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Abstract

We consider Shannon sampling theory for sampling sets which are
unions of shifted lattices. These sets are not necessarily periodic. A
function f can be reconstructed from its samples provided the sam-
pling set and the support of the Fourier transform of f satisfy certain
compatibility conditions. An explicit reconstruction formula is given
for sampling sets which are unions of two shifted lattices. While ex-
plicit formulas for unions of more than two lattices are possible, it
is more convenient to use a recursive algorithm. The analysis is pre-
sented in the general framework of locally compact abelian groups,
but several specific examples are given, including a numerical exam-
ple implemented in MATLAB. Our methods also provide a new tool
for designing sampling sets of minimal density.
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1 Introduction

The classical sampling theorem permits reconstruction of a bandlimited func-
tion from its values on a set of equidistant points on the real line IR [17, 21,
25]. It has been extended in many directions; see the reviews [3, 11, 14] as
well as the volumes [12, 13, 18, 19, 27]. Kluvánek’s important generaliza-
tion results from replacing IR by an arbitrary locally compact abelian (LCA)
group G [15]. The sampling set is then a coset of a closed subgroup of G.
Periodic sampling, introduced by Kohlenberg [16], is well established and
considers sampling sets which are unions of cosets of one subgroup; see, e.g.,
[5, 9, 20, 26, 28]. The present work investigates the case where the sampling
set is a union of cosets of possibly different subgroups. Such sets are not nec-
essarily periodic. Seminal results for this case have been derived by Walnut
[22] and applied in [8, 23, 24]. These theorems were proved for G = IR and
extended to higher dimensions by means of tensor products. The approach
taken here works for general LCA groups G, the sampling sets in case of
G = IRn need not be tensor products of a one-dimensional set, and the sup-
port K of the Fourier transform of f need not be a hypercube. On the other
hand, the sampling set and the set K need to satisfy certain compatibility
conditions. If these conditions are satisfied, we obtain a recursive algorithm
for reconstructing f from its samples on cosets of subgroups H1, . . . , HN .
Our results do lead in principle to explicit reconstruction formulas, and for
the case of two lattices such a formula is given in Corollary 3.7. However, for
more than two lattices the formulas tend to become very complicated, while
the recursive algorithm is both convenient to state and easy to program.
While the sampling sets we consider here could also be treated in many cases
with the general methods for irregular sampling developed in the last decade,
(see, e.g., [2, 6, 7]), our results make explicit use of the structure these sets
possess.

The paper is organized as follows. We begin with a review of basic defini-
tions and facts, leading up to Kluvánek’s general version of the classical sam-
pling theorem. For a more detailed introduction to sampling theory on LCA
groups we refer to the recent article by Dodson and Beaty [4]. In section 3
the main results are developed and illustrated with examples. Theorem 3.5
provides a method to reduce the original problem to a simpler one, which can
be used to obtain new sampling theorems from known ones. Explicit recon-
struction formulas for sampling sets which are unions of two shifted lattices
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are given in Corollary 3.7. Several examples are given where our techniques
yield sampling sets of minimal density. Applying Theorem 3.5 repeatedly
yields the recursive reconstruction method of Theorem 3.9 for sampling on
unions of N shifted lattices. The paper concludes with a numerical example
implementing the algorithm in MATLAB for the group G = ZZL.

2 Standard definitions and facts

Let ZZ, IR, C denote the integers, reals, and complex numbers, respectively.
Let G denote a locally compact abelian (LCA) group written additively. The
character group Ĝ consists of the continuous homomorphisms of G into the
circle group T = IR/ZZ. The value of the character ξ ∈ Ĝ at the point x ∈ G
is written 〈x, ξ〉. Ĝ has a natural addition and a natural topology relative
to which it is also an LCA group. On every LCA group there exists a non-
negative regular measure mG, the so-called Haar measure of G, which is not
identically zero and translation invariant. The Haar measure is uniquely
determined up to multiplication by a constant. Lp(G) denotes the space of

all Borel functions on G such that ‖ f ‖p= (
∫
G |f(x)|p dmG(x))1/p is finite.

The Fourier transform of a function f ∈ L1(G) is the continuous function
f̂ on Ĝ defined by

f̂(ξ) =
∫

G
f(x)e−2πi〈x,ξ〉 dmG(x).

We will always normalize the Haar measure on Ĝ such that the following
holds.

Theorem 2.1 (Fourier inversion formula) If f ∈ L1(G) is continuous and
f̂ ∈ L1(Ĝ), then

f(x) =
∫

Ĝ
f̂(ξ)e2πi〈x,ξ〉 dm

Ĝ
(ξ) = (f̂)∧(−x). (1)

The Fourier transform can be extended to a linear isomorphism of L2(G)
onto L2(Ĝ) by means of the Plancherel Theorem (cf. [10, Sec. 31.18]).

Let H be a closed subgroup of an LCA group G. The annihilator of H is
the set H⊥ ⊂ Ĝ given by H⊥ = {η ∈ Ĝ : 〈y, η〉 = 0 for all y ∈ H}. H⊥ is a
closed subgroup of Ĝ and is isomorphically homeomorphic to the character
group of G/H, i.e., H⊥ = (G/H)∧. Furthermore we have that (H⊥)⊥ = H,
and Ĥ = Ĝ/H⊥.
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Definition 2.2 A closed discrete subgroup H of G such that H⊥ is also
discrete is called a lattice. A measurable subset R of Ĝ such that every
ξ ∈ Ĝ can be uniquely written as ξ = ρ + η, where ρ ∈ R and η ∈ H⊥ is
called a fundamental domain of H⊥.

Convention 2.3 Throughout this paper we assume that mG is given and
normalize the Haar measure on Ĝ such that the Fourier inversion formula
(1) holds. For a lattice H and R a fundamental domain of H⊥ we normalize
the Haar measures on H, H⊥, and Ĝ/H⊥ such that

(i) mH equals the counting measure,
(ii) mH⊥ equals m

Ĝ
(R) times the counting measure, and

(iii) m
Ĝ/H⊥(Ĝ/H⊥) = 1.

We always have 0 < m
Ĝ
(R) < ∞ and the above normalizations imply

that for every integrable function F on Ĝ∫
Ĝ

F (ξ)dm
Ĝ
(ξ) = m

Ĝ
(R)

∫
Ĝ/H⊥

∑
η∈H⊥

F (ξ + η)dm
Ĝ/H⊥(ξ + H⊥). (2)

Let g be a function on Ĝ/H⊥ and let F in (2) be given by F (ξ) = g(ξ + H⊥)
for ξ ∈ R, and F (ξ) = 0 otherwise. Then (2) allows to identify integration
over Ĝ/H⊥ with integration over R:∫

Ĝ/H⊥
g(ξ + H⊥)dm

Ĝ/H⊥(ξ + H⊥) =
1

m
Ĝ
(R)

∫
R

g(ξ + H⊥)dm
Ĝ
(ξ). (3)

3 Sampling theorems

We begin with Kluvánek’s version of the classical sampling theorem. A
key ingredient is the function ϕR defined in the following lemma, proven in
Kluvánek’s paper [15].

Lemma 3.1 Let H be a lattice and R a fundamental domain of H⊥. Then
the function ϕR defined by

ϕR(x) =
1

m
Ĝ
(R)

∫
R

e2πi〈x,ξ〉dm
Ĝ
(ξ), x ∈ G, (4)
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is continuous on G and satisfies ϕR(0) = 1, ϕR(y) = 0 for 0 6= y ∈ H,

‖ ϕR ‖2 = 1/
√

m
Ĝ
(R), and

∫
G

ϕR(x) ϕR(x− y) dmG(x) = 0 for 0 6= y ∈ H.

Kluvánek’s theorem reads as follows.

Theorem 3.2 Let H be a lattice and R a fundamental domain of H⊥. Sup-
pose f ∈ L2(G) and f̂(ξ) = 0 for almost all ξ 6∈ R. Then f is equal almost
everywhere to a continuous function. If f itself is continuous, then

f(x) =
∑
y∈H

f(y)ϕR(x− y) (5)

uniformly on G and in the sense of convergence in L2(G). Furthermore, the
L2-norm of f is given by

‖ f ‖2
2=

1

m
Ĝ
(R)

∑
y∈H

|f(y)|2.

The last equation shows that the restriction of f to the discrete subgroup
H gives a function in L2(H). This property is needed for the reconstruction
formula (5) to be well-defined. We would like to apply this formula also to
functions whose Fourier transform is supported in a set K larger than R.
The following corollary to Kluvánek’s theorem deals with this case.

Corollary 3.3 Let H be a lattice and R a fundamental domain of H⊥. Let
f ∈ L2(G) be continuous and f̂(ξ) = 0 a.e. outside a measurable subset K of
Ĝ. Assume that there is P < ∞ such that K ⊆ ⋃P

j=1(ηj + R) with η1, . . . , ηP

distinct elements of H⊥. Let M = x0 +H be a coset of H. Then the function
SMf defined by

SMf(x) =
∑
y∈H

f(x0 + y) ϕR(x− x0 − y) (6)

is continuous and square integrable on G, and satisfies SMf(z) = f(z) for
all z ∈ M .
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Proof: We may decompose f as f =
∑P

j=1 fj with continuous functions fj

satisfying f̂j(ξ) = f̂(ξ) for ξ ∈ ηj + R, and f̂j = 0 a.e. outside ηj + R. Hence

SMf(x) =
P∑

j=1

∑
y∈H

fj(x0 + y) ϕR(x− x0 − y).

Now Theorem 3.2 can be applied to the functions gj(x) = fj(x0 + x) whose
Fourier transform vanishes a.e. outside Rj = ηj + R, which is also a funda-
mental domain of H⊥. This gives

fj(x) = gj(x− x0) =
∑
y∈H

fj(x0 + y)ϕRj
(x− x0 − y),

where the right-hand side converges uniformly and defines a continuous func-
tion in L2(G). Because of ϕRj

(x) = ϕR(x)e2πi〈x,ηj〉 this implies that the sums∑
y∈H fj(x0 + y)ϕR(x − x0 − y) also define continuous functions in L2(G).

Hence SMf is continuous and square integrable. Since ϕR(0) = 1 and
ϕR(y) = 0 for 0 6= y ∈ H it follows immediately that SMf(z) = f(z) for
z ∈ M . 2

Our point of departure for deriving nonperiodic sampling theorems is the
following lemma, which is closely related to Lemma 3.1 in [22]. We consider
the case where the support of the Fourier transform is no longer contained in
a fundamental domain of H⊥, but is contained in the union of a fundamental
domain and one of its translates. A more general result has been obtained
in [1], where K only needs to be contained in the union of finitely many
translates of R. Since this result requires a more technical proof and is not
needed here, we do not present it.

Lemma 3.4 Let H be a lattice and R a fundamental domain of H⊥. Let
K = R ∪ (η′ + K ′) with K ′ ⊂ R measurable and 0 6= η′ ∈ H⊥. Assume that
f ∈ L2(G) is continuous, vanishes on the coset x0 + H and that f̂ vanishes
a.e. outside K. Then

f(x) = h(x)
(
1− e2πi〈x−x0,η′〉

)
with h ∈ L2(G) continuous and ĥ vanishing a.e. outside K ′.

Proof: Consider the function g(x) = f(x + x0). Then g is continuous,
vanishes on H, and ĝ vanishes a.e. outside K. Hence ĝ ∈ L1(Ĝ), and
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therefore the periodization
∑

η∈H⊥ ĝ(ξ + η) is in L1(Ĝ/H⊥). Let F in (2)
be given by F (ξ) = ĝ(ξ)e2πi〈y,ξ〉 with y a fixed element of H. Because of
〈y, ξ + η〉 = 〈y, ξ〉, the Fourier inversion formula and (2) now give

g(y) =
∫

Ĝ
ĝ(ξ)e2πi〈y,ξ〉dm

Ĝ
(ξ)

= m
Ĝ
(R)

∫
Ĝ/H⊥

∑
η∈H⊥

ĝ(ξ + η)e2πi〈y,ξ〉dm
Ĝ/H⊥(ξ + H⊥).

Since g vanishes on H, this means that the Fourier transform (with respect
to Ĝ/H⊥) of

∑
η∈H⊥ ĝ(ξ + η) vanishes identically. Hence∑

η∈H⊥

ĝ(ξ + η) = 0 a.e.. (7)

We now decompose the set K into three disjoint subsets, i.e.,

K = K ′ ∪ (η′ + K ′) ∪ (R\K ′).

Since the translated sets R + η, η ∈ H⊥ are disjoint, we have for ξ ∈ R\K ′

and η ∈ H⊥ that ξ + η ∈ K if and only if η = 0. It now follows from (7)

that ĝ must vanish a.e. on R\K ′. Let h̃ ∈ L2(G) be such that
̂̃
h(ξ) = ĝ(ξ)

for ξ ∈ K ′, and
̂̃
h(ξ) = 0 for a.e. ξ 6∈ K ′. Since m

Ĝ
(K ′) ≤ m

Ĝ
(R) < ∞, h̃

can be chosen to be continuous. For ξ ∈ η′ + K ′ we have that ξ + η ∈ K if
and only if η ∈ {0,−η′}. Then (7) gives for a.e. ξ ∈ η′ + K ′ that

ĝ(ξ) = −ĝ(ξ − η′) = −̂̃h(ξ − η′).

Since
̂̃
h(ξ − η′) vanishes a.e. outside η′ + K ′ we have for a.e. ξ ∈ Ĝ

ĝ(ξ) =
̂̃
h(ξ)− ̂̃

h(ξ − η′).

An inverse Fourier transform now gives

g(x) = h̃(x)
(
1− e2πi〈x,η′〉

)
= f(x0 + x).

The lemma now follows by letting h(x) = h̃(x− x0). 2

The lemma can be used in the following general way to reduce the problem
of reconstructing f to the problem of reconstructing h.
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Theorem 3.5 Let H be a lattice and R a fundamental domain of H⊥. Let
K = R ∪ (η′ + K ′) with K ′ ⊂ R measurable and 0 6= η′ ∈ H⊥. Assume that
f ∈ L2(G) is continuous, and that f̂ vanishes a.e. outside K. Let M ′ ⊂ G be
such that continuous functions h ∈ L2(G) whose Fourier transform vanishes
a.e. outside K ′ can be reconstructed from their samples h(z′), z′ ∈ M ′. Let
x0 be such that

〈z′ − x0, η
′〉 6= 0 for all z′ ∈ M ′. (8)

Then f can be reconstructed from its samples f(z), z ∈ M ∪ M ′, where
M = x0 + H.

Proof: By Corollary 3.3 the function g(x) = f(x) − SMf(x) is continu-
ous, square integrable and vanishes on M . It follows from (6) and (4) that
(SMf)∧(ξ) vanishes for a.e. ξ outside R. Hence Lemma 3.4 can be applied to
g, yielding a continuous function h(x) ∈ L2(G) with ĥ vanishing a.e. outside
K ′ such that

f(x) = SMf(x) + h(x)
(
1− e2πi〈x−x0,η′〉

)
. (9)

Since 〈z′ − x0, η
′〉 6= 0 for z′ ∈ M ′, we can compute the sampled values

h(z′) =
f(z′)− SMf(z′)

1− e2πi〈z′−x0,η′〉 , z′ ∈ M ′. (10)

By hypothesis, h(x), x ∈ G, can be computed from these samples. Then
f(x) is given by (9). 2

The theorem provides a general method to generate new sampling theo-
rems from known ones. If a sampling theorem for a set K ′ is known, we can
obtain one for K = R ∪ (η′ + K ′) by adding a coset of the subgroup H to
the original sampling set M ′. Aside from the condition (8) the primary lim-
itation of this method is the requirement that H must be sufficiently dense
so that K ′ ⊂ R.

The proof above outlines the following reconstruction algorithm:

Algorithm 3.6 1) Compute SMf(x), x ∈ G, from the samples f(z), z ∈ M ,
according to (6).

2) Compute the samples h(z′), z′ ∈ M ′, according to (10).
3) Reconstruct h(x), x ∈ G, from these samples, which is possible by

hypothesis.
4) Compute f(x), x ∈ G, according to (9).
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As a first illustration we apply the theorem to sampling on the real line
when the support of the Fourier transform has a gap. For such a case,
Theorem 3.5 provides a convenient way to generate sampling sets of minimal
density. Let G = Ĝ = IR and K = [0, α) ∪ [α + 1, α + 2), α ≥ 2. Observe
that with our normalization, mG and m

Ĝ
are equal to the Lebesgue measure

on IR. For any β satisfying α
2

+ 1 ≤ β ≤ α, K may be partitioned into
two subsets so that the theorem applies. If R = [0, β), η′ = β, and K ′ =
[0, α − β) ∪ [α − β + 1, α − β + 2), then K = R ∪ (η′ + K ′). Let H = 1

β
ZZ,

M = x0 + H, and let M ′ ⊂ IR be such that continuous functions with
Fourier transform supported in K ′ can be reconstructed from their samples
on M ′. Then a function f with Fourier transform supported in K can be
reconstructed from its samples on M ∪ M ′ if the condition (8) is satisfied.
We consider two particular choices of β, i.e., β = α and β = α − 1. First
let β = α, so that R = [0, α), η′ = α, K ′ = [1, 2), and H = 1

α
ZZ. According

to Kluvánek’s theorem, functions with Fourier transform supported in K ′

can be reconstructed from their samples on a coset of H ′ = ZZ. So suitable
candidates for sampling sets would be sets of the form (x0 + 1

α
ZZ)∪ (x1 + ZZ),

subject to condition (8). This condition requires that (x1 − x0 + l)α 6∈ ZZ for
all l ∈ ZZ, which may be written as x1 − x0 6∈ ( 1

α
ZZ + ZZ). In this particular

case this is equivalent to the intersection of M = x0 + 1
α
ZZ and M ′ = x1 + ZZ

being empty. However, in general the condition M∩M ′ = ∅ is only necessary
but not sufficient for (8) to hold.

If α is irrational, we obtain a genuinely non-periodic sampling set. When
sampling on the group G = IRn one also has to consider stability. In the
case of irrational α it is possible that the reconstruction is unstable, since
there is no positive minimum distance between adjacent sampling points.
Hence a numerical implementation would require regularization. We do not
investigate stability considerations here, but refer the reader to [8, 24] for an
investigation of stability and remedies for instability in a similar case.

If α is rational, let α−1 = p/q with p, q mutually prime. Then a sampling
set of the form (x0 + 1

α
ZZ) ∪ (x1 + ZZ) is periodic, namely a union of p + q

cosets of the group pZZ. However, for p + q large Theorem 3.5 may be more
convenient to apply than the results for periodic sampling developed in [5]
or [9] and the references cited there.

The set M ′ in Theorem 3.5 does not need to be a coset of one subgroup.
E.g., let α > 4 and β = α − 1. Then we can choose R = [0, α − 1), K ′ =
[0, 1)∪ [2, 3), η′ = α−1, and H = (α−1)−1ZZ. The function h whose Fourier
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transform is supported in K ′ can now be reconstructed from its samples on
two cosets of ZZ according to Kohlenberg’s [16] theory. In this case M ′ is a
periodic set of the form M ′ = (x1 + ZZ) ∪ (x2 + ZZ).

In the above example with β = α, reconstruction of the function h was
furnished by the classical sampling theorem. The following corollary gives
an explicit reconstruction formula for this case.

Corollary 3.7 Let H1, H2 be lattices, and R1 ⊂ R2 fundamental domains
of H⊥

1 and H⊥
2 , respectively. Let f ∈ L2(G) be continuous and such that f̂

vanishes a.e. outside the set K = R2 ∪ (η′ + R1), where 0 6= η′ ∈ H⊥
2 . Let

x1, x2 be such that

〈x1 − x2 + y, η′〉 6= 0 for all y ∈ H1. (11)

Then

f(x) = SM2f(x) +
(
1− e2πi〈x−x2,η′〉

)
×
∑

y∈H1

f(x1 + y)− SM2f(x1 + y)

1− e2πi〈x1−x2+y,η′〉 ϕR1(x− x1 − y) (12)

with M2 = x2 + H2,

SM2f(x) =
∑

v∈H2

f(x2 + v)ϕR2(x− x2 − v),

and ϕRj
, j = 1, 2 as defined in (4).

Proof: Apply Theorem 3.5 and Algorithm 3.6 with H = H2, R = R2,
K ′ = R1, M = M2 = x2 + H2, and M ′ = x1 + H1. Then (8) becomes (11),
and (10) gives the samples of h for z′ ∈ x1 + H1, i.e.,

h(x1 + y) =
f(x1 + y)− SM2f(x1 + y)

1− e2πi〈x1−x2+y,η′〉 .

Since ĥ is supported in the fundamental domain R1 of H⊥
1 , we can apply

Theorem 3.2 to the function h̃(x) = h(x1 + x), whose samples are available
on H1. This gives

h(x) =
∑

y∈H1

h(x1 + y)ϕR1(x− x1 − y).
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Now (9) yields (12). 2

We note that neither the requirement that K = R2 ∪ (η′ + R1) nor its
generalization in Definition 3.8 below exclude the case that K consists of a
single interval or hypercube. For example, let G = IR and K = [−W, W ).
For any W1 such that 0 ≤ W1 < W we have K = R2 ∪ (η′ + R1) with
R2 = [−W, W1), η′ = W + W1, and R1 = [−W,−W1).

As another example, let us consider a bandpass signal whose Fourier
transform vanishes outside the set K = [−W1 − W,−W1) ∪ [W1, W1 + W ).
Kohlenberg solved this case using periodic sampling sets [16]. Now assume
that 0 < W1 < W and let H2 = (W + W1)

−1ZZ with fundamental domain
R2 = [−W1−W,−W1)∪[W, W1+W ). (Note that a fundamental domain need
not be a single interval.) With R1 = [−W,−W1) ⊂ R2 and η′ = W + W1 we
have K = R2∪ (η′ +R1) and Corollary 3.7 applies with H1 = (W −W1)

−1ZZ.
Depending on whether the ratio (W +W1)/(W−W1) is rational or irrational,
one obtains a periodic or nonperiodic sampling set, respectively.

Finally, let K consist of the three intervals K = [−W1 − W,−W1) ∪
[−W0, W0) ∪ [W1, W1 + W ) such that 0 < W0 < W1 < W0 + W . We find a
sampling set of minimal density by choosing H2 = (W + W0 + W1)

−1ZZ with
fundamental domain R2 = [−W1−W,−W1)∪[−W0, W0)∪[W1, W1+W ), and
H1 = (W +W0−W1)

−1ZZ with fundamental domain R1 = [−W0−W,−W1).
With η2 = W + W0 + W1 we obtain K = R2 ∪ (η2 + R1). Depending on the
values of W, W0 and W1 an optimal periodic sampling set may not exist or the
most efficient periodic sampling set, found, e.g., by the methods of [5] or [9]
may be given as a union of a large number of cosets of a sparse subgroup. As
mentioned before, this may be inconvenient to process. For this example our
method always yields a representation using only two shifted lattices. The
examples given here, as well as the one discussed in §4 below show that the
methods presented here may improve on the methods for periodic sampling
in some situations. However, they do by no means replace these methods in
general, since our conditions on the set K are more restrictive.

In order to obtain further results we apply Theorem 3.5 repeatedly. This
gives a recursive algorithm to reconstruct f from its samples on cosets of
groups H1, . . . , HN , provided that the subgroups Hj and the set K satisfy
certain compatibility conditions. These conditions are given in the following
definition which presents the structure of the sets K we consider as support
of the Fourier transform f̂ . This structure is a generalization of the structure
of the set K in Lemma 3.4.
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Definition 3.8 Let H1, . . . , HN be lattices with corresponding fundamental
domains Ri of H⊥

i . We call K ⊂ Ĝ an admissible subset of Ĝ with respect
to H1, . . . , HN if there are subsets K1, . . . , KN of Ĝ such that the following
conditions hold:

i) K1 = R1,
ii) Kj ⊂ Rj+1, j = 1, . . . , N − 1,
iii) Kj+1 = Rj+1 ∪ (ηj+1 + Kj) with 0 6= ηj+1 ∈ H⊥

j+1, j = 1, . . . , N − 1
iv) KN = K.

Observe that because of conditions ii) and iii) each intermediate set Kj+1

has the structure of the set K in Lemma 3.4 with R = Rj+1, K ′ = Kj and
η′ = ηj+1. The above conditions imply in particular that R1 ⊂ R2 ⊂ . . . ⊂
RN , so that the subgroups Hj are ordered by increasing density. In addition
it follows that Hj 6= Hk for j 6= k, with the exception that H1 may be equal
to H2. Hence the theory developed here does not include periodic sampling,
where H1 = . . . = HN as a special case, although some of the sampling sets
we consider are indeed periodic.

As an example, let G = IR2, and H1, H2 and H3 be lattices of the form
Hi = WiZZ

2, with matrices

Wi =
(

ri 0
0 di

)
such that ri, di ∈ IR+. Furthermore, assume that r3 < r2 < r1 and d3 < d2 <
d1 such that 1

d1
+ 1

d2
≤ 1

d3
. Let fundamental domains Ri of H⊥

i be given by

Ri =
{
(ξ1, ξ2) ∈ IR2 : 0 ≤ ξ1 < 1/ri, 0 ≤ ξ2 < 1/di

}
, i = 1, 2, 3,

as illustrated in the left part of Figure 1.

Let η2 ∈ H⊥
2 and η3 ∈ H⊥

3 be given by

η2 =

(
0

1/d2

)
, η3 =

(
1/r3

0

)
.

The set K2 = R2 ∪ (η2 + R1) ⊂ R3 is shown in the right part of Figure 1.
The complete set K = K3 is given by

K = R3 ∪ (η3 + K2)

= R3 ∪ (η3 + R2) ∪ (η3 + η2 + R1)

= R3 ∪
((

1/r3

0

)
+ R2

)
∪
((

1/r3

1/d2

)
+ R1

)
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1/d1

1/r1

1/d2

1/r2

R1

1/d3

1/r3

R2

R3

K2

R3

Figure 1: R1 ⊂ R2 ⊂ R3 with K1 = R1 and K2 ⊂ R3

K R3

η3 + R2

η3 + η2 + R1

Figure 2: K = R3 ∪ (η3 + R2) ∪ ((η3 + η2) + R1)

and shown in Figure 2.
The following theorem is our main result:

Theorem 3.9 Suppose that K is an admissible subset of G with respect to
the lattices H1, . . . , HN , with Rj, Kj, ηj, j = 1, . . . , N as in Definition 3.8.
Let Mj = xj + Hj, j = 1, . . . , N be such that if N > 1

〈z − xj, ηj〉 6= 0 for z ∈
j−1⋃
k=1

Mk, j = 2, . . . , N. (13)

Let f ∈ L2(G) be continuous and such that f̂ vanishes a.e. outside K. Then
there are continuous functions fj ∈ L2(G) such that f̂j vanishes outside Kj,
and for all x ∈ G:

f1(x) = SM1f1(x),

fj(x)− SMj
fj(x) = fj−1(x)

(
1− e2πi〈x−xj ,ηj〉

)
, j = 2, . . . , N,

fN(x) = f(x).
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Using this recursion, the function f can be reconstructed from sampled values
f(z), z ∈ ⋃N

k=1 Mk.

Proof: The proof is by induction on N . If N = 1, then K = K1 = R1

and f = SM1f by Kluvánek’s theorem. Hence f can be reconstructed from
its samples on M1. Now assume N > 1 and that the theorem holds with N
replaced by N − 1. Let fN = f and consider the function g(x) = fN(x) −
SMN

fN(x). By Corollary 3.3 g is continuous, square-integrable, and vanishes

on MN . Since ŜMN
f vanishes outside RN ⊆ K, ĝ vanishes a.e. outside K.

Since K = RN ∪ (ηN + KN−1) and KN−1 ⊆ RN , we can apply Lemma 3.4 to
g, with R, K ′, x0 and η′ replaced by RN , KN−1, xN , and ηN , respectively.
Hence there is a continuous, square-integrable function fN−1 such that

g(x) = fN(x)− SMN
fN(x) = fN−1(x)

(
1− e2πi〈x−xN ,ηN 〉

)
,

and ̂fN−1 vanishes a.e. outside KN−1. Because of (13) the values

fN−1(z) =
f(z)− SMN

f(z)

1− e2πi〈z−xN ,ηN 〉 , z ∈
N−1⋃
k=1

Mk,

can be computed. Now the hypothesis of the theorem is satisfied if f , K,
and N are replaced by fN−1, KN−1, and N − 1, respectively. By induction
hypothesis the theorem holds in this case, yielding the functions fj, j =
1, . . . , N − 2, and the reconstructed function fN−1(x) for all x ∈ G. Now f
is reconstructed via

f(x) =
(
1− e2πi〈x−xN ,ηN 〉

)
fN−1(x) + SMN

f(x), x ∈ G. 2

The theorem establishes the following recursive algorithm for reconstruc-
tion of f from sampled values f(z), z ∈ ⋃N

k=1 Mk:

Algorithm 3.10 :

IF N = 1 THEN f(x) = SM1f(x).

ELSE

Compute

g(z) =
f(z)− SMN

f(z)

1− e2πi〈z−xN ,ηN 〉 , z ∈
N−1⋃
k=1

Mk.
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Invoke the algorithm to compute g(x), x ∈ G from the computed values
g(z), z ∈ ⋃N−1

k=1 Mk.

f(x) = g(x)
(
1− e2πi〈x−xN ,ηN 〉

)
+ SMN

f(x), x ∈ G.
END

Clearly, Theorem 3.9 also gives rise to explicit formulas generalizing the case
N = 2 treated in Corollary 3.7, but as N increases these formulas seem to
become too complicated to be useful. On the other hand, Algorithm 3.10
is very easy to program if the progamming language allows for recursive
function calls; see, e.g., the MATLAB M-file bfmethod.m in the next section.

4 A numerical example

In this section we illustrate Theorem 3.9 and Algorithm 3.10 with an example
implemented in MATLAB.

Let G = ZZ/(LZZ) = {0, . . . , L − 1} with addition modulo L. Then Ĝ =
{ν/L, ν = 0, . . . , L − 1} with addition modulo 1. Let mG be the counting
measure. According to Convention 2.3 m

Ĝ
equals 1/L times the counting

measure. We characterize subgroups H of G by specifying an element h ∈ G
such that h divides L and generates H. Hence H = {hl, l = 0, . . . , L/h−1}.
We will use the notation H = 〈h〉 indicating that H is generated by h. The
annihilator H⊥ equals H⊥ = {ν/h, ν = 0, . . . , h − 1}, and a fundamental
domain is given by R = {ν/L, ν = 0, . . . , L/h − 1}. Hence m

Ĝ
(R) =

(L/h)/L = 1/h.
The MATLAB code given below implements Algorithm 3.10 for this set-

ting. The parameters are specified and explained in the driver routine bf-
driver.m. This routine also generates the function to be reconstructed by
randomly specifying its non-zero Fourier coefficients, cf. [6]. The recursive
algorithm is implemented in the function M-file bfmethod.m. The function
M-file SM.m computes SMf . In order to keep the code readable the simpli-
fying assumption was made that all fundamental domains Rj are of the form
given above, i.e., Rj = {ν/L, ν = 0, . . . , L/hj − 1}. More general code is
available from the authors.

In the code below the parameters to be specified by the user are set as
follows: We specified L = 2520 which leads to a rich collection of subgroups.
As the set K we consider the union of the two contiguous sets {0, . . . , 71}/L
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and {1224, . . . , 1274}/L, giving a total of 123 points. Now choose H1 = 〈280〉,
H2 = 〈60〉, and H3 = 〈35〉, with R1 = {0, . . . , 8}/L, R2 = {0, . . . , 41}/L,
and R3 = {0, . . . , 71}/L. With η2 = 42/L and η3 = 1224/L we have K =
R3∪(η3+R2)∪((η2+η3)+R1), and the sets K1 = R1, K2 = R2∪(η2+R1), and
K3 = K = R3 ∪ (η3 + K2) satisfy the conditions of Definition 3.8. The shifts
xj have to be chosen such that the sampling conditions (13) are satisfied. Let
〈η〉 denote the subgroup of H⊥ generated by η ∈ H⊥. Then the annihilator
〈η〉⊥ is a subgroup of G containing H. If 〈ηj〉⊥ = Hj, then the condition

〈z − xj, ηj〉 6= 0 for z ∈
j−1⋃
k=1

Mk,

reduces to the requirement that the coset Mj = xj + Hj does not intersect
the union of the cosets Mk, k = 1, . . . , j−1. Since in the present example we
do have that 〈ηj〉⊥ = Hj, j = 2, 3, the sampling condition (13) is equivalent
to the cosets M1, M2, M3 being mutually disjoint. Two cosets xi + 〈hi〉 and
xj + 〈hj〉 will intersect if and only if the difference xi − xj is an integer
multiple of the greatest common divisor of hi and hj. Hence the conditions
(13) require in this particular example that x1 − x2 should not be a multiple
of 20, x1 − x3 should not be a multiple of 35, and x2 − x3 should not be a
multiple of 5. An admissible choice is, e.g., x1 = 3, x2 = 1, and x3 = 0.
The relative errors in our numerical tests varied with the random signal, but
stayed below 1.e − 12. In order to assess the stability of the algorithm we
computed as a comparison the relative error resulting from taking the FFT
of the signal f and then reconstructing by an inverse FFT. The relative error
resulting from this very stable procedure was about 2.e− 13, indicating that
our algorithm is stable in this case. This indication was confirmed by tests
where noise was added to the signal.

Each sampled value yields a linear equation for the unknown Fourier
coefficients of f . The condition number of this linear system is an indication
if the problem of reconstructing f from its samples is well conditioned or not,
independent of the algorithm used to perform the reconstruction. In this case
the condition number is about 40, so the problem is fairly well conditioned.

The sampling set above has minimal density in the sense that there are
as many sampling points as there are points in the set K, i.e., 123. We may
define the Nyquist distance as the ratio between the size L of the group G
and the size of the spectrum K. The average spacing of our sampling set
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is equal to the Nyquist distance, which equals 2520/123 ' 20.49. This can
be compared to the optimal regular sampling distance, i.e., the spacing of
the smallest subgroup H such that the set K is a subset of a fundamental
domain of H⊥ and Theorem 3.2 can be applied. For this example the smallest
feasible subgroup has 280 elements and a spacing of 9.

We also used the standard frame method for irregular sampling as de-
scribed by Feichtinger and Gröchenig [6] to solve the present example. Even
with a near optimal relaxation parameter convergence was very slow, requir-
ing thousands of iterations to obtain the same accuracy which our method
achieved quickly. The reason is that iterative methods for general irregular
sampling sets may not work well if the sampling set has gaps larger than
the Nyquist distance, see [6]. In this example the largest gap is equal to the
spacing of the largest subgroup, i.e., 35, hence significantly larger than the
Nyquist distance. Our method can deal with such gaps because it makes
explicit use of the specific structure of the sampling set.

The sampling set of our example is periodic with period 840 and can
be obtained as a union of 41 cosets of the group H = 〈840〉. Hence the
algorithm described in [5] could be used. However, this algorithm is most
efficient and convenient when the number of cosets is much smaller than the
number of elements in H, while the opposite is true in this example, since
H = 〈840〉 has only 3 elements. We can construct a non-periodic example
by replacing H1 above by H1 = 〈 360 〉 and reducing the set K by two points
by replacing {1224, . . . , 1274}/L with {1224, . . . , 1272}/L. The fundamental
domain R1 now equals {0, . . . , 6}/L. Again x1 = 3, x2 = 1, and x3 = 0 is
an admissible choice of shifts. The resulting sampling set and spectrum K
now both contain 121 points. Since 121 and L = 2520 are mutually prime
the sampling set has no period smaller than L. The relative errors in our
tests where larger than in the previous example and came out between 1.e-12
and 1.e-11. This is explained by the fact that the condition number of the
linear system for the unknown Fourier coefficients is now about 487, i.e., the
problem itself is more ill-conditioned than before.

One can also reconstruct f in this setting by solving the linear system
for the unkown Fourier coefficients directly, and then find f by an inverse
FFT. When compared with a direct solution of the linear system by means
of a generic solver (MATLAB’s \ command), our algorithm achieves the
same accuracy but is usually faster. As implemented here, its complexity
is dominated by the 2N Fast Fourier Transforms of length up to L, hence
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of order O(NL log L). This compares to O(P 3) + O(L log L) for the direct
solution of the linear system followed by an inverse FFT. Here P is the
number of points in the spectrum K. In the examples above our algorithm
is only about three times faster, since P is small compared to L. For larger
P this advantage becomes more pronounced.

% bfdriver.m : Driver for nonperiodic sampling on the group

% G = Z_L = {0,...,L-1} with addition modulo L.

% Explanation of input parameters:

% L: number elements in G

% h: h(k) is the divisor of L which generates the subgroup

% H_k, i.e., H_k = {0,h(k),2h(k),...,L-h(k)}

% x: vector with shifts. M_k = x(k) + H_k

% eta: eta(k) corresponds to eta_{k+1} in Theorem 3.9.

% filt: characteristic function of spectrum. filt(k)=1 if

% the point (k-1)/L lies in the spectrum. Otherwise

% filt(k)=0.

% Input parameters:

L=2520; % Length of group G.

filt = zeros(1,L); % DO NOT CHANGE!

filt(1:72) = 1; filt(1225:1275)=1; % Set filt(k)=1 if the

% point (k-1)/L lies

% in the spectrum

h=[280,60,35]; % Specify subgroups

x=[3,1,0]; % Specify shifts

eta = [42,1224]/L; % Specify eta_{k+1}

% End of input section

% Compute signal to be sampled and reconstructed

N = max(size(h)); % Number of subgroups

fhat = complex(rand(1,L),rand(1,L)); % Generate random spectrum

fhat = fhat.*filt; % Set frequencies outside

% of spectrum to zero

fexact = ifft(fhat);

fexact = fexact/norm(fexact); % Normalize signal
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% Compute sampled values

f = zeros(1,L);

for k=1:N

Mk = x(k)+[0:h(k):L-h(k)]; % Coset M_k = x(k) + H_k

f(1+Mk) = fexact(1+Mk); % Sampled values on M_k

end

% Reconstruct signal

F = bfmethod(f,L,h,eta,x);

% Compute the l2 relative reconstruction error

relerr = norm(fexact-F)

%----------------------------------------

function F=bfmethod(f,L,h,eta,x)

N = max(size(h));

MN = x(N) + [0:h(N):L-h(N)]; % Coset M_N = x(N) + H_N

fH = f(1+MN); % Sampled values on M_N

SMf = SM(fH,L,h(N),x(N));

if N==1

F = SMf;

else

tmp = 1-exp(2*pi*i*([0:L-1]-x(N))*eta(N-1));

tmp1=tmp;

tmp1(find(abs(tmp < 1.e-14)))=1; % Avoid zero divisions

f1 = (f-SMf)./tmp1;

fN1 = bfmethod(f1,L,h(1:N-1),eta(1:N-2),x(1:N-1));

F = fN1.*tmp + SMf;

end

%----------------------------------------

function S = SM(f,L,h,x)

% Computes S_Mf(z) for z in G (cf. equation (6))

% G = {0,1,...,L-1} with addition mod L, M = x + H
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% H = {0,h,2h,...,L-h}, R = {0,...,L/h-1}/L

% f = row vector of length L/h containing sampled values on M.

% x = shift. Need x in {0,...,h-1}

chi = zeros(1,L);

chi(1:L/h) = fft(f);

S = h*ifft(chi);

if x > 0

tmp = S(L-x+1:L);

S(x+1:L)=S(1:L-x);

S(1:x) = tmp;

end

%----------------------------------------
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