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Abstract. Computed tomography entails the reconstruction of a function
from measurements of its line integrals. In this article we explore the question:
How many and which line integrals should be measured in order to achieve a
desired resolution in the reconstructed image? Answering this question may
help to reduce the amount of measurements and thereby the radiation dose, or
to obtain a better image from the data one already has. Our exploration leads
us to a mathematically and practically fruitful interaction of Shannon sam-
pling theory and tomography. For example, sampling theory helps to identify
efficient data acquisition schemes, provides a qualitative understanding of cer-
tain artifacts in tomographic images, and facilitates the error analysis of some
reconstruction algorithms. On the other hand, applications in tomography
have stimulated new research in sampling theory, e.g., on nonuniform sam-
pling theorems and estimates for the aliasing error. The focus of this article
will be the application of sampling theory to the so-called fan-beam geometry.
Its dual aim is an exposition of the main principles involved as well as the
development of some new insights.

1. Introduction

Computed tomography (CT) entails the reconstruction of a function f from
measurements of line integrals of f . Naturally, one would like to reconstruct a
high-resolution image with a minimal amount of measured data. The fundamental
question underlying the line of research reported here was posed in a seminal 1978
paper by A. Cormack, one of the pioneers of tomography:

‘In practice one can make only a finite number of measurements
with beams of finite width, and the question which arises is how
many observations should be made, and how should they be related
to each other in order to reconstruct the object’ [8].

While Cormack himself proceeded with geometric arguments to discover an
efficient data acquisition scheme, we will use two-dimensional sampling theory to
address this question, an approach first introduced by Lindgren and Rattey [40, 55].
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Sampling theory originated from the classical sampling theorem, which permits the
reconstruction of a bandlimited function from its values on a regular grid or lattice.
The classical sampling theorem has been extend in many directions, giving rise to
a lively field of contemporary research.

It turns out that sampling theory is not only useful in identifying efficient
sampling schemes for tomographic data, but among other things provides a qual-
itative understanding of certain artifacts and facilitates the numerical analysis of
reconstruction algorithms. On the other hand, applications in tomography have
stimulated research in sampling theory, for example on estimates for the aliasing
error and on non-uniform sampling.

This article is organized as follows. In the next section we lay the foundation by
describing the two-dimensional Radon transform which furnishes the mathematical
model for tomography, as well as the classical sampling theorem. We introduce
the two popular data acquisition geometries and characterize the sampling lattices
for the so-called fan-beam geometry, which will serve as the focus of this article.
Section 3 is devoted to some applications of the classical sampling theorem, namely
identification of efficient sampling schemes and the qualitative understanding of
artifacts resulting from undersampling. In § 4 we briefly describe a recent develop-
ment: the use of non-equidistant periodic sampling in achieving higher resolution
in fan-beam tomography. In the final section we summarize our conclusions and
present a brief overview over the themes and topics of the interaction between
tomography and sampling theory with references for further study.

2. Foundations

2.1. The two-dimensional Radon transform. The 2D Radon transform
maps a density function f into its line integrals. Throughout this paper we will
assume that f ∈ C∞

0 (Ω), i.e., f is infinitely differentiable and vanishes outside the
unit disk Ω of R2. The smoothness assumption simplifies the mathematical proofs,
and although the density functions occurring in practice are not necessarily smooth,
the theoretical results seem to describe the phenomena observed in practice well.

Let Z, R, C denote the integers, real and complex numbers, respectively. Let θ =
(cosϕ, sin ϕ) be the unit vector in R2 with polar angle ϕ, and θ⊥ = (− sin ϕ, cosϕ).
For f ∈ C∞

0 (Ω) define its Radon transform Rf by

Rf(ϕ, s) =

∫ ∞

−∞

f(s cosϕ − t sin ϕ, s sin ϕ + t cosϕ) dt

=

∫

R

f(sθ + tθ⊥) dt,(2.1)

i.e., Rf(ϕ, s) is the integral of f over the line in direction θ⊥ with signed distance
s from the origin. Sometimes Rf is considered as a function of s for fixed ϕ. In
this case we write Rϕf(s) for Rf(ϕ, s).

Observe that the parameter choices (ϕ, s) and (ϕ + π,−s) lead to one and the
same line. We therefore have the symmetry relation

(2.2) Rf(ϕ, s) = Rf(ϕ + π,−s).

The goal of x-ray tomography is to reconstruct an approximation to f(x) from
sampled values of Rf . An explanation of how the Radon transform arises as the
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mathematical model for x-ray tomography is given in Quinto’s article in this volume
[54].

The Fourier transform of a function g ∈ C∞
0 (Rn) is defined by

ĝ(ξ) = (2π)−n/2

∫

Rn

g(x)e−i〈x,ξ〉 dx

and is extended to larger classes of functions or distributions by continuity or du-
ality. Here 〈x, ξ〉 denotes the usual inner product in Rn.

In particular, the Fourier transform of Rϕf is given by

(Rϕf)∧(σ) = (2π)−1/2

∫

R

Rϕf(s)e−isσds.

The following relation between the Fourier transforms of Rϕf and f is very useful
and straightforward to verify:

(2.3) (Rϕf)∧(σ) = (2π)1/2f̂(σθ).

Equation (2.3) is called the projection-slice theorem.
Discretizing the Radon transform in the variables (ϕ, s) of (2.1) leads to the

so-called parallel-beam sampling geometry. It derives its name from the fact that
keeping ϕ fixed and varying s leads to a collection of parallel lines.

Many medical scanners employ an x-ray source which circles around the object.
This leads to the so-called fan-beam sampling geometry, where for each of a number
of source positions distributed around a circle of radius r > 1 the integrals over
rays emanating from that source position are measured. To describe this type of
data collection a parametrization of lines as in (2.1) is less convenient. Instead, we
introduce the divergent beam x-ray transform

(2.4) Dzf(ω) =

∫ ∞

0

f(z + tω) dt, z ∈ R
2, ω ∈ S1,

which gives the integral of f over the ray with direction ω emanating from the
source point z. Let β denote the polar angle of z, that is z = r(cos β, sin β). We
parameterize the direction ω of a ray emanating from z by ω = −(cos(α+β), sin(α+
β)), where α is the angle between the ray from z in direction ω and the central ray
connecting z and the origin. The angle α is taken to be positive when the ray in
direction ω lies to the left of the central ray when viewed from the point z. With
this parametrization we have

Dzf(ω) = Df(β, α), 0 ≤ β < 2π, −π/2 ≤ α ≤ π/2.

We extend Df(β, α) as a 2π-periodic function in α and obtain the correspondence

Df(β, α) =

{
Rf(α + β − π/2, r sin α), |α| < π/2
0 |α| ≥ π/2

, α ∈ [−π, π).

The symmetry relation (2.2) now becomes

(2.5) Df(β, α) = Df(β + 2α + π,−α).

Remark 2.1. Since f is supported in the unit disk, its ray integrals can only
be non-zero for rays intersecting the unit circle. These are the rays with |α| <
arcsin(1/r). Hence we could consider Df as a 2a-periodic function in α for any a
with arcsin(1/r) ≤ a ≤ π. The choice a = π is made here for reasons of simplicity
of exposition and of consistency with the notation in [49]. Choosing a smaller value
of a may have some advantages for computer implementations.
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For readers interested in a more detailed introduction to tomography we recom-
mend the other articles in this volume, the monographs [45, 49] or the introductory
survey [20] and the references given there.

2.2. The Classical Sampling Theorem. The origin of sampling theory is
the classical sampling theorem. In its simplest version it reads as follows.

Theorem 2.2. Let g ∈ L2(R) such that its Fourier transform ĝ(ξ) vanishes for
|ξ| ≥ b. If 0 < h ≤ π/b then

g(x) =
hb

π

∑

l∈Z

g(hl) sinc(b(x − hl)),

where sinc(t) = sin t
t . The series converges in L2 as well as uniformly.

Remark 2.3. The term sinc stands for ‘sinus cardinalis’, and the series is
called ‘cardinal series’. The following observations will be useful for generalizing
the theorem; cf. Theorem 2.7 below.

(1) The theorem permits recovery of g from its values on a subgroup L = hZ

of R. L is also called a lattice.
(2) The set L⊥ = {2πl/h, l ∈ Z} satisfies eiyη = 1 for all y ∈ L, η ∈ L⊥ and

is called the dual or reciprocal lattice of L. According to the hypothesis
of Theorem 2.2 the support of ĝ is contained in the closure of the set
K = [−b, b). The density condition h ≤ π/b is therefore equivalent to the
condition that the translates K + η, η ∈ L⊥ are mutually disjoint.

(3) Note that the function s(x) = sinc(bx) is up to a multiplicative constant
equal to the inverse Fourier transform χ̃K of the indicator function χK of
K = [−b, b). Recall that χK(ξ) = 1 for ξ ∈ K and χK(ξ) = 0 otherwise.
We have

(2.6) χ̃K(x) = (2π)−1/2

∫ b

−b

eixξ dξ =

√
2

π

sin bx

x
=

√
2

π
b sinc(bx).

The sampling theorem is closely related to the Poisson summation formula,
which is a fundamental tool for all results which will be discussed in this paper. Its
one-dimensional version reads as follows.

Theorem 2.4 (Poisson summation formula for R). Let h > 0, z, σ ∈ R, and
g ∈ C(R) such that |g(x)| ≤ C(1 + |x|)−1−ǫ, and |ĝ(ξ)| ≤ C(1 + |ξ|)−1−ǫ for some
C > 0, ǫ > 0. Then

(2.7) (2π)−1/2h
∑

l∈Z

g(z + hl) e−iσ(z+hl) =
∑

l∈Z

ĝ(σ + 2πl/h) eiz2πl/h.

For a proof see, e.g., [24, Theorem (8.36)]. The result holds also under less
restrictive hypotheses and in a very general setting; see [26, p. 217].

The sampling theorem can be formally derived from (2.7) as follows. Let z = 0
in (2.7). If ĝ(ξ) vanishes for |ξ| ≥ b and h ≤ π/b, then the right-hand side of (2.7)
simplifies to ĝ(σ) for |σ| ≤ b. Now take the inverse Fourier transform

g(x) = (2π)−1/2

∫ b

−b

ĝ(σ) eixσ dσ,

replace in the integral ĝ(σ) by the left-hand side of (2.7) and use (2.6).
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Another important application of the Poisson summation formula consists in
error estimates for numerical integration with the trapezoidal rule. Assume for
example that ĝ(σ) = (2π)−1/2

∫
R

g(x)e−iσx dx is to be approximated by

ĝ(σ) ≃ (2π)−1/2h
∑

l∈Z

g(hl)e−iσhl.

Letting z = 0 in (2.7) we obtain the following expression for the integration error:

(2π)−1/2h
∑

l∈Z

g(hl)e−iσhl − ĝ(σ) =
∑

l 6=0

ĝ(σ + 2πl/h).

The classical sampling theorem is fundamental for signal processing, has been
generalized in many directions, and given rise to the field of sampling theory. Read-
ers seeking more information on sampling theory will find ample material in survey
articles including [1, 7, 28, 34], monographs such as [29, 41, 60], and collections
of research articles, e.g., [3, 4, 30, 42].

2.3. Sampling lattices for the divergent beam transform. We have seen
that Df(β, α) is a function with domain [0, 2π) × [−π, π). For the subsequent
analysis it is more convenient to transform this domain to [0, 1)2 by means of the
change of variables

g(s, t) = Df(β, α)(2.8)

(s, t) ∈ [0, 1)2, (β, α) ∈ [0, 2π) × [−π, π)

s =
β

2π
, t =

α

2π
+

1

2
,

that is, we will henceforth consider the function

(2.9) g(s, t) = Df(2πs, 2πt − π), (s, t) ∈ [0, 1)2.

This will allow us to directly use the theory and algorithms developed in [18, §4].
The subsequent analysis of sampling and resolution will make use of Fourier

analysis. This requires both the domain of g as well as the sampling sets to have
a group structure. Equipped with addition modulo 1 the interval [0, 1) becomes a
group, called the circle group, which we denote by T. Then the domain of g may
be identified with the group T2, called the torus group. The Fourier transform of
g is given by

ĝ(k, m) =

∫ 1

0

∫ 1

0

g(s, t) e−2πi(ks+mt) ds dt, (k, m) ∈ Z
2.

Using the notation z = (s, t), ζ = (k, m), 〈z, ζ〉 = sk + tm, this can be written as

ĝ(ζ) =

∫

T2

g(z) e−2πi〈z,ζ〉 dz, ζ ∈ Z
2.

The inverse Fourier transform in this setting is given by

G̃(s, t) =
∑

k∈Z

∑

m∈Z

G(k, m) e2πi(ks+mt)

=

∫

Z2

G(ζ) e2πi〈z,ζ〉 dζ,

with z = (s, t) ∈ T2, ζ = (k, m) ∈ Z2, and dζ denoting the counting measure on
Z

2.
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The task of fan-beam tomography is to reconstruct f from finitely many mea-
surements of g. We require the set of all points (s, t) where g is measured to be
a (possibly shifted) finite subgroup of T2. We call a finite subgroup L of T2 a
lattice or sometimes a sampling lattice. Every lattice L in T2 has a corresponding
‘reciprocal lattice’ L⊥ in the Fourier domain Z

2. L⊥ is the set of all η ∈ Z
2 such

that e2πi〈y,η〉 = 1 for all y ∈ L.
In order to systematically investigate sampling on T2 we need to characterize

and parametrize all lattices. Fortunately such a characterization of the finite sub-
groups of T2 is available in the literature. Let |L| denote the number of elements of
a lattice L and let [x] denote the fractional part of a real number x, i.e., [x] ∈ [0, 1)
and x − [x] ∈ Z.

Proposition 2.5. If L is a finite subgroup of T2, then there exists a unique
non-singular lower triangular 2 × 2 matrix W such that

(i) As a set, L = [WZ2], and L⊥ = W−T Z2.

(ii) |L| = | detW |−1

(iii) The matrix W−T has Hermite normal form, i.e. W−T is an upper triangular
matrix

(2.10) W−T =

(
P −N
0 Q

)
with N, P, Q ∈ Z, P, Q > 0, 0 ≤ N ≤ P − 1.

W and W−T are called generator matrices of L and L⊥, respectively.

Proof: This is the two-dimensional case of Proposition 4.2 in [18], which in
turn is based on [50, pp. 125-126, 131-132] and [51, Theorems II.2, II.3]. �

From Proposition 2.5 we conclude the following. Any sampling lattice L =
L(N, P, Q) is characterized by three integers N, P, Q such that P, Q > 0, 0 ≤ N ≤
P − 1, the generator matrix W is given by

W =

(
1/P 0

N/(PQ) 1/Q

)
,

and

L = [WZ
2]

= {(sj, tjl) : sj = j/P, tjl = [(l + Nj/P )/Q],(2.11)

j = 0, . . . , P − 1, l = 0, . . . , Q − 1}.

Furthermore, the reciprocal lattice is given by

(2.12) L⊥(N, P, Q) = {(Pk1 − Nk2, Qk2) , k1, k2 ∈ Z} .

Going back for a moment to the (β, α) coordinates we see that sampling lattices
for fan-beam tomography have the following structure:

• There are P source positions zj = r(cos βj , sin βj) corresponding to the
equidistant angles

βj = 2πj/P, j = 0, . . . , P − 1.

• For each of these source positions Q integrals over rays corresponding to
an equidistant set of angles αjl with spacing 2π/Q are measured.
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• This collection of equiangular rays is shifted by an amount which varies
with the angle βj , so that the α-values corresponding to the angle βj are
given by

αjl = −π + 2π[(l + Nj/P )/Q], 0 ≤ l ≤ Q − 1

where the parameter N ∈ Z, 0 ≤ N ≤ P − 1 determines the shifting
pattern.

Hence every sampling lattice L = L(N, P, Q) is characterized by its number of
source positions P , the number Q of equiangularly spaced rays in each fan, and the
shift parameter N . The total number of samples equals PQ.

The most frequently used lattice is the standard lattice

LS = L(0, P, Q) = {(sj , tl) : sj = j/P, tl = l/Q, j = 0, . . . , P − 1, l = 0, . . .Q − 1}

which is obtained by letting N = 0.
We wish to apply Shannon sampling theory in order to find the best sampling

lattices. In order to do this we need to state the Poisson summation formula and
the classical sampling theorem for functions defined on T2.

Theorem 2.6 (Poisson summation formula for T2). Let z ∈ T2, ζ ∈ Z2, L =
L(N, P, Q) be a sampling lattice and g ∈ C∞(T2). Then

(2.13)
1

PQ

∑

y∈L

g(z + y)e−2πi〈z+y,ζ〉 =
∑

η∈L⊥

ĝ(ζ + η)e2πi〈z,η〉.

The classical sampling theorem for this setting reads as follows.

Theorem 2.7. Let g ∈ C∞(T2), L = L(N, P, Q) a sampling lattice and K
be a finite subset of Z2 such that its translates K + η, η ∈ L⊥ are disjoint. Let
χK denote the indicator function of K, i.e., χK(ζ) = 1 if ζ ∈ K and χK(ζ) = 0
otherwise. For z ∈ T2 define

(2.14) Sg(z) =
1

PQ

∑

y∈L

χ̃K(z − y)g(y).

Then

|g(z) − Sg(z)| ≤ 2

∫

Z2\K

|ĝ(ζ)| dζ.(2.15)

For a proof see, e.g., [17] or [45, pp. 62–64]. In these references the domain of
the function g is different, but the proof is readily transferred to the present setting.
The key idea is to start out with the observation

|g(z) − Sg(z)| ≤

∫

Z2

|ĝ(ζ) − Ŝg(ζ)| dζ,

split the integral into integrals over K and Z
2\K, observe that Ŝg vanishes outside

K, and estimate the integral over K using the Poisson summation formula and the
disjointness of the translates of K under elements of L⊥.

Observe that if ĝ vanishes outside of K then g = Sg, i.e., g can be recovered
exactly from its samples on the lattice L.

The right-hand side of (2.15) provides an estimate for the so-called aliasing
error. If g as in (2.9) is the divergent beam transform of a function with compact
support, then the Fourier transform ĝ cannot have compact support and an aliasing
error will always be present.
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3. Applications of the Classical sampling theorem.

In this section we illustrate some of the applications of the classical sampling
theorem, namely the identification of efficient sampling schemes and the qualitative
understanding of artifacts. Our presentation will focus on the fan-beam geometry.
An analogous discussion for the parallel-beam geometry can be found in [21].

3.1. Identification of efficient sampling schemes. Theorem 2.7 indicates
what needs to be done in order to find efficient sampling schemes for tomography,
i.e., when g(s, t) = Df(2πs, 2πt−π). First we need to find a suitable set K so that
the right-hand side of (2.15) is sufficiently small. Then we need to identify lattices
L(N, P, Q) as sparse as possible but such that the translated sets K + η, η ∈ L⊥

are disjoint.
The set K will of course depend on the function f . The crucial parameter turns

out to be a cut-off frequency b such that |f̂(ξ)| is negligible for |ξ| > b, in the sense

that the integral
∫
|ξ|>b

|f̂(ξ)|dξ is sufficiently small. The parameter b may be viewed

as an ‘essential bandwidth’ of f . In [46] it is shown that then |ĝ(k, m)| will be small
for |k −m| ≥ rb. On the other hand, it follows from [52, Theorem 2] that due to f
being supported in the unit disk, |ĝ(k, m)| is small and decays exponentially with
increasing k in the region r|k| ≥ ϑ−1|k−m|, where the ‘safety parameter’ ϑ satisfies
0 < ϑ < 1 and can usually be chosen very close to 1. Combining these estimates
and leaving some safety margin near the origin (cf. [25]) leads us to the set
(3.1)

K(ϑ, b) =
{
(k, m) ∈ Z

2 : |k − m| < rb, r|k| < ϑ−1 max(|k − m|, (1 − ϑ)rb)
}

;

see Figure 1. In this connection it is important to note that the only assumption
made about f when determining K is the essential bandwidth b. If f has additional
properties the essential support of ĝ may be smaller than K(ϑ, b). For example, if
f is rotationally symmetric, then ĝ(k, m) = 0 for |k| > 0.

The crucial feature both for finding efficient sampling schemes and for un-
derstanding some of the artifacts caused by undersampling is the particular, non-
convex shape of K. It stems from the fact that the function f has compact support.

The next step in applying Theorem 2.7 is to find conditions for the lattice
parameters N, P, Q such that the translated sets K(ϑ, b) + η, η ∈ L⊥(N, P, Q) are
disjoint. This is a requirement for the reciprocal lattice to be sparse which means
that the sampling lattice itself must be sufficiently dense.

We begin with the standard lattice, i.e., N = 0. According to (2.12) the
reciprocal lattice is given by

L⊥
S = L⊥(0, P, Q) = {(Pk1, Qk2) , k1, k2 ∈ Z} .

In particular, the points η1 = (0, Q), η2 = (P, 0), and η3 = (P, Q) are elements of
L⊥

S . Because of the symmetries of K(ϑ, b) and LS the sets K(ϑ, b)+ η, η ∈ L⊥
S

will
be disjoint if and only if the sets K(ϑ, b) + ηi, i = 1, 2, 3, do not intersect K(ϑ, b).
The sets K(ϑ, b) + (0, Q) and K(ϑ, b) + (P, 0) will be disjoint from K(ϑ, b) if and
only if Q ≥ 2rb and P ≥ max (2rb/(1 + ϑr), (2 − ϑ)b/ϑ), respectively. Usually ϑ is
chosen sufficiently close to 1 for the latter condition to simplify to P ≥ 2rb/(1+ϑr).
In this case it turns out that for the minimal choice

(3.2) P =
2rb

1 + ϑr
, Q = 2rb
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Figure 1. The set K(ϑ, b) of (3.1) for ϑ = 0.95, b = 100, and r =
3. The coordinates of the four outer corners are ±(b/ϑ, (1+ϑr)b/ϑ)
and ±(b/ϑ, (1−ϑr)b/ϑ). The coordinates of the four corners near
the origin equal (1−ϑ) times the coordinates of the outer corners.
In the case ϑ = 1 these four inner corners coincide at the origin,
resulting in the set K given in [46] and [49, p. 75].

the set K(ϑ, b) + (P, Q) is also disjoint from K(ϑ, b), so that all sets K(ϑ, b) + η,
η ∈ L⊥

S
are disjoint; see Figure 2. From this figure we can also see that keeping

P fixed and slightly increasing Q would move the set K(ϑ, b) + (P, Q) higher and
may lead to its intersection with K(ϑ, b). Thus the sampling conditions would be
violated in spite of having sampled more data. This phenomenon comes from the
non-convexity of K(ϑ, b) and will be discussed further in §3.3 below. Avoiding
this intersection of sets requires further restrictions on the choice of Q as long as
P < 2b/ϑ. We obtain the following conditions.

If max

(
2rb

1 + ϑr
, (2 − ϑ)b/ϑ

)
≤ P < 2b/ϑ,

then choose either 2rb ≤ Q ≤ (1 + ϑr)P or Q ≥ 2rb + P.(3.3)
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The conditions simplify considerably if P ≥ 2b/ϑ, since then the sets K(ϑ, b) and
K(ϑ, b) + (P, Q) cannot intersect. Hence the sets K + η, η ∈ L⊥

S
will be disjoint if

(3.4) P ≥ 2b/ϑ, Q ≥ 2rb.

Together the conditions (3.3) and (3.4) form a necessary and sufficient set of sam-
pling conditions for the standard lattice. For comparison of these conditions with
earlier results in the literature it is sometimes helpful to rewrite them in terms of
the angular increments ∆β = 2π/P and ∆α = 2π/Q.

k

m

P

Q

Figure 2. The translated sets K(ϑ, b)+η for the standard lattice
in case of P = 2rb

1+ϑr , Q = 2rb, b = 100, r = 3, ϑ = 0.95.

The translated sets in Figure 2 do not appear to be packed as densely as pos-
sible. Another arrangement corresponding to a different lattice may result in a
denser packing, giving a denser reciprocal lattice and therefore a sparser sampling
lattice. However, it is apparent from letting k1 = 1, k2 = 0 in (2.12) that the
point η = (P, 0) always belongs to L⊥(N, P, Q). Hence for every sampling lat-
tice P needs to be chosen no smaller than max(2rb/(1 + ϑr), (2 − ϑ)b/ϑ), since
otherwise the sets K(ϑ, b) and K(ϑ, b) + (P, 0) would intersect. Hence the stan-
dard lattice is optimal in the sense that it allows for parameter choices with a
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minimal number of source positions. Since the total number of measurements
is PQ, other lattices can only be more efficient overall by allowing values of Q
less than 2rb or by exploiting the symmetry (2.5). On the other hand the choice
k1 = N/ gcd(P, N), k2 = P/ gcd(P, N) in (2.12) reveals that the reciprocal lattice
always contains the point η = (0, QP/ gcd(P, N)). This yields the necessary con-
dition Q ≥ 2rb gcd(P, N)/P . If gcd(P, N) < P this would allow for values of Q
smaller than 2rb. However, the above condition is only necessary but in general
not sufficient to avoid overlap of the translated sets K + η, η ∈ L⊥.

Natterer [46] showed that in the case ϑ = 1 a lattice L of optimal sparsity is
given if b and rb are integers and the generator matrix of the reciprocal lattice has
the form

(3.5) W−T =

(
b 0

(1 − r)b 2rb

)
, b, rb ∈ Z.

(see also [47] and [49, p. 77]). According to Proposition 2.5 there exists a unique
matrix of the form (2.10) that generates the same reciprocal lattice. This matrix
can be found using an algorithm similar to the one described in [6]. This yields the
lattice parameters

(3.6) Q = gcd((r − 1)b, 2rb), P = 2rb2/Q, N = −mod(nb,−P ),

where the integer n is found by the relation m2rb−n(r−1)b = Q, with m ∈ Z, and
mod(nb,−P ) denotes the unique integer in [1 − P, 0] which differs from nb by a
multiple of P . For example, let r = 3 and b = 100. Then Q = gcd(200, 600) = 200,
P = 300, m = 0, n = −1, N = 100. In comparison, the sampling conditions for
the standard lattice require at least P = 2rb/(1 + r) = 150 and Q = 2rb = 600. So
the total number PQ of lattice points for the efficient lattice is in this case 2/3 of
the number of points required for the standard lattice. In general this ratio equals
(1 + r)/(2r), which approaches 1 for r → 1 and 1/2 in the limit r → ∞. Our
numerical experiments indicate that the set K may be slightly too small in the case
ϑ = 1. In case of ϑ < 1 the values of P and N have to be slightly increased for the
efficient lattice, leaving the ratio P/N unchanged.

Figure 3 shows the case of (nearly) optimally sparse sampling with the efficient
lattice, for b = 100, r = 3, ϑ = 0.95, P = 330, N = 110, Q = 200. It obtains the
same theoretical resolution (as determined by the bandwidth b) as the standard
lattice with approximately 73% of the amount of data required for the standard
lattice.

Practical drawbacks of the efficient lattice include the presence of the dynamic
detector shift since N 6= 0 which may be inconvenient to realize in practice, and
that for some values of r and b the value for P in (3.6) can become very large and
the value for Q very small. We will disregard these difficulties for the moment and
explore if indeed accurate reconstructions can be obtained from efficiently sampled
data.

3.2. Reconstruction. There are at least two ways in which to approach the
reconstruction of images from the sampled data. First, one could use the sampled
data directly as input for a reconstruction algorithm, for example the filtered back-
projection algorithm. Second, one could first interpolate the sampled data to a
denser lattice using the sampling theorem, and then reconstruct from these inter-
polated data. In the parallel-beam case it was shown in [38, 17, 22] that filtered
backprojection can be used directly, even with efficiently sampled data, although
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Figure 3. Some of the translated sets K(ϑ, b) + η, η ∈
L⊥(N, P, Q) for the efficient lattice in case of r = 3, b = 100,
ϑ = 0.95, N = 110, P = 330, Q = 200.

experiments in [16] indicate that the second approach may be slightly better. We
now investigate this situation for the fan-beam geometry and compare using the
filtered backprojection algorithm directly with the method of first bandlimiting and
interpolating the data onto a denser lattice and only then reconstructing with the
filtered backprojection algorithm. We use the version of the fan-beam filtered back-
projection algorithm as described in [45] or [35], with a convolution kernel similar
to [35, §3.4.1], but replace the straight ramp filter h(t) used in [35, p. 82] with the
Shepp-Logan kernel as given in [45, p. 111]. The algorithm used for bandlimiting
and interpolating the data is described in [18, §4].

We will use simulated data from a very simple object for our investigation,
namely the function

(3.7) f(y) =
(
1 − 100|y − y0|

2
)3
+

, y0 = (0.4, 0.7)

where the + symbol indicates that f(y) = 0 whenever (1 − 100|y − y0|
2) < 0. The

function f(y) is supported in the region |y−y0| ≤ 0.1. Since f is quite smooth, it is
essentially bandlimited and therefore provides a good test for our theory. Choosing
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a cut-off frequency b = 100 will be sufficient for a good reconstruction. Since f is
known analytically, we can use not only the visual impression of the images but also
the discrete relative l2-error as a measure for the accuracy of the reconstruction. If
I(xn, ym) is the reconstructed image, the relative l2-error is given by

E =

(∑
n,m |f(xn, ym) − I(xn, ym)|2

∑
n,m |f(xn, ym)|2

) 1

2

.

The upper left image in Figure 4 shows the direct reconstruction with the
filtered backprojection algorithm from data sampled on the standard lattice with
b = 100, r = 3, P = ceil(2rb/(1 + ϑr)) = 156, N = 0, and Q = 2rb = 600. The
discrete convolution occurring in the algorithm is computed on a very dense grid
with stepsize H = π/(8Q) = π/4800 in order to suppress errors stemming from
the interpolation step of the algorithm; cf. [21, §6], [22]. The reconstruction is
computed on a 256 × 256 grid. The maximum of f(x) is 1, but since we want
to study small artifacts the display window is such that values below −0.01 are
rendered black and values above 0.01 are rendered white. The relative l2-error
is about 5.4%. The lower left image shows the reconstruction after interpolating
the data first onto the denser lattice with P = 274, Q = 892, N = 0 and then
using the filtered backprojection algorithm. The interpolation was done using the
sampling theorem and the algorithm described in [18, §4]. It computes the Fourier
transform of the data inside K, sets it to zero outside K, and then computes the
data on the denser lattice using an Inverse Fast Fourier Transform. The relative
l2-error is now about 2.4%, less than half of the error of the direct reconstruction.
The difference between the two methods of reconstruction is even more pronounced
in case of the efficient lattice. The upper right image in Figure 4 shows the direct
reconstruction from efficiently sampled data with P = 330, Q = 200, N = 110,
and the other parameters as above. There are strong artifacts and the relative l2-
error is now about 52%. The lower right image shows the reconstruction with prior
interpolation onto the standard lattice with parameters P = 274, Q = 892, N = 0,
and the discrete convolution computed on a grid with a stepsize of H = π/4906. The
relative l2-error is about 2.4%, almost exactly the same as for the reconstruction in
the lower left image. This experiment indicates that accurate reconstruction from
efficiently sampled data is possible if the data are first bandlimited to K and then
interpolated onto a denser grid. On the other hand, the filtered backprojection
algorithm in its usual form does not appear to achieve the theoretically possible
resolution when reconstructing directly from the data without prior interpolation
to a denser grid. A heuristic explanation for this behavior could be as follows:
The change of variables from parallel-beam to fan-beam yields for the convolution
step of the algorithm a cut-off frequency b′ = |x − z(β)|b which depends on the
reconstruction point x and the source location z(β) = r (cos(β), sin(β)). In order
to obtain a fast algorithm b′ is replaced by a constant bc; cf. [45, p. 113]. It
appears that in order to obtain the desired resolution bc should not be smaller than
the maximum of |x − z(β)|b, i.e., (r + 1)b. On the other hand, the values of P and
Q used for the reconstruction should be large enough for the numerical integrations
occurring in the algorithm to be accurate for such a value of bc. The reconstructions
from efficiently sampled data presented in [46] where performed with a modified
filtered backprojection algorithm (see [46, Eq. (4.7)]) which apparently avoided
replacing b′ by a constant, but may be slow as a consequence. Since the bandlimiting
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Figure 4. Reconstructions of the function f(x) of (3.7). All
reconstructions are computed with b = 100, r = 3, and displayed
on a 256 × 256 grid. The function takes values between 0 and 1,
but in order to highlight small artifacts the display is such that
values smaller than −0.01 are rendered black and values larger
than 0.01 are rendered white. Upper row: Direct reconstructions
with filtered backprojection algorithm. Upper left: Data sampled
on the standard lattice with P = 156, N = 0, Q = 600. Upper
right: Efficient lattice with P = 330, N = 110, Q = 200. Lower
row: Reconstructions after bandlimiting the data to K(ϑ, b), ϑ =
0.95, and then interpolating onto a denser standard lattice with
P = 274, N = 0, Q = 892 prior to reconstruction with filtered
backprojection. Lower left: Original data sampled on standard
lattice as in upper left. Lower right: Original data sampled on
efficient lattice as in upper right.

and interpolation by the sampling theorem is much faster than reconstruction with
the filtered backprojection algorithm, adding this step does not lead to a significant
slowdown of the reconstruction.
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3.3. Qualitative understanding of artifacts from undersampling. Now
we investigate the effects of undersampling, that is, of violating the sampling condi-
tions requiring the translates K + η, η ∈ L⊥ to be disjoint. Consider the following
numerical experiments. Figure 5 again shows various reconstructions of the func-
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Figure 5. Artifacts resulting from undersampling. The function
to be reconstructed is f(x) from (3.7). All reconstructions are
computed with b = 100, r = 3, and displayed on a 256 × 256 grid
such that values less than −0.01 are rendered black and values
greater than 0.01 are rendered white. Top row: Effects of P being
too small. Top left: Reconstruction from standard lattice with P =
140 instead of 156. Top right: Reconstruction from efficient lattice
with P reduced to 300 from 330. Bottom right: Reconstruction
from efficient lattice with Q increased from 200 to 240.

tion f(x) given in (3.7), from fan beam data with source radius r = 3 and cut-off
frequency b = 100.

The upper left picture shows a reconstruction with the standard lattice with
Q = 600 and P reduced to 140 from the value of 156 required by the sampling
conditions (3.3) for r = 3, b = 100, and ϑ = 0.95. This reduction of P by about
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10% results in a relative l2-error of about 4.6%. The upper right picture shows
the corresponding case for the efficient lattice, where P has been reduced by about
10% from 330 to 300. The resulting artifacts are much stronger, resulting in a
relative error of about 28%. The picture in the lower right shows an at first glance
surprising result. Here we used the efficient lattice and increased the parameter Q
from 200 to 240. In spite of having sampled more data we obtain strong artifacts
and a relative error of almost 30%.
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Figure 6. The translated sets K(ϑ, b)+η, η ∈ L⊥ for the efficient
lattice in case of r = 3, b = 100, ϑ = 0.95, P = 330, N = 110, and
Q = 240. The increased value of Q compared to Figure 3 leads to
overlap of the translated sets and thus aliasing, in spite of sampling
more data than with the correct choice Q = 200.

The classical sampling theorem can help us understand these experiments at
least qualitatively. In Figure 6 we see the translates K(ϑ, b)+η, η ∈ L⊥ for the case
corresponding to the lower right reconstruction in Figure 5. We see that increasing
Q has led to an overlap of the translates of K and thus undersampling, in spite of
having sampled more data. This explains the presence of the artifacts. Increasing
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P while leaving both Q and N fixed can also lead to overlap of the translated sets.
On the other hand, sampling more data by leaving Q fixed and increasing P and
N such that P/N remains constant does not lead to undersampling. In this case
the translated sets K + η in Figure 3 move further apart from each other in the
horizontal direction and remain disjoint.

As our numerical experiment indicated, the efficient lattice shows much greater
sensitivity with regard to undersampling in P than the standard lattice. The pat-
tern of overlap of the sets K + η provides a qualitative explanation. Figure 7 shows
the translated sets K + η in case of the standard lattice with P = 140, N = 0, and
Q = 600, which partially overlap for this choice of parameters. The effect of such
overlap can be investigated with the help of the Poisson summation formula (2.13).
Assume we wish to compute an approximation for the Fourier transform ĝ(ζ) from
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Figure 7. The translated sets K(ϑ, b) + η, η ∈ L⊥ for the stan-
dard lattice with parameters r = 3, b = 100, ϑ = 0.95, P = 140,
N = 0, and Q = 600. The decreased value of P compared to
Figure 2 leads to overlap.
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the values of g on a sampling lattice L by means of taking the discrete Fourier trans-
form with respect to L. The result would be ĝ(ζ) ≃ (1/PQ)

∑
y∈L

g(y)e−2πi〈y,ζ〉,

i.e., just the left-hand side of the Poisson summation formula (2.13) for z = 0.
According to the Poisson summation formula we have

ĝ(ζ) ≃ (1/PQ)
∑

y∈L

g(y)e−2πi〈y,ζ〉 =
∑

η∈L⊥

ĝ(ζ + η) = ĝ(ζ) +
∑

06=η∈L⊥

ĝ(ζ + η).

If the translated points ζ + η lie outside K = K(ϑ, b) for η 6= 0 we may assume
that their contribution is small, so that we obtain a good approximation for ĝ(ζ).
For ζ ∈ K this will be the case if the translated sets K + η are disjoint. If the
sets K + η are not disjoint, there will be non-negligible error terms ĝ(ζ + η), with
ζ + η lying in the part of K which is overlapped by other translates. In the case
of Figure 7 we see that these regions lie well away from the origin. Since f is non-
negative (as are almost all functions encountered in tomography) the data function
g will be non-negative as well. Hence |ĝ| will assume its maximum at the origin
and decrease away from the origin. So we can assume that the error resulting from
the terms ĝ(ζ + η) with ζ + η not close to the origin will be at most moderately
large. This gives a qualitative explanation that the standard lattice is not overly
sensitive to undersampling with regard to P . By a similar argument we may expect
that violating the sampling conditions (3.3) by choosing Q in the excluded range
(1 + ϑr)P < Q < 2rb + P will in most cases not cause significant artifacts.

The situation is different with the efficient lattice. Figure 8 shows the translated
sets K + η corresponding to the reconstruction in the lower right of Figure 5.
Comparing this to Figure 3 we see that decreasing P from 330 to 300 leads to
overlap of K by some of the translated sets, in particular near the origin where ĝ is
largest. So some of the error terms ĝ(ζ+η) will be large, making the efficient lattice
considerably more sensitive with regard to undersampling in P than the standard
lattice.

A similar discussion has been given for the parallel-beam case in [21], followed
by a detailed quantitative error analysis explaining also the location of the artifacts
resulting from undersampling. Comparing the two sampling geometries we find
that the standard lattice for the fan-beam geometry is more sensitive to undersam-
pling with regard to P than the parallel-beam standard lattice is with regard to
undersampling in the variable ϕ.

3.4. Error analysis of reconstruction algorithms. The most popular to-
mographic reconstruction algorithm is the so-called filtered backprojection algo-
rithm. It is based on the approximate inversion formula

(3.8) e ∗ f(x) =

∫ 2π

0

∫

R

k(〈x, θ〉 − s)Rf(ϕ, s) ds dϕ

where e is an approximate δ-function and the kernel k can be computed from
e; see, e.g., [45, p. 102]. The relation (3.8) can be verified by writing e ∗ f as

e ∗ f(x) =
∫

ê(ξ)f̂(ξ)ei〈x,ξ〉dξ, expressing the integral in polar coordinates, and
using the relation (2.3); see, e.g., [20].

Discretizing the integrals in equation (3.8) by using the trapezoidal rule yields
the filtered backprojection algorithm for the parallel-beam geometry. The appro-
priate Poisson summation formula furnishes an error estimate. If the sampling
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Figure 8. The translated sets K(ϑ, b)+η, η ∈ L⊥ for the efficient
lattice with parameters r = 3, b = 100, ϑ = 0.95, P = 300,
N = 100, and Q = 200. The decreased value of P compared to
Figure 3 leads to overlap.

conditions are satisfied, this error will be small [38]. Nevertheless, at first recon-
structions with the efficient parallel-beam lattice at full resolution showed large
errors. The reason turned out to be an interpolation step in the algorithm. This
interpolation is harmless for the standard lattice, but has to be carried out very ac-
curately for the efficient lattice in order to obtain good reconstructions. For details
see [38, 17, 22, 21]. Convergence rates for the filtered backprojection algorithm
were obtained in [56] with an approach unrelated to sampling theory.

The filtered backprojection algorithm for the fan-beam geometry is obtained
by using the change of variables ϕ = α + β − π/2, s = r sinα in (3.8) and making
additional approximations as mentioned above; see, e.g., [45, §V.1.2]. A complete
error analysis analogous to the parallel-beam case appears to be still outstanding,
but current research may result in considerable progress [33]. Kruse [38] provided
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an error analysis for Marr’s algorithm [43], which was found to perform superior
to direct reconstruction with the fan-beam filtered backprojection algorithm.

4. Exploiting the symmetry: An application of periodic sampling to

increase resolution in fan-beam tomography

Periodic sampling sets are unions of shifted copies of a lattice. Such sets are
called periodic since they are invariant under shifts with elements of the lattice,
since lattices are subgroups. Sampling theorems for periodic sampling sets are
more complicated than the classical sampling theorem, but can still be proved
using the Poisson summation formula; see, e.g., [16, 18]. In this section we briefly
describe a very interesting recent development involving periodic sampling. So far
we have not yet made use of the symmetry property (2.5). In the parallel-beam
case the analogous relation (2.2) is used by choosing lattices which also possess the
symmetry, so that only half of the lattice points need to be measured. For special
lattices in the fan-beam geometry e.g., the efficient lattice (3.5) introduced in [46]
this is also the case, but not in general. Izen, Rohler, and Sastry [32] discovered
a way to exploit the symmetry relation (2.5) to increase resolution. If Q = 2q is
even, the (shifted) standard sampling lattice in the (β, α) coordinates is given by

LS = {(βj , αl) : βj = 2πj/P, αl = π(l + δ)/q,

j = 0, . . . , P − 1, l = −q, . . . , q − 1, δ ≥ 0}, Q = 2q.(4.1)

Note the constant shift δπ/q in the α variable. Many scanners use δ = 1/4 to
reduce data redundancy. If Df is sampled on the standard lattice (4.1), then using
the symmetry (2.5) gives us additional data on a ’reflected lattice’

LR = {(βj + 2αl + π,−αl) : (βj , αl) ∈ LS}.

Since the union LS ∪ LR is in general not a lattice (or shifted lattice) itself, the
classical sampling theorem cannot be applied. In addition, since LR differs from
LS by more than a constant shift, LS ∪LR is a union of two different lattices, so a
periodic sampling theorem which handles sampling sets which are unions of shifted
copies of the same lattice does at first glance also not apply. However, Izen et al.
[32] discovered that LS ∪LR is a union of 2q/ gcd(P, q) shifted copies of the smaller
lattice

LP = {(2πj/P, πl/ gcd(P, q)), j = 0, . . . , P − 1, |l| ≤ gcd(P, q)}.

While Izen, Rohler, and Sastry used a different approach to reconstruction, their
discovery makes it possible to apply the periodic sampling theorem and interpola-
tion algorithms of [18]. This is somewhat more complicated but also more general
than the approach of [32]. A first demonstration has recently been given by Mitchell
[44]. While normally doubling the resolution would require four times the data,
using the reflected data allows us to achieve twice the resolution achievable with
LS alone by only having to double the number P of source positions. According to
[32] this also overcomes the following problem, related to the beams of finite width
mentioned by Cormack in the quote at the beginning of this article. It can be shown
that the natural band-limiting of the data caused during the measurement process
by the averaging over the finite detector width d (i.e., by using beams of finite
width instead of measuring line integrals) corresponds to a maximum frequency of
approximately 2π/d; cf. [35, §5.1.2]. On the other hand, the highest sampling rate
in the α variable occurs when the detectors are adjacent, so it is equal to d. Hence
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according to Theorem 2.2 the highest resolvable frequency would be b = π/d, only
half as large as the band-width of the measured data. Using the reflected data as
described above now allows to achieve the full resolution.

5. Conclusions

This article has given an introduction to the use of sampling theory in tomog-
raphy using the example of the two-dimensional fan-beam geometry. The approach
taken here involved a change of variables so that existing theory and software [18]
for sampling on the torus group T2 could be used. A parameterization of all sam-
pling lattices was given. The commonly used standard lattice and an efficient lattice
similar to the one of [46] were given special attention, including a complete set of
sampling conditions for the standard lattice.

Numerical experiments were presented, indicating that unlike the parallel-beam
case, a direct application of the fan-beam filtered backprojection algorithm does give
suboptimal, and in case of the efficient lattice unacceptable, results. On the other
hand, using the sampling theorem to first bandlimit the data to the set K(ϑ, b)
and then interpolating it to a dense lattice prior to reconstruction yields accurate
reconstructions, at least for a smooth test object.

A qualitative explanation of artifacts resulting from undersampling was given
with results similar to the parallel-beam case, the most significant difference being
the somewhat higher sensitivity of the fan-beam standard lattice with regard to
undersampling in the number of source positions. Finally, a new way to exploit the
symmetry of the data to increase resolution was reviewed.

Two practically important issues left out of the preceding discussion are func-
tions with discontinuities and the effect of noise. Discontinuities cause a slower
decay of the Fourier transform and thus the assumption of an essential bandwidth
b is less well satisfied. A common way to deal with the resulting artifacts is to filter
the data prior to reconstruction. The trade-off is that this gives up some of the
higher resolution gained by efficient sampling. Noise in the data is similarly more
critical when reconstructing at high resolution with sparsely sampled data. One
way to deal with this problem is to denoise the reconstructed image with a denois-
ing method that preserves edges, such as the method of Rudin-Osher-Fatemi [58]
based on minimizing the total variation. Recently Hass [27] has demonstrated that
such denoising may remove the increased effects of noise and still retain somewhat
higher resolution.

We conclude by giving a list of examples of areas where sampling theory and
tomography have interacted and stimulated each other. An area of increasing cur-
rent interest is sampling in three-dimensional tomography. The list below is by no
means complete but is meant to provide interested readers with an opportunity for
further study.

5.1. Examples for the interaction of sampling theory and tomogra-

phy. A brief overview of how sampling theory and tomography have interacted and
stimulated each other may contain at least the themes and topics listed below.

5.1.1. Applications of the Classical Sampling Theorem.

• Identification of efficient sampling lattices in 2D and 3D. The goal is to
obtain a desired resolution with a minimum number of measurements.
See, e.g., [11, 12, 13, 14, 19, 31, 40, 45, 46, 47, 48, 49, 55].
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• Qualitative understanding of artifacts. The classical sampling theorem
permits a qualitative understanding of artifacts caused by aliasing from
undersampling; see, e.g., [17, 21, 31].

• Error analysis of reconstruction algorithms. The Poisson summation for-
mula connects sampling theory to the error analysis of the filtered back-
projection algorithm; see, e.g., [17, 21, 22, 33, 38, 39, 45, 49]. For
results on algebraic algorithms see [10, 36].

5.1.2. Research in Sampling Theory stimulated by CT. Different data acquisi-
tion geometries in tomography stimulate interest in:

• Sampling theorems where the sampling set is not a lattice.
– Multidimensional periodic sampling sets. Here the sampling set is a

union of several cosets of a lattice. See [16, 18].
– Non-periodic sampling on unions of shifted lattices [2, 59].
– Non-uniform sampling. Here the sampling set has no structure which

could be exploited with the Poisson summation formula. Examples
include polar or spiral sampling in Fourier space; see, e.g., [1, 5, 23,

53].
• An estimate for the aliasing error sharper than (2.15) [19].
• A unified mathematical framework. Many applications of sampling can be

unified in the simple and elegant framework of Fourier analysis on locally
compact abelian groups; see,e.g., [2, 15, 18, 37].

5.1.3. Applications of periodic sampling in CT.

• Additional efficient 2D sampling schemes [9, 16].
• ‘Preferred pitch’ in 3D helical CT [25, 57].
• Higher resolution in 2D fan-beam CT [32].

5.1.4. Applications of non-periodic sampling.

• Higher resolution in 2D fan-beam CT [25].
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Boston, 2004.

[5] M. Bourgeois, F. T. A. W. Wajer, D. van Ormondt, and D. Graveron-Demilly, Reconstruction
of MRI images from non-uniform sampling and its application to intrascan motion correction
in functional MRI, in [3], pp. 343–363.

[6] G. H. Bradley, Algorithms for Hermite and Smith normal matrices and linear Diophantine
equations, Math. Comp. 25 (1971), 897–907.
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211–231.

[27] R. A. Hass, De-noising tomography images through bounded variation, M.S. paper, Dept. of
Mathematics, Oregon State University, 2005.

[28] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. 12 (1985),
45–89.

[29] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Clarendon
Press, Oxford, 1996.

[30] J. R. Higgins and R. L. Stens (eds), Sampling Theory in Fourier and Signal Analysis: Ad-
vanced Topics, Clarendon Press, Oxford, 1999.

[31] T.-C. Hsung and D. P. K. Lun, New sampling scheme for region-of-interest tomography,
IEEE Trans. Signal Processing 48 (2000), 1154–1163.

[32] S. H. Izen, D. P. Rohler, and K.L.A Sastry, Exploiting symmetry in fan-beam CT: Overcoming
third generation undersampling, SIAM J. Appl. Math. 65 (2005), 1027–1052.

[33] S. H. Izen, An analysis of the fan beam CT reconstruction kernel, talk presented at the
Special Session on Radon Transform and Inverse Problems, AMS National Meeting, Atlanta,
January 2005.

[34] A. J. Jerri, The Shannon sampling theorem - its various extensions and applications: a
tutorial review, Proc. IEEE 65 (1977), 1565–1596.

[35] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging, IEEE Press,
New York, 1988.

[36] W. Klaverkamp, Tomographische Bildrekonstruktion mit direkten algebraischen Verfahren,
Ph.D. thesis, Fachbereich Mathematik, Westfälische Wilhelms-Universität Münster, Ger-
many, 1991.

[37] I. Kluvanek, Sampling theorem in abstract harmonic analysis, Mat. Casopis Sloven. Akad.
Vied, 15 (1965), 43–48.



24 ADEL FARIDANI

[38] H. Kruse, Resolution of reconstruction methods in computerized tomography, SIAM J. Sci.
Stat. Comput. 10 (1989), 447–474.

[39] R. M. Lewitt, R. H. T. Bates, and T .M. Peters, Image reconstruction from projections: II:
Modified back-projection methods, Optik 50 (1978), 85–109.

[40] A. G. Lindgren and P. A. Rattey, The inverse discrete Radon transform with applications
to tomographic imaging using projection data, Advances in Electronics and Electron Physics
56 (1981), 359–410.

[41] R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer, New
York, 1991.

[42] R. J. Marks II (ed.), Advanced Topics in Shannon Sampling and Interpolation Theory,
Springer, New York, 1993.

[43] R. B. Marr, On the reconstruction of a function on a circular domain from a sampling of its
line integrals, J. Math. Anal. Appl. 45 (1974), 357–374.

[44] N. Mitchell, Multi-dimensional sampling in fan beam tomography, M.S. paper, Dept. of Math-
ematics, Oregon State University, 2005.

[45] F. Natterer, The Mathematics of Computerized Tomography, Wiley, 1986.
[46] F. Natterer, Sampling in fan-beam tomography, SIAM J. Appl. Math. 53 (1993), 358–380.
[47] F. Natterer, Sampling and resolution in CT, Computerized Tomography (M.M. Lavrent’ev,

ed.), VSP, Utrecht, 1995, pp. 343–354.

[48] F. Natterer, Resolution and reconstruction for a helical CT scanner, Technical Report 20/96-
N, Fachbereich Mathematik, Universität Münster, Germany, 1996.

[49] F. Natterer and F. Wuebbeling, Mathematical Methods in Image Reconstruction, SIAM,
Philadelphia, 2001.

[50] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM,
Philadelphia, 1992.

[51] M. Newman, Integral Matrices, Academic Press, 1972.
[52] V. P. Palamodov, Localization of harmonic decomposition of the Radon transform, Inverse

Problems 11 (1995), 1025–1030.
[53] D. Potts and G. Steidl, Fourier reconstruction of functions from their nonstandard sampled

Radon transform, J. Fourier Anal. Appl. 8 (2002), 513–533.
[54] E. T. Quinto, An introduction to x-ray tomography and Radon transforms, this volume.
[55] P. A. Rattey and A. G. Lindgren, Sampling the 2-D Radon transform, IEEE Trans. Acoust.

Speech Signal Processing 29 (1981), 994–1002.
[56] A. Rieder and A. Faridani, The semi-discrete filtered backprojection algorithm is optimal for

tomographic inversion, SIAM J. Num. Anal. 41 (2003), 869–892.
[57] P. J. La Riviere and X. Pan, Pitch dependence of longitudinal sampling and aliasing effects

in multi-slice helical computed tomography (CT), Phys. Med. Biol. 47 (2002), 2797–2810.
[58] L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Phys. D 60 1-4 (1992), 259–268.
[59] D. Walnut Nonperiodic sampling of bandlimited functions on unions of rectangular lattices,

J. Fourier Anal. Appl. 2 (1996), 435–452.
[60] A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, Florida,

1993.

Department of Mathematics, Oregon State University, Corvallis, Oregon, 97331

E-mail address: faridani@math.oregonstate.edu


