when \HI"?’O has small support,
are well determined by local data. This is intuitively plausible since these co-
efficients contain high-frequency information, and we know already from Lambda
tomography that high-frequency information is well-determined. So the nonlocality
shows its greatest impact in the approximation coefficients.

If the scaling function @(m) is sufficiently smooth and has compact support,
then the zero order moment of angi(s) will vanish. However, since the scaling
function satisfies [ i(w)daz = 1, the first order moment of 9,P;® is always non-
zero. Hence the corresponding convolution kernel k(s) will decrease no faster than
O(s™2) for large |s|. One could still choose the scaling ® so that its moments of
order 1 through N vanish. It is shown in [38, p. 1419] that in such a case the
resulting convolution kernel k satisfies

|k(s)] = O(s7%) + O(s™7?).

It seems that this does not achieve much, since we cannot remove the leading
O(s72) term. Nevertheless, the authors of [38] found that some scaling functions
having vanishing moments lead to convolution kernels with sufficiently rapid decay
for practical purposes. In their reconstructions the authors of [38] also extrapolated
the missing data by constant values, thus reducing cupping artifacts. While it is
suggested in [38] to first compute the approximation and detail coefficients at level
j and then use an Inverse Fast Wavelet Transform to obtain the approximation
coefficients at level j + 1, our numerical tests in [44] indicated that the simpler
approach of directly computing the approximation coefficients at level j 4+ 1 yields
equivalent results. We observe that this can be accomplished without using wavelets
in the algorithm, namely just by specifying the particular point spread function

e= <T>JV_H70 in the standard reconstruction formula (2.7).

6. Cone-beam local tomography with sources on a curve

A problem of great practical interest which still poses many open problems is
three-dimensional cone-beam reconstruction with sources on a curve. See, e.g., [48]
for an inversion formula, [12] for a general stability result, [36] for conditions to
detect singularities, and [5, 11, 14, 28, 32, 53] for reconstruction algorithms and
other developments.

To describe data collection with an x-ray source moving on a curve, the param-
eterization of lines by § € S"~! and y € O+ is less convenient. It is more suitable
to introduce the divergent beam x-ray transform

Df(a,8) = D,f(6) = /OOO fla+t0)dt, 6¢e S, (6.1)

which gives the integral of f over the ray with direction § emanating from the source
point a. If f is supported in the unit ball, and the source points a lie on a sphere A
with center in the origin and radius R > 1, then the approximate inversion formula
for the divergent beam x-ray transform reads [46]

ex A" f(zx) =R~ / - D,f(8) [{a,0)| k(Eg+(x — a)) dfda, (6.2)

with m > —1 and k as in (2.8). This formula is very useful in two dimensions, but
not so in three dimensions. It needs integrals over all lines, but in three dimensions
the lines form a four parameter family, so (6.2) requires far more data than should
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be needed to determine a function of three variables. In practical 3D tomography an
X-Tay source moves on a curve, so only integrals over lines intersecting the curve are
measured. The conditions on the source curve I' for stable inversion are restrictive,
so that in most practical situations one has an incomplete data problem.

Microlocal analysis has proved to be a useful tool in determining which singu-
larities of f are stably determined by the available data. Based on the exposition in
[36] we now state the relevant microlocal concepts and apply them to this situation.
The reader interested in a deeper treatment may wish to first read [36] and [18],
and then proceed to articles such as [3, 15, 16, 17, 35].

The following concept of a wavefront set uses the fact that the Fourier transform
of a C§° function decays rapidly. A local version of this fact can be obtained by
first multiplying f with a C§° cut-off function ® with small support, and seeing if
the Fourier transform of the product ®f decays rapidly. The wavefront set gives
even more specific, so-called microlocal information, inasmuch as it identifies the
directions in which the Fourier transform of ® f does not decrease rapidly.

DEFINITION 6.1. Let f be a distribution and let z,& € IR"™, & # 0. Then

(x0,&o) is in the wavefront set of f if and only if for each cut-off function ® in C§°
with ®(xg) # 0, the Fourier transform of ® f does not decrease rapidly in any conic
neighborhood of the ray {t&,t > 0}.

Loosely speaking, we say that a singularity of f can be stably detected from
available x-ray data, if there exists a corresponding singularity of comparable
strength in the data. The strength of a singularity can be quantified microlocally
using Sobolev space concepts:

DEFINITION 6.2. A distribution f is in the Sobolev space H® microlocally near
(x0,&) if and only if there is a cut-off function ® € C§°(IR"™) with ®(zp) # 0
and function u(¢) homogeneous of degree zero and smooth on IR™\{0} and with

u(&o) # 0 such that u(§)(f)(€) € L2(R", (1 + [¢[*)*).

First, one locahzes near xg by multlplymg f by @, then one microlocalizes near
&o by forming u® f and sees how rapidly ® f decays at infinity.
For 3D tomography with sources on a curve we have the following result:

THEOREM 6.3. (cf. [36, Theorem 4.1], and [3, 15]) Let T" be a smooth curve
in R® and f a distribution whose support is compact and disjoint from T'. Then
any wavefront set of f at (xg,&) is stably detected from divergent beam z-ray data
D f with sources on I if and only if

the plane P through xy and orthogonal to &, intersects I' transversally.

If data are taken over an open set of rays with sources on I', then a ray in P
from T’ to g must be in the data set for stable detection to apply. In these cases
f is in H® microlocally near (xo,&) if and only if the corresponding singularity of
Df is in H*11/2,

We see that the corresponding singularities of D f are weaker by 1/2 Sobolev
order, but this is still strong enough to allow stable detection in practice.

It is now interesting to ask if the available numerical algorithms can actually
reconstruct all the stable singularities. The results for a general class of restricted
x-ray transforms obtained in [15, 16, 17] show that microlocal analysis is also
a powerful tool to answer such a question. For an introduction to these results
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see [18]. Explicit calculations analysing an algorithm for contour reconstruction
proposed by Louis and Maass in [28] and some closely related methods have recently
been given in [23, 27].

The algorithm of [28] aims to reconstruct the function

fr = —AD*Df, (6.3)

0= [Ie-al™ s gizey) @

An advantage of the formula (6.3) is that reconstruction of fg is local. In [28] it is
shown that fr approximates Af in certain cases.

The results in [15, 23, 27] show that the wavefront set of fr consists of two
parts. The first part contains those wavefronts (z,&) of f for which the plane
through z and normal to ¢ intersects I'. The second part may introduce new
singularities, namely on the line from a source point a € I' to z, the location of the
original singularity in f. This will happen if the plane through  and normal to &
contains a and the tangent vector to I' at a is orthogonal to &, i.e., the plane touches
I" but does not intersect I' transversally. In addition, the acceleration vector of the
curve at a should not be orthogonal to . The Sobolev strength of these additional
singularities is the same as the reconstructed part of the original wavefront set
[16, 17, 23], and they appear as artifacts in numerical simulations [21, 23].

Another, and apparently the historically first method for 3D local tomography
is an adaptation of the algorithm by Feldkamp, Davis and Kress [11] (FDK algo-
rithm) which was developed by P.J. Thomas at the Mayo Clinic. While the details
of this local FDK algorithm have not been published, it has been used in various
papers, e.g., [47, 8]. A recent implementation of a local FDK algorithm has been
reported in [20]. The modification from the original FDK algorithm consists in
replacing the global convolution kernel corresponding to m = 0 in (2.8) with a local
kernel corresponding to m = 1. A different adaptation using wavelet based kernels
has been given in [53].

Figures 2 and 3 provide a comparison of the two algorithms, using the im-
plementations in [21] and [20], respectively. The experiments use a mathematical
phantom consisting of a superposition of four balls with the following parameters:

with

Center Radius Density
(0,0, 0) 0.5 1
(0, 0, 0.125) 0.1 -1
(-0.3, 0, -0.125) 0.02 -1
(0.3,0,0.2) 0.01 -1

The source is assumed to move on a circle in the x-y plane with radius R = 3
and center in the origin. We used 400 equidistant source positions and a 240 x 240
detector array. The local FDK algorithm [20] used a planar detector array, while
our code for the Louis-Maass algorithm assumed a spherical array; see [21]. The
images consist of 131 x 131 pixels.

Figure 2 shows reconstructions in the vertical plane y = 0, with the Louis-Masss
method in the upper left, and the local FDK algorithm in the upper right. The
additional singularities predicted for the Louis-Mass algorithm by the references
given above are clearly visible in the upper left image as lines tangential to each ball
and intersecting the source curve. The reconstruction with the local FDK algorithm
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Louis—Maass: Plane y=0 Local FDK: Plane y=0
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FIGURE 2.

does not show these lines, but does appear to have greater distortions with regard
to the small objects. This is confirmed in Figure 3 which shows reconstructions of
the horizontal plane z = 0.2.

References

[1] C. Berenstein and D. Walnut, Local inversion of the Radon transform in even dimensions
using wavelets, in: 75 Years of Radon Transform, S. Gindikin and P. Michor (eds.), Conference
Proceedings and Lecture Notes in Mathematical Physics, Vol. 4, International Press, Boston,
1994, pp. 45-69.

[2] C. Berenstein and D. Walnut, Wavelets and local tomography, in: Wavelets in Medicine and
Biology, A. Aldroubi and M. Unser (eds.), CRC Press, Boca Raton, 1996.

[3] J. Boman and E.T. Quinto, Support theorems for real-analytic Radon transforms on line
complezes in three-space, Trans. Amer. Math. Soc., 335(1993), pp. 877-890.

[4] K. Buglione, Pseudolocal tomography, M.S. paper, Dept. of Mathematics, Oregon State Uni-
versity, Corvallis, OR 97331, U.S.A., (1998).

[5] M. Defrise and R. Clack, A cone-beam reconstruction algorithm using shift-variant filtering
and cone-beam backprojection, IEEE Trans. Med. Imag., MI-13 (1994), pp. 186-195.



y axis

(6]
[7]

(8]

(9]
[10]
(1]
[12]
(13]

[14]

INTRODUCTION TO LOCAL TOMOGRAPHY 17

Louis—Maass: Plane z=0.2 Local FDK: Plane z=0.2

(%)

x

©

>
10 10
5 5
0 0
-5 -5
-10 ﬂ -10

-0.5 0 0.5 -0.5 0 0.5
Plot alongy =0 Plot alongy =0
FIGURE 3.

A. Delaney and Y. Bresler, Multiresolution tomographic reconstruction using wavelets, IEEE
Trans. Image Proc., 4 (1995), 799-813.

A. Faridani, Results, old and new, in computed tomography, in: Inverse Problems in Wave
Propagation, G. Chavent et al. (editors), The IMA Volumes in Mathematics and its Appli-
cations, Vol. 90, Springer Verlag, New York, 1997, pp. 167-193.

A. Faridani, E. L. Ritman, and K. T. Smith, Local tomography, SIAM J. Appl. Math., 52
(1992) , pp. 459-484. Examples of local tomography, SIAM J. Appl. Math., 52 (1992) , pp.
1193-1198.

A. Faridani, D.V. Finch, E. L. Ritman, and K. T. Smith, Local tomography 11, SIAM J. Appl.
Math., 57 (1997), pp. 1095-1127.

A. Faridani and E. L. Ritman, High-resolution computed tomography from efficient sampling,
Inverse Problems, 16(2000), pp. 635-650.

L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm, J. Opt. Soc.
Am. A, 1 (1984), pp. 612-619.

D. V. Finch, Cone beam reconstruction with sources on a curve, SIAM J. Appl. Math.,
45(1985), pp. 665-673.

B.P. Flannery, H.-W. Deckman, W.G. Roberge, and K.L. D’Amico, Three-dimensional z-ray
microtomography, Science, 237 (1987), pp. 1439-1444.

P. Grangeat, Mathematical framework of cone beam 3D reconstruction via the first derivative
of the Radon transform, in: Mathematical Methods in Tomography, G.T. Herman, A.K.



18 A. FARIDANI, K. A. BUGLIONE, P. HUABSOMBOON, O. D. IANCU, AND J. MCGRATH

Louis, and F. Natterer (eds.), Lecture Notes in Mathematics, Vol. 1497, Springer, 1991, pp.
66-97.

[15] A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke
Math. J., 58(1989), pp. 205-240.

[16] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodiffer-
ential operators with singular symbols, J. Funct. Anal., 89(1990), pp. 202-232.

[17] A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and
estimates for restricted X-ray transforms., Ann. Inst. Fourier, 40(1990), pp. 443-466.

(18] A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry., in: Integral Ge-
ometry and Tomography, E. Grinberg and E.T. Quinto (eds.), Contemporary Mathematics,
Vol. 113, Amer. Math. Soc., Providence, R.I., 1990, pp.121-135.

[19] L. Grodzins, Optimum energies for z-ray transmission tomography of small samples, Nuclear
Instruments and Methods, 206 (1983), pp. S41-S45.

[20] P. Huabsomboon, 8D Filtered Backprojection Algorithm for Local Tomography, M.S. paper,
Dept. of Mathematics, Oregon State University, Corvallis, OR 97331, U.S.A., (2000).

[21] O. D. Iancu, Contour reconstruction in 8D z-ray computed tomography. M.S. paper, Dept.
of Mathematics, Oregon State University, Corvallis, OR 97331, U.S.A., (1999).

[22] A.I. Katsevich, Local Tomography for the generalized Radon transform, SIAM J. Appl. Math.
57(1997), pp. 1128-1162.

(23] A. Katsevich, Cone beam local tomography, SIAM J. Appl. Math, 59(1999), pp. 2224-2246.

[24] A.I. Katsevich and A. G. Ramm, New methods for finding jumps of a function from its local
tomographic data, Inverse Problems, 11 (1995), pp. 1005-1023.

[25] A.I. Katsevich and A. G. Ramm, Pseudolocal tomography, STAM J. Appl. Math., 56, (1996),
pp. 167-191.

[26] P. Kuchment, K. Lancaster and L. Mogilevskaya, On local tomography, Inverse Problems, 11
(1995), pp. 571-589.

[27] I. Lan, On an operator associated to a restricted z-ray transform, Ph.D. thesis, Dept. of
Mathematics, Oregon State University, Corvallis, OR 97331, U.S.A., (1999).

[28] A. K. Louis, and P. Maass, Contour reconstruction in 3-D z-ray CT, IEEE Trans. Med.
Imag., MI-12 (1993), pp. 764-769.

[29] A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR, in: Surveys on Solution
Methods for Inverse Problems, D. Colton et al. (eds.), Springer, 2000.

[30] W. R. Madych, Tomography, approzimate reconstruction, and continuous wavelet trans-
forms, Appl. Comp. Harm. Anal., 7 (1999), 54-100.

[31] F. Natterer, The Mathematics of Computerized Tomography, Wiley, 1986.

[32] F. Natterer, Recent developments in z-ray tomography, in: Tomography, Impedance Imaging,
and Integral Geometry, E.T. Quinto, M. Cheney, and P. Kuchment (eds.), Lectures in Applied
Mathematics, Vol. 30, Amer. Math. Soc., 1994, pp. 177-198.

[33] T. Olson and J. de Stefano, Wavelet localization of the Radon transform, IEEE Trans. Sig.
Proc., 42 (1994), pp. 2055-2067 .

[34] T. Olson, Optimal time-frequency projections for localized tomography, in: Wavelets in
Medicine and Biology, A. Aldroubi and M. Unser (eds.), CRC Press, Boca Raton, 1996,
pp. 263-296.

[35] E.T. Quinto, The dependence of the generalized Radon transform on defining measures,
Trans. Amer. Math. Soc. 257 (1980), pp. 331-346.

[36] E. T. Quinto, Singularities of the z-ray transform and limited data tomography in R? and
IR3, SIAM J. Math. Anal., 24 (1993), pp. 1215-1225.

[37] A. G. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography, CRC Press,
Boca Raton, 1996.

[38] F. Rashid-Farrokhi, K. J. R. Liu, C. A. Berenstein, and D. Walnut, Wavelet-based multires-
olution local tomography, IEEE Transactions on Image Processing, 6 (1997), pp. 1412-1430.

[39] A. Rieder, R. Dietz, and T. Schuster, Approzimate inverse meets local tomography, Math.
Meth. Appl. Sci., 23 (2000), pp. 1373-1387.

[40] A. Rieder and T. Schuster, The approzimate inverse in action with an application to com-
puterized tomography, STAM J. Numer. Anal., 37 (2000), pp. 1909-1929.

[41] E. L. Ritman, J. H. Dunsmuir, A. Faridani, D. V. Finch, K. T. Smith, and P. J. Thomas,
Local reconstruction applied to microtomography, in: Inverse Problems in Wave Propagation,



42]

(43]

[44]

(45]

[46]

(47]

(48]

(49]

INTRODUCTION TO LOCAL TOMOGRAPHY 19

G. Chavent et al. (editors), The IMA Volumes in Mathematics and its Applications, Vol. 90,
Springer Verlag, New York, 1997, pp. 443-452.

E. A. Sivers, D. L. Halloway, W. A. Ellingson, and J. Ling, Development and application of
local 3-D CT reconstruction software for imaging critical regions in large ceramic turbine
rotors, in Rev. Prog. Quant. Nondest. Eval.:; D.O. Thompson and D.E. Chimenti (eds.),
Plenum, New York, 1993, pp. 357-364.

E. A. Sivers, D. L. Halloway, W. A. Ellingson, Obtaining high-resolution images of ceram-
ics from 3-D z-ray microtomography by region-of-interest reconstruction, Ceramic Eng. Sci.
Proc., 14, no. 7-8, (1993), pp. 463-472.

J. Skaggs, Region of interest tomography using biorthogonal wavelets, M.S. paper, Dept. of
Mathematics, Oregon State University, Corvallis, OR 97331, U.S.A., (1997).

K. T. Smith, D.C. Solmon, and S. L. Wagner, Practical and mathematical aspects of the
problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc., 83(1977), pp.
1227-1270. Addendum in Bull. Amer. Math. Soc., 84(1978), p. 691.

K. T. Smith and F. Keinert, Mathematical foundations of computed tomography, Appl. Optics
24 (1985), pp. 3950-3957.

W. J. T. Spyra, A. Faridani, E. L. Ritman, and K. T. Smith, Computed tomographic imaging
of the coronary arterial tree - use of local tomography, IEEE Trans. Med. Imag., 9 (1990),
pp. 1-4.

H. K. Tuy, An inversion formula for cone beam reconstruction. SIAM J. Appl. Math.
43(1983), pp. 546-552.

E. L Vainberg, I. A. Kazak, and V. P. Kurozaev, Reconstruction of the internal three-
dimensional structure of objects based on real-time internal projections, Soviet J. Nonde-
structive Testing, 17 (1981), pp. 415-423.

E. L Vainberg, I. A. Kazak, and M. L. Faingoiz, X-ray computerized back projection tomog-
raphy with filtration by double differentiation. Procedure and information features, Soviet J.
Nondestructive Testing, 21 (1985), pp. 106-113.

M. Vetterli and J. Kovacevic, Wavelets and Subband coding, Prentice Hall, 1995.

D. Walnut, Applications of Gabor and wavelet expansions to the Radon transform, in: Prob-
abilistic and Stochastic Methods in Analysis, J. Byrnes et al. (eds.), Kluwer, Boston, 1992,
pp. 187-205.

S. Zhao and G. Wang, Feldkamp-type type cone-beam tomography in the wavelet framework.
IEEE Trans. Med. Imag., 19 (2000), pp. 922-929.

DEPT. OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331
E-mail address: faridani@math.orst.edu
URL: http://ucs.orst.edu/ " faridana

DEPT. OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331
DEPT. OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331
DEPT. OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331

DEPT. OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331



