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Figure 1: The Siemens SOMATOM Sensation 64 CT scanner. This scanner
can measure 64 fans simultaneously with a gantry rotation speed of 0.33 seconds.
Image courtesy of Siemens Medical Solutions [23].

1 Introduction

The goal of computed tomography (CT) is to create an accurate image of the
interior of an object in a nondestructive way. One well-known example is the
use of x-ray CT in medical scans, sometimes called CAT (computerized axial
tomography) scans. In this paper we will be concerned with the so-called third
generation of medical CT scanners (see Figure 1).

In third-generation scanners the source-detector apparatus, or gantry, ro-
tates around the patient. The source emits a continuous fan of x-rays which
are partially absorbed, or attenuated, by bones and tissue. At discrete time
intervals the intensities of the attenuated beams are recorded by a curved array
detectors. These measurements are then used in a computerized algorithm to
construct detailed images of the internal organs and structures of the body.

The quality of the image depends on both the detector density and the
number of source locations. Since the x-ray source fires continuously throughout
a scan, the source density can be increased without difficulty by increasing the
number of measurements recorded by the detectors. The detector density, on
the other hand, is fixed. Thus, the maximum image resolution is governed by
the spacing of the detectors.

In third-generation scanners the detectors are placed side by side, without
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any gaps, in order to catch the most x-rays. Unfortunately, this spacing limits
the resolution to half of what the detectors are capable of measuring. If we
wanted to use the standard algorithm (Algorithm 5.3 in [17]) to reconstruct at
that higher resolution we would need to double both the source and the detector
densities. While doubling the source density is not a problem, the detector
density is fixed and the measured data would be undersampled by a factor
of two. This predicament, which is inherent in the design of third-generation
scanners, it is sometimes called the third-generation problem.

In this paper we discuss a new sampling scheme proposed by S. H. Izen, D.
P. Rohler, and K.L.A. Sastry [4]. This method obtains the same resolution as
the standard algorithm with just half the data. In practice, this allows for a
doubling of the reconstruction resolution by doubling only the number of source
locations, effectively solving the third-generation problem.

The paper is organized into six sections. In this section we cite the pertinent
aspects of Fourier analysis and introduce the transforms used in two-dimensional
tomography. Sampling theory is covered in Section 2, culminating with a pe-
riodic multi-dimensional sampling theorem developed by Faridani [5] [7]. The
standard and the reflected sampling schemes are addressed in Section 3 includ-
ing the benefits of the quarter detector shift. In Section 4 we discuss the method
of Izen et al. for viewing the standard and reflected sample points as the union
of shifted copies of a single rectangular lattice. Section 5 integrates Sections 2
and 4 and shows how the results can be applied to the third-generation problem,
concluding with a numerical experiment verifying the results. A summary of
our conclusions is found in Section 6

1.1 Fourier Analysis

We begin by introducing some notation that will be used in this paper. [14] [17]
[10] [26].

Let Z, R, C denote the integers, real and complex numbers, respectively, and
let χM be the characteristic function of a set M . Rn is the set of all real valued n-
dimensional vectors, usually denoted by a single letter, x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn), etc. The inner product on Rn is given by 〈x, y〉 =

∑n
i=1 xiyi

and the absolute value of a vector is |x| =
√
〈x, x〉. We denote the unit sphere

in Rn by Sn−1 = {x : |x| = 1} and a point in Sn−1 is usually designated by θ.
We say that a function f is in the space C∞

0 (Rn) if f is infinitely differentiable
and has compact support. L1(Rn) is the space of (Lebesgue) integrable functions
on R

n and L2(Rn) is the space of square integrable functions. By S(Rn) we
denote the Schwartz space of rapidly decreasing functions. We note that S(Rn)
contains the space C∞

0 (Ω) of infinitely differentiable functions which vanish
outside of the unit disk Ω and that S(Rn) is itself contained in L1(Rn).

For f ∈ L1(Rn) we define its Fourier transform f̂ by

f̂(ξ) = (2π)−n/2

∫

Rn

f(x)e−i〈x,ξ〉dx.



3

For large expressions we will consistently use (. . .)∧ for the Fourier transform of
(. . .). The inverse Fourier transform f̃ of f is given by

f̃(ξ) = (2π)−n/2

∫

Rn

f(x)ei〈x,ξ〉dx.

Both transforms are used for other functions f such as those in L2(Rn) and in
S(Rn) (see chapters 1 of [25] and 4 of [26]).

Fourier’s inversion formula reads

˜̂
f = ˆ̃f = f.

In fact, the Fourier transform maps S(Rn) onto S(Rn) linearly and continuously

in both directions and f̃ is indeed the inverse mapping of f̂ (see [26] pp. 146-
147).

Some of the properties of the Fourier transform are as follows. Since it is
linear we have

(af + bg)∧ = af̂ + bĝ,

for any constants a and b. For c > 0 the scaling property

f̂(c ξ) = c−nf̂

(
ξ

c

)
,

holds. And if y ∈ Rn, then the translation property of the Fourier transform is

f̂(ξ + y) = ei〈ξ,y〉f̂(ξ).

For f, g in S(Rn) the convolution of f and g, written f ∗ g, exists in S(Rn)
and is defined to be

f ∗ g(x) =

∫

Rn

f(x − y)g(y)dy

=

∫

Rn

f(y)g(x − y)dy.

It follows that the relations

(f ∗ g)∧ = (2π)n/2f̂ ĝ

(fg)∧ = (2π)−n/2f̂ ∗ ĝ

also hold. Similar results exist for f̃ .
We say that a function f is bandlimited with bandwidth b, or simply b-

bandlimited, if f̂(ξ) = 0 for |ξ| ≥ b. In practice, the functions we deal with
represent the densities of some tangible object. Such functions have compact
support so their Fourier transforms do not vanish and they cannot be, strictly
speaking, b-bandlimited. Consequently, we say f is essentially b-bandlimited if
f̂(ξ) is suitably small for |ξ| ≥ b [14] [17]. The set K = supp(f̂ ) is often called
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Figure 2: Graph of (a) sincb(x) and (b) χ[−b,b]

the bandregion of f . It is a generally accepted rule of thumb that b-bandlimited
functions cannot represent details smaller than 2π/b [14] [17]. Accordingly, to
see details of size d, the cut-off frequency b should be chosen large enough that
d ≥ 2π/b. Thus, higher bandwidths permit finer resolutions.

One very useful b-bandlimited function is sincb(x) where

sincb(x) =

{
sin bx

bx if x 6= 0

1 if x = 0

=
1

2ibx
(2i sin bx)

=
1

2ibx

(
eibx − e−ibx

)

=
1

2b

∫ b

−b

eixξdξ. (1.1)

The bandwidth of sincb(x) is b. To see this, consider the inverse Fourier
transform of χ[−b,b]. We have

χ̃[−b,b] = (2π)−1/2

∫ b

b

eixξdx

=
2b√
2π

sincb(ξ)

by (1.1). Then sincb(ξ) =
√

2π
2b χ̂[−b,b] and by the Fourier inversion formula

ŝincb(ξ) =

√
2π

2b
˜̂χ[−b,b]

=

√
2π

2b
χ[−b,b].
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Thus ŝincb(ξ) = 0 for |ξ| ≥ b or, in other words, sincb(x) is b-bandlimited .
On the other hand, χ̂−b,b = 2b√

2π
sincb(ξ). But sincb is small outside of it’s

central lobe (i.e. outside [−π/b, π/b]). Thus, we can say that the essential
bandwidth of χ−b,b is π/b.

1.2 The Two-Dimensional Transforms

Here we introduce the standard transforms used in x-ray tomography. We will
restrict ourselves to the two-dimensional case, though analogous results hold in
Rn [14] [17].

In x-ray CT a beam of photons is sent through the patient. Some of the
photons are absorbed or scattered and the intensity I of the beam after it has
passed through the patient is measured. The function f which describes the
absorption of the photons is called the x-ray attenuation coefficient. If we let L
denote the ray along which the beam travels and I0 the initial intensity of the
beam, then the relation

I = I0e
−
∫

L
f(x)dx

or ∫

L

f(x)dx = log

(
I0

I

)
.

is known to hold [2]. Thus, measuring the intensity of the beam at a particular
location provides us with the integral of f over some line L. The task is to
reconstruct f given a finite number of its line integrals.

Usually the lines are arranged in a regular pattern, called a scanning geome-
try. Two common scanning geometries are the parallel beam and the fan beam
(also called divergent beam [24]) geometries. The different geometries arise from
different parameterizations of lines in R2 (see Figure 3).

Integrating f along the line L(ϕ, s) perpendicular to θ = (cosϕ, sin ϕ) ∈ S1

with signed distance s from the origin, produces the Radon transform

Rf(ϕ, s) =

∫

L(ϕ,s)

f(x)dx (1.2)

=

∫

R

f(sθ + tθ⊥)dt (1.3)

where θ⊥ = (− sinϕ, cosϕ). It is common to write Rf(θ, s) for Rf(ϕ, s) and to
use Rϕf(s) when ϕ is fixed. Since fixing ϕ produces a family of parallel lines,
the Radon transform conveniently models parallel beam scanning.

The gantry of a parallel beam scanner consists of a single source and a single
detector. During the scan a pencil thin beam of x-rays is translated across the
patient while the detector moves in parallel on the opposite side. The gantry is
then rotated and the process repeats.

Parallel beam geometry was used in first-generation CT scanners. Reliance
on a single detector meant that a single scan often took several minutes, an un-
comfortably long time for patients. Manufacturers of medical CT scanners have
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Figure 3: Scanning geometries in 2D tomography: (a) parallel beam, used in
first-generation scanners (b) fan beam, used in current third-generation scan-
ners.

replaced parallel beam scanning with faster methods that are able to measure
hundreds of rays simultaneously.

The gantry of a third-generation scanner contains of a single x-ray source
and a curved array of about 500-1000 detectors. The source is switched on
and the gantry rotates around the patient. At discrete time intervals during
the rotation the detectors record the intensities of the x-rays. It is sometimes
helpful to visualize the equivalent scenario of a single source firing out a fan
of individual beams at a number of precise locations throughout the rotation.
This technique is extremely fast and efficient. Often hundreds of thousands of
measurements are captured in a single 2π rotation which typically takes less
than 2 seconds.

To model fan beam scanning let r be the radius of the source circle and let
a = r(cos α, sin α) be a point on that circle. We always assume that r > ρ >
0, where ρ is the radius of the circle which contains the object being imaged
(scan circle). The point a is the source of the ray L(α, β) which makes the
angle β with the line (central ray) joining a to the origin (see Figure 4). By
convention, β is positive if, when viewed from the source point a, the ray L(α, β)
is left of the central ray. We limit β to the interval [−π/2, π/2] and in practice
− arcsin(ρ/r) ≤ β ≤ arcsin(ρ/r). Now an entire fan of beams can be described
by simply varying the parameter β.
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Figure 4: Parameters ϕ, s of the 2D Radon transform and α, β of the fan beam
transform. The angles ϕ and α are measured counterclockwise from the x-axis,
and β is measured counterclockwise from the line connecting the point a to the
origin.

Integrating f along L(α, β) gives the fan beam (or divergent beam) transform

Df(α, β) =

∫

L(α,β)

f(x)dx.

The parallel beam and fan beam parameterizations are related by

s = r sinβ, ϕ = α + β − π/2

(see Figure 4). Thus,

Df(α, β) = Rf(α + β − π/2, r sin β). (1.4)

Both Rf and Df have a symmetry property, which reads

Rf(ϕ, s) = Rf(ϕ + π,−s)

for the Radon transform and

Df(α, β) = Df(π + α + 2β,−β) (1.5)

for the fan beam transform. These are easily verified by inspection. This means
that every measurement can be used twice, once at the actual sample point
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and again at the reflected point. In Section 3.3 we will discuss how to use the
reflected data in the fan beam geometry.

Lastly, the Fourier transform of Rϕf is

R̂ϕf(σ) = (2π)−1/2

∫

R

Rϕf(s)e−isσds

= (2π)1/2f̂(σθ). (1.6)

This is called the projection-slice or Fourier-slice theorem [14] [10]. It is a key
element of several reconstruction algorithms including the well-known filtered
back projection.

2 Sampling Theory

In practice we can only collect a finite set of measurements. Questions concern-
ing how to choose those measurements are addressed by sampling theorems.
Sampling theorems give conditions under which a function can be recovered
from its values on a discrete set. We begin with Shannon’s sampling theorem
and build to a more general multi-dimensional sampling theorem by Faridani
that is central to this paper.

2.1 Shannon’s Sampling Theorem

Shannon’s classical sampling theorem [21] applies to b-bandlimited functions on
R. It reads:

Theorem 1. Let f be a b-bandlimited function on L2(R) and let

0 < h ≤ π/b. (2.1)

Then
f(x) =

∑

k∈Z

f(kh) sincb(x − kh).

Thus, f is completely determined by its values on an set of equally spaced
points on the real line provided the spacing is no larger than π/b. Condition
(2.1) is often called the Nyquist condition.

2.2 Multi-Dimensional Sampling Theorems

In multiple dimensions the sampling sets become lattices, i.e. the images of Zn

under some linear transformation.
If W is a real non-singular (n, n) matrix then such a lattice can be described

as
LW = {Wk : k ∈ Z

n} = WZ
n, (2.2)

and we say that LW is the lattice generated by W . The reciprocal lattice, or
dual lattice, L⊥

W is defined to be the lattice generated by the matrix 2π(W−1)T .
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We remark that while LW does not uniquely determine the generator matrix
W , it does determine the determinant of W and the dual lattice.

Just as points on the real line needed to satisfy the Nyquist condition, a
lattice must satisfy a density requirement in order to be suitable for sampling a
given function f . As we will see in Theorem 2, this density requirement depends
on the size and shape of the set K = supp(f̂ ).

We are now able to state the Petersen-Middleton sampling theorem, which
extends Shannon’s results to Rn (reference pp 289 of [20] and Theorem 2.1 of
[5]).

Theorem 2. Let K be a compact subset of Rn, W a real non-singular (n,n)
matrix such that

the translates K + η, η ∈ L⊥
W are disjoint. (2.3)

If f ∈ S(Rn) with f̂ = 0 outside of K, then

f(x) =
∑

k∈Zn

f(Wk)g(x − Wk) (2.4)

where g(y) = (2π)(−n/2| detW |χ̂K(−y).

The requirement (2.3) that translates of K by elements of L⊥
W be disjoint is

a generalization of the Nyquist condition (2.1) to lattices. Since the densities of
LW and L⊥

W are inversely proportional, when (2.3) is satisfied LW is a sufficiently
dense sampling set.

We now work toward a generalization of Theorem 2.
Suppose that LW is too sparse to satisfy the sampling condition (2.3). Then

the set K is overlapped by one or more of the translates K + η, η ∈ L⊥
W . We

can partition K by grouping together the regions which are covered by the same
translates.

As a simple example, consider Figure 5. Here the translates

K − 2π
(
W−1

)T
(0,−1)T (dashed),

K − 2π
(
W−1

)T
(0, 1)T (dotted),

intersect the set

K = K − 2π
(
W−1

)T
(0, 0)T (solid),

and divide it into three distinct regions. The first region, K1, is the portion of K

which is covered only by the identity translate K = K−2π
(
W−1

)T
(0, 0)T . The

second area, K2, is the region where K is overlapped by both K−2π
(
W−1

)T
(0,−1)T

and the identity translate. Both the identity and K − 2π
(
W−1

)T
(0, 1)T cover

K3. It follows that the decomposition of K is K = K1 ∪ K2 ∪ K3.
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Figure 5: Decomposition of the set K into mutually disjoint subsets K1

(union of the gray sections), K2 (white), and K3 (black) by the translates

K−2π
(
W−1

)T
(0, 0)T , K−2π

(
W−1

)T
(0,−1)T , and K−2π

(
W−1

)T
(0, 1)T ,

respectively.

To make the decomposition of K more precise, for ξ ∈ K,let

Mξ =
{
k ∈ Z

n : ξ − 2π
(
W−1

)T
k ∈ K

}

:=
{
kξ1, . . . , kξmξ

}
.

As each region of the decomposition is covered by the identity translate we can
let kξ1 = 0 with out loss of generality. The Mξ will only assume finitely many
different values M1, . . . , ML. In the above example we have

M1 = {k11 = (0, 0)T }
M2 = {k21 = (0, 0)T , k22 = (0,−1)T}
M3 = {k31 = (0, 0)T , k32 = (0, 1)T }.

We can now define each Kl to be the disjoint sets

Kl = {ξ ∈ K : Mξ = Ml} , (2.5)

and formally decompose K by K =
⋃L

l=1 Kl.
In higher dimensions, or when the number of overlaps is large, decomposing

K can be a daunting task and algorithms like those developed [7] should be
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used. For our purposes in this paper, much can be done by simply drawing the
translated sets.

We are now able to generalize the Petersen-Middleton theorem. Instead of
using LW , we take as our sampling set the union of m of shifted copies of LW .
That is, lattices of the form LW + ar, ar ∈ R

n, r = 1, . . . , m. The number m
turns out to be the maximum number of overlappings of the Kl. The following
theorem is due to Faridani (see Theorem 2.2 in [5]).

Theorem 3. Let Kl ⊂ R
n, l = 1, . . . , L be mutually disjoint bounded measurable

sets, K =
⋃L

l=1 Kl, and W a real non-singular (n, n) matrix such that (2.5)
holds. Further, let m = max1≤l≤L(ml) and a1, . . . , am ∈ Rn such that there
exist coefficients bl

r ∈ C, r = 1, . . . , m; l = 1, . . . , L satisfying the equations

m∑

r=1

bl
r = 1 (2.6)

m∑

r=1

bl
re

−2πi〈W−1ar, klj〉 = 0, j = 2, . . . , ml (2.7)

for l = 1, . . . , L. If f ∈ S(Rn) and f̂ = 0 outside of K, then

f(x) =

m∑

r=1

∑

k∈Zn

f(ar + Wk)gr(x − ar − Wk) (2.8)

where

gr(y) = (2π)−n/2| detW |
L∑

l=1

bl
rχ̂Kl

(−y). (2.9)

The idea of the proof is to compute the Fourier transform of the right-hand
side of (2.8) and show that it is f̂ . This is done using Poisson’s summation
formula which, in this setting, reads

(2π)−n/2| detW |
∑

k∈Zn

f(Wk)e−i〈ξ, Wk〉 =
∑

k∈Zn

f̂(ξ − 2π(W−1)T k).

As the techniques are similar to those used in Theorem 4, we omit the details
of the proof. Note that Theorem 2 is obtained from Theorem 3 in the case of
m = L = 1.

2.3 A Periodic Multi-Dimensional Sampling Theorem

To this point we have only considered sampling theory on Rn. Often the func-
tions of interest in tomography are periodic in some of their variables. For
example, Rf is periodic in its first variable and Df is periodic in both. We
need an extension of Theorem 3 to the periodic setting.

Functions which are periodic in some of their variables can be regarded as
being defined on the group T n1 × Rn2 ⊂ Rn, n = n1 + n2 where T = R/2πZ is
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the circle (torus) group. We take the interval [0, 2π) with addition modulo 2π
as a model for T and the Lebesgue measure dϕ on T is the restriction of the
Lebesgue measure on R to [0, 2π).

For f : Rn1 × Rn2 → C define fy(ϕ) : Rn1 → C and fϕ(y) : Rn2 → C by
fy(ϕ) = f(y, ϕ) = fϕ(y) Let Sn1,n2 denote the set of infinitely continuously
differentiable functions which are 2π-periodic in their first n1 variables. That
is,

Sn1,n2 = {f ∈ C∞(Rn1 × R
n2) : ∀y ∈ R

n2 , fy(ϕ) is 2π-periodic and

∀ϕ ∈ R
n1 , fϕ(y) ∈ L2(Rn2)}.

Let f ∈ Sn1,n2 . The Fourier transform f̂ on T n1 × Rn2 is defined to be

f̂ : Z
n1 × R

n2 → C

f̂(ξ) = (2π)−(n1+n2)/2

∫

T n1×Rn2

f(x)e−i〈x,ξ〉dx

= (2π)−(n1+n2)/2

∫

T n1

∫

Rn2

f(ϕ, y)e−i〈ϕ,ν〉−i〈y,σ〉dydϕ

with x = (ϕ, y) ∈ T n1 × Rn2 , ξ = (ν, σ) ∈ Zn1 × Rn2 . The inverse Fourier
transform is given by

g̃(x) = (2π)(n1+n2)/2

∫

Zn1×Rn2

g(ξ)ei〈x,ξ〉dξ

where dξ denotes the product of the discrete measure on Zn1 and the Lebesgue
measure on Rn2 , i.e.

g̃(x) = (2π)(n1+n2)/2
∑

ν∈Zn1

∫

Rn2

g(ξ)ei〈ϕ,ν〉+i〈y,σ〉dσ.

If f is defined on T n1 ×Rn2 then sampling on a generic lattice LW as defined
in (2.2) may not yield accurate results. In order to correctly sample a periodic
function a lattice must have the same periods as f , that is, it must be a discrete
subgroup of T n1 ×Rn2 . Such lattices are called sampling lattices. To make this
more precise we need the following definition (reference Definition 5.1 in [12]):

Definition 1. A real nonsingular (n1 +n2, n1 +n2) matrix W is called feasible
if 2πei ∈ WZn1+n2 for i = 1, . . . , n1 where the ei denote the canonical unit
vectors of Rn1+n2 .

A feasible (n1 + n2, n1 + n2) matrix W generates a lattice in Rn1+n2 which
is 2π periodic in its first n1 components. That is, for x ∈ Rn1 , y ∈ Rn2 ,

(
x
y

)
∈ {Wk : k ∈ Z

n1+n2} ⇐⇒
(

x + 2πj
y

)
∈ {Wk : k ∈ Z

n1+n2}

for all j ∈ Zn1 . For a feasible matrix W , if let AW = {k ∈ Zn1+n2 : Wk ∈
[0, 2π)n1×R

n2}, then the set {Wk : k ∈ AW } is a discrete subgroup of T n1×R
n2 .

Formally, we have
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Definition 2. For a feasible (n1 + n2, n1 + n2) matrix W , the set

LW = {Wk : k ∈ AW }, AW = {k ∈ Z
n1+n2 : Wk ∈ [0, 2π)n1 × R

n2}
is called the sampling lattice generated by W . The set

L⊥
W = 2π

(
W−1

)T
Z

n1+n2

is called the dual lattice with respect to LW .

For practical reasons, we would like more than one measurement to be taken
for each occurring source angle. Sampling lattices which satisfy this additional
condition are called admissible sampling lattices [6] [9].

We now state the main theorem of this section, which is due to Faridani (see
Theorem 2.3 in [5]).

Theorem 4. Let Kl ⊂ Z × R, l = 1, . . . , L be mutually disjoint bounded mea-
surable sets, K =

⋃L
l=1 Kl, and W a feasible (n1 +n2, n1 +n2) matrix such that

(2.5) holds for n = n1 + n2.
Further, let m = max1≤l≤L(ml) and a1, . . . , am ∈ R

2 be such that there exist
coefficients bl

r ∈ C, r = 1, . . . , m; l = 1, . . . , L satisfying the equations (2.6) and
(2.7) for l = 1, . . . , L.

For f ∈ Sn1,n2 define

SW f(x) =

m∑

r=1

∑

k∈AW

f(ar + Wk)gr(x − ar − Wk) (2.10)

with

gr(y) = (2π)−(n1+n2)/2| detW |
L∑

l=1

bl
r χ̃Kl

(y).

Under these conditions the following error estimate holds:

|SW f(x) − f(x)| ≤ (2π)−(n1+n2)/2(1 + γ)

∫

(Zn1×Rn2)\K

|f̂(ξ)|dξ

where

γ = m

(
max

1 ≤ l ≤ L

m∑

r=1

|bl
r|
)

. (2.11)

Proof. Let n = n1 + n2. The Poisson summation formula for LW = {Wk : k ∈
AW } ⊂ T n1 × Rn2 reads

(2π)−n/2| detW |
∑

k∈AW

f(Wk) =
∑

k∈Zn

f̂(2π
(
W−1

)T
k),

see, for example, Lemma 5.2 in [12]. With this we find that

(2π)−n/2| detW |
∑

k∈AW

f(ar + Wk)e−i〈ξ,Wk〉

=
∑

k∈Zn

f̂(ξ − 2π
(
W−1

)T
k)e−2πi〈W−1ar,k〉ei〈ar ,ξ〉.

(2.12)
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Using this relation and the fact that χKl
= ̂̃χKl

we obtain

(SW f)∧ =
[

m∑

r=1

∑

k∈AW

f(ar + Wk)gr( · − ar − Wk)

]∧
(ξ)

=

[
m∑

r=1

∑

k∈AW

f(ar + Wk)(2π)−n/2| detW |
L∑

l=1

bl
rχ̃Kl

( · − ar − Wk)

]∧
(ξ)

=

[
m∑

r=1

∑

k∈AW

f(ar + Wk)(2π)−n/2| detW |
L∑

l=1

bl
rχ̃( · )e−i〈 · , ar+Wk〉

]∧
(ξ)

=

m∑

r=1

∑

k∈AW

f(ar + Wk)(2π)−n/2| detW |
L∑

l=1

bl
rχKl

(ξ)e−i〈ξ, ar+Wk〉

=

m∑

r=1

(
(2π)−n/2| detW |

∑

k∈AW

f(ar + Wk)e−i〈ξ, Wk〉
)

L∑

l=1

bl
rχKl

(ξ)e−i〈ξ, ar〉

=

m∑

r=1

∑

k∈Zn

f̂
(
ξ − 2π

(
W−1

)T
k
)

e−2πi〈W−1ar, k〉e−i〈ar, ξ〉
L∑

l=1

bl
rχKl

(ξ)e−i〈ξ, ar〉

=

L∑

l=1

χKl
(ξ)

∑

k∈Zn

f̂
(
ξ − 2π

(
W−1

)T
k
) m∑

r=1

bl
re

−2πi〈W−1ar, k〉.

Now we split the sum over k into two parts, one with k ∈ Ml and the other
with k ∈ Zn\Ml. If k only runs through Ml and using equations (2.6, 2.7) we
have

L∑

l=1

χKl
(ξ)

ml∑

j=1

f̂
(
ξ − 2π

(
W−1

)T
kl j

) m∑

r=1

bl
re

−2πi〈W−1ar, kl j〉

=

L∑

l=1

χKl
(ξ)f̂(ξ)

= χK(ξ)f̂ (ξ).
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This leads to

|SW f(x) − f(x)|

≤ (2π)−n/2

∫

Zn1×Rn2

|(SW f)∧(ξ) − f̂(ξ)|dξ

≤ (2π)−n/2

∫

Zn1×Rn2

(1 − χK(ξ))|f̂ |dξ

+ (2π)−n/2

∫

Zn1×Rn2

∣∣∣∣∣∣

L∑

l=1

χKl
(ξ)

∑

k∈Zn\Ml

f̂(ξ − 2π
(
W−1

)
k)

m∑

r=1

bl
re

−2πi〈W−1ar , k〉

∣∣∣∣∣∣
dξ

= (2π)−n/2

∫

(Zn1×Rn2)\K

|f̂(ξ)|dξ

+ (2π)−n/2
L∑

l=1

m∑

r=1

|bl
r|

∑

k∈Zn\Ml

∫

Kl−2π(W−1)T k

|f̂(ξ)|dξ. (2.13)

The assumption (2.5) implies that (Kl−2π
(
W−1

)T
k)∩K = ∅ if k ∈ Zn\Ml.

Further, for each ξ ∈ (Zn1×Rn2)\K there exist no more than m different k ∈ Zn

such that ξ ∈ K−2π
(
W−1

)T
k. Using this and the fact that the Kl are mutually

disjoint, we have for the last term of the inequality above

L∑

l=1

m∑

r=1

|bl
r|

∑

k∈Zn\Ml

∫

Kl−2π(W−1)T k

|f̂(ξ)|dξ

≤
(

max
1 ≤ l ≤ L

m∑

r=1

|bl
r|
) ∑

k∈Zn

L∑

l=1

∫

(Kl−2π(W−1)T k)\K

|f̂(ξ)|dξ

=

(
max

1 ≤ l ≤ L

m∑

r=1

|bl
r|
) ∑

k∈Zn

∫

(K−2π(W−1)T k)\K

|f̂(ξ)|dξ

≤ m

(
max

1 ≤ l ≤ L

m∑

r=1

|bl
r|
)∫

(Zn1×Rn2)\K

|f̂(ξ)|dξ.

Inserting this into (2.13) yields the desired estimate.

We note that if supp(f̂ ) = K, then (SW f)∧ = f̂ and f would be given by
(2.10). If f is essentially b-bandlimited, then the right hand side of (5.8) is small
[18] and (2.10) can still be used to compute f . We will use this fact later on.
If, in addition, n1 = 0, then we obtain Theorem 3.

3 Sampling Geometry

In this section we determine the shape of the set K and appropriate lattices LW

so that the results of Section 2 hold for Df . We also discuss how to use the
reflection property (1.5) of Df to increase the number of data points.
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Figure 6: Essential support K of D̂f when ρ/r = 1/3.

3.1 Support of D̂f

The fan beam transform is periodic in both arguments and can be viewed as a
function on the group T × T = T 2. The Fourier transform of Df is

D̂f(s, t) =
1

4π2

∫ 2π

0

∫ 2π

0

Df(α, β)e−isα−itβdβdα, s, t ∈ Z, (3.1)

(reference pg. 75 of [17]). It has been shown [15] [18] that D̂f is small outside
the set

K = {(s, t) ∈ Z
2 : |s − t| < br, |s|r < |s − t|ρ} (3.2)

where b is the bandwidth of f , ρ > 0 is the scan radius, and r > ρ is the source
radius. Thus, K is the essential support of f . This is the region bounded by
the lines

t = s + br, t = s − br,

s = t +
s r

ρ
, t = s − s r

ρ
,

as seen in Figure 6. The set K will help us select appropriate sampling lattices.

3.2 Sampling Schemes

In Section 2 it was shown that accurate reconstruction requires the lattice LW

to be sufficiently dense. However, to avoid excessive computation, we would
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Figure 7: Translates of K with respect to the dual lattice L⊥
W for (a) the stan-

dard lattice, (b) the efficient lattice, and (c) the reflected samples for fan beam
scanning. Dots indicate elements of L⊥

W . K is in black.

like LW to be as sparse as possible. Thus, we seek lattices LW for which the
translated sets K + η, η ∈ L⊥

W are disjoint, but as densely packed as possible.
Under the standard sampling scheme the sampled points are (αj , βl) where

αj = j∆α, βl = l∆β, j, l ∈ Z (3.3)

∆α =
2π

p
, ∆β =

π

q
, p, q ∈ Z. (3.4)

The sampling lattice LW and its dual lattice L⊥
W are generated by

W =

(
∆α 0
0 ∆β

)
, W⊥ =

(
2π/∆α 0

0 2π/∆β

)
, (3.5)

and the sets K + η, η ∈ L⊥
W are simply vertical and horizontal translates of K

(see Figure 7a). These translates are disjoint if and only if

∆α ≤ r + ρ

ρ

π

br
, ∆β ≤ π

br
. (3.6)

Violating these sampling conditions (3.6) may cause artifacts in the recon-
structed image (see [17] pg. 76).

In the standard scheme the translates do not completely fill R2, so it is not
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efficient. However, if

W =

(
∆α r−ρ

2r ∆α
0 ∆β

)
, W⊥ =

(
2π/∆α 0
π(r−ρ)

r∆β 2π/∆β

)
,

with

∆α =
2π

bρ
, ∆β =

π

br
.

then the plane is completely covered (see Figure 7b). This efficient scheme was
introduced by Natterer in [15] and achieves the same reconstruction quality as
the standard geometry but with significantly less data. The efficient geometry
requires the detector array to be shifted every time the source moves from one
position to the next. Natterer has stated that it is difficult to implement this
efficient scanning geometry for a commercial scanner (see pg. 77 in [17]).

A third sampling geometry is possible if we use only the reflections of the
sample points. Recalling the symmetry property of the fan beam transform

Df(α, β) = Df(π + α + 2β,−β), (3.7)

we see that if the original sample points are given by (3.3), then the reflected
points (α′

j,l, β
′
l) are

α′
j,l = π + j∆α + 2l∆β, β′

l = −l∆β. (3.8)

This corresponds to choosing

W =

(
∆α 2∆β
0 −∆β

)
, W⊥ =

(
2π/∆α 0
4π/∆α −2π/∆β

)
. (3.9)

As with the standard geometry, the translates K + η, η ∈ L⊥
W are disjoint if and

only if (3.6) holds (see Figure 7c).
Since the reflected samples are always available, one could logically ask if

it would be possible to double the number of data points by using both the
standard and the reflected points. It is possible, but first we must eliminate
any redundancy in the scanning geometry, that is, we must avoid having the
reflected sample points and the standard sampling points represent the same
lines. This is done with a shift in the detector array.

3.3 The Quarter Detector Shift

When the detector array is centered, the central ray of the fan intersects the
center of the detector on the opposite side (see Figure 8a). During a scan some
measurements may, as in Figure 8b, duplicate each other. However, shifting the
detector array slightly off center by a fixed amount δ∆β, 0 ≤ δ < 1, can break
that symmetry (see Figure 8d).
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Figure 8: When the detector array is centered (a) the offset is 0 and some views
may duplicate one another (b). If the array is offset by δ = 1/4 of the width
of a detector (c) then there is no redundancy (d). Dots indicate the center of
gantry’s rotation which, when δ = 1/4, is different from the center of the scan
circle. Example shown for ∆α = 2π/9, ∆β = π/9.

When a detector shift is used with the standard scheme we obtain the original
lattice LO = {(αj , βl)} where

αj = j∆α, βl = (l + δ)∆β, j, l ∈ Z (3.10)

∆α =
2π

p
, ∆β =

π

q
, p, q ∈ Z. (3.11)

In reality we only need j = 0, . . . , p − 1 and l = −Q, . . . , Q with Q ≥ arcsin(ρ/r)
∆β

since Df is either 0 or can be computed by periodicity otherwise.
The corresponding reflected samples LR = {(α′

j,l, β
′
l)} are given by

α′
j,l = π + j∆α + 2(l + δ)∆β, β′

l = −(l + δ)∆β. (3.12)

We would like to choose δ so that LO and LR are disjoint.
Overlap between LO and LR is possible only if βl1 = β′

l2
for some l1, l2. But

βl1 = β′
l2

if and only if l1 + l2 = −2δ or, equivalently, if 2δ ∈ Z. It follows that
LO and LR are disjoint as long as δ /∈ {0, 1/2}.
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Figure 9: The original lattice LO (dots) and the reflected lattice LR (squares)
are both shown for ∆α = 2π/4, ∆β = π/6. In (a) δ = 0 and duplication occurs
in every third row. In (b) δ = 1/4 and LR interlaces evenly with LO.

It is customary to use δ = 1/4 as this interlaces the reflected sample points
evenly with the original samples (see Figure 9). This so-called quarter detector
shift is available, at least as an option, on all modern scanners [16].

With δ = 1/4 we can reformulate LR. From (3.3) we see that ∆β = p
2q∆α

and (3.12) becomes

α′
j,l = π +

(
j +

(
l +

1

4

)
p

q

)
∆α, β′

l = −
(

l +
1

4

)
∆β. (3.13)

Note that the reflected points have undergone a shift of 1
4∆β in the β direction

and a π + p
4q∆α shift in the α direction. Furthermore, a dynamic shift of p

q ∆α,
which varies with l, is evident in the α direction.

Because of the dynamic shift LO ∪ LR cannot be generated by a single
diagonal matrix. Thus, the sample points do not line up on a single rectangular
lattice and we cannot use the standard reconstruction algorithm (Algorithm 5.3
in [17]). However, if we can recast LO ∪ LR as a union of shifted copies of a
single rectangular lattice, then Faridani’s multi-dimensional sampling theorem,
Theorem 4, could be used.
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4 Union of Rectangular Lattices

In this section we prove that the original lattice LO and the reflected samples
LR can be seen as the union of several identical rectangular lattices, each shifted
a fixed distance from the origin (see Theorem 5 of [4]).

Theorem 5. Let ∆α = 2π
p and ∆β = π

q for some p, q ∈ Z. Let

LO = {(αj , βl) : j, l ∈ Z},

αj = j∆α, βl = (l + δ)∆β,

be an admissible sampling lattice arising from a quarter detector shift and let

LR = {(α′
j,l, β

′
l) : j, l ∈ Z},

α′
j,l = π +

(
j +

(
l +

1

4

)
p

q

)
∆α, β′

l = −
(

l +
1

4

)
∆β.

be the corresponding reflected sample points. Then LO ∪ LR is a disjoint union
of 2q′ translates of the lattice

LP =

(
∆α 0
0 q′∆β

)
Z

2, (4.1)

where q′ is the denominator when p/q is reduced to lowest terms. The 2q′

translates am are given by

am =

(
0

(m + 1
4 )∆β

)
, am+q′ =

(
π + (m + 1

4 )p
q ∆α

−(m + 1
4 )∆β

)
(4.2)

for m = 0, . . . , q′ − 1.

Proof. Let LO and LR be as described and let p/q be expressed in lowest terms
as p′/q′. That is,

p′ =
p

gcd(p, q)
, q′ =

q

gcd(p, q)
.

For each l0 ∈ Z let

[l0] = {l ∈ Z : l = l0 + c q′, c ∈ Z}

and
Ll0R = {(α′

j,l, β
′
l) : l ∈ [l0], j ∈ Z}.
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Note that the [l0] are the q′ distinct equivalence classes in the group Z/q′Z. The
points in each Ll0R are given by

α′
j,l = π +

(
j +

(
l +

1

4

)
p

q

)
∆α

= π +

(
j +

(
l0 + c q′ +

1

4

)
p

q

)
∆α

= π +

(
l0 +

1

4

)
p

q
∆α +

(
j + c q′

p

q

)
∆α

= π +

(
l0 +

1

4

)
p

q
∆α + j′∆α

for j′ = j + cp′ ∈ Z, and

β′
l = −

(
l +

1

4

)
∆β

= −
(

l0 + c q′ +
1

4

)
∆β

= −
(

l0 +
1

4

)
∆β − c q′∆β

= −
(

l0 +
1

4

)
∆β − l′∆β

with l′ = cq′ ∈ Z. Thus, for each l0 ∈ Z we can write the set Ll0R as

Ll0R =

(
π +

(
l0 + 1

4

)
p
q ∆α

−
(
l0 + 1

4

)
∆β

)
+

(
∆α 0
0 q′∆β

)
Z

2

=

(
π +

(
l0 + 1

4

)
p
q ∆α

−
(
l0 + 1

4

)
∆β

)
+ LP .

Since a distinct lattice is obtained for each equivalence class [l0], we have
that LR is the disjoint union of the q′ distinct Ll0R. In other words,

LR =
⋃

[l0]∈ Z/q′Z

Ll0R. (4.3)

Turning our attention to the original lattice LO we see that for each l0 the
sample points are given by

αj = j∆α,
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with j ∈ Z, and

βl =

(
l +

1

4

)
∆β

=

(
l0 + cq′ +

1

4

)
∆β

=

(
l0 +

1

4

)
∆β + l′∆β

where l′ = cq′ ∈ Z. Thus,

LO =
⋃

[l0]∈Z/q′Z

(
0(

l0 + 1
4

)
∆β

)
+ LP . (4.4)

Combining (4.3) and (4.4) completes the proof.

Note that when q′ = 1

LO ∪ LR = (LP + a1) ∪ (LP + a2) (4.5)

where

LP =

(
∆α 0
0 ∆β

)
Z

2, (4.6)

a1 =

(
0

1
4∆β

)
, a2 =

(
π + p

2q∆α

− 1
4∆β

)
. (4.7)

We will return to this simple case later.

5 Application to Tomography

In this section we illustrate how Theorem 5 can be used together with Theo-
rem 4 to reduce the number of measurements needed to obtain any resolution by
half. We also discuss the third-generation problem and undertake a numerical
experiment to verify our results.

5.1 The Mathematical Problem

The goal in tomography is to produce an accurate image of the interior of
an object from a finite number of views. Mathematically, the problem is to
reconstruct f given measurements of Df on some lattice LW .

Let f ∈ S(R2) have support |x| ≤ ρ and be essentially b-bandlimited. The
fan beam transform of f , Df(α, β), is periodic in both variables and can be
viewed as a function on the group T 2. To reconstruct f with a resolution of
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2π/b, the standard algorithm (Algorithm 5.3 in [17]) would require the standard
lattice

LW =

(
∆α 0
0 ∆β

)
Z

2

to satisfy the sampling conditions

∆α =
2π

p
≤ r + ρ

ρ

π

br
, ∆β =

π

q
≤ π

br
. (5.1)

Otherwise the reconstructed image will indicate structures which are not actu-
ally there. These so-called artifacts severely limit our ability to extract accurate
information from the image.

Rather than sampling on LW , suppose samples were taken on a lattice LO,
arising from a δ = 1/4 detector shift, which was half as dense as LW in the β
direction. That is,

LO =

(
∆α 0
0 ∆β

)
Z

2 +

(
0

1
4∆β

)
(5.2)

with

∆α =
2π

p
≤ r + ρ

ρ

π

br
, (5.3)

∆β =
π

q
≤ 2π

br
. (5.4)

Clearly LO does not satisfy the sampling conditions (5.1), so it cannot be used
in the standard algorithm directly without creating serious artifacts.

We now describe a technique which will allow us to reconstruct f using LO.
First we employ Theorem 5 so that LO ∪ LR can be viewed as the union of
shifted copies of LP . Next we determine if the shifts am as given in (4.2) are
such that the conditions of Theorem 4 are met. If so, we can compensate for the
undersampling in β by using the interpolation formula (2.10). Since f is essen-
tially b-bandlimited, (2.10) can be used to compute the missing samples with
respect to LW . After upsampling to the standard lattice LW any reconstruction
algorithm can be used. Since LO is half as dense as LW , we will have found
a sampling scheme which requires half as many measurements as the standard
scheme and is, in that sense, more efficient.

We will demonstrate this method in the simple case of q′ = 1. With LO

as defined above (5.2), let LR be the corresponding reflected lattice. Then, by
Theorem 5

LO ∪ LR = (LP + a1) ∪ (LP + a2) (5.5)

where

LP = P Z
2, P =

(
∆α 0
0 ∆β

)
, (5.6)
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Figure 10: Decomposition of the set K into mutually disjoint subsets K1

(union of the gray sections), K2 (white), and K3 (black) by the translates

K−2π
(
P−1

)T
(0, 0)T , K−2π

(
P−1

)T
(0,−1)T , and K−2π

(
P−1

)T
(0, 1)T ,

respectively.

a1 =

(
0

1
4∆β

)
, a2 =

(
π + p

2q∆α

− 1
4∆β

)
. (5.7)

We will now work toward applying Theorem 4.

The essential support of D̂f is the set K specified in (3.2). Figure 10 shows

K and some of the translates K − 2π
(
P−1

)T
k, k ∈ Z2. If we decompose K

into the mutually disjoint subsets K1, K2, andK3 as indicated in Figure 10,
we obtain m1 = 1, m2 = m3 = 2, hence m = 2 and L = 3. We also have

M1 = {k1 = (0, 0)T }
M2 = {k1, k2 = (0,−1)T }
M3 = {k1, k3 = (0, 1)T }.

All that remains is to show that a1, a2 make the system (2.6, 2.7) solvable.
With a1, a2 as in (5.7), we find that

e−2πi〈P−1a1, k2〉 = e−2πi〈P−1a2, k2〉 = e−
π
2

i = −i,

e−2πi〈P−1a1, k3〉 = e−2πi〈P−1a2, k3〉 = e
π
2

i = i,
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and the system (2.6, 2.7) simplifies to

b1
1 + b1

2 = 1

b2
1 + b2

2 = 1 b2
1 − b2

2 = 0

b3
1 + b3

2 = 1 b3
1 − b3

2 = 0.

But this is easily solved by b2
1 = b2

2 = b3
1 = b3

2 = 1
2 and any b1

1, b1
2 for which

b1
1 + b1

2 = 1.
Applying Theorem 4 yields

Theorem 6. Let f ∈ S(R2) be essentially b-bandlimited and have support in
the disk of radius ρ with 0 < ρ < r for some ρ, r ∈ R. Let

K = {(s, t) ∈ Z
2 : |s − t| < br, |s|r < |s − t|ρ}

denote the essential support of D̂f and let

P =

(
∆α 0
0 ∆β

)
,

a1 =

(
0

1
4∆β

)
, a2 =

(
π + p

2q∆α

− 1
4∆β

)
,

where

∆α =
2π

p
≤ r + ρ

ρ

π

br
, ∆β =

π

q
≤ 2π

br
.

for some p, q ∈ Z with q′ = q/gcd(p, q) = 1. In addition, let bl
j = 1/2 for j = 1, 2

and l = 1, 2, 3.
Then

|SP Df(α, β) − Df(α, β)| ≤ 2

π

∫

Z2\K

|(Df)∧(ξ)|dξ, (5.8)

where

SP Df(x) =
π(1 + r)

2b2r2

2∑

j=1

∑

k∈AP

Df(ar + Pk)χ̃Kl
(x − ar − Pk). (5.9)

Since f is essentially b-bandlimited the right hand side of (5.8) is small (see
[18]) and (5.9) can be used to accurately interpolate values of Df(α, β). After
computing the missing β samples the standard reconstruction algorithm could
be implemented.

Thus, Theorem 6 is a concrete example of the combined power of Theo-
rems 4 and 5. If they can both be applied then, for any given bandwidth b, the
amount of data needed for accurate reconstruction can be essentially cut in half.
Consequently, we can double the resolution by doubling just the α density.

It is also possible to develop a reconstruction algorithm using LP directly
as was done by Izen et al. in [4]. However, that algorithm requires several
additional restrictive hypotheses including shift-convexity of the bandregion K.
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Roughly speaking, K is shift-convex if translates of K by non-zero elements
of L⊥

W are disjoint and if additional shifts by elements of L⊥
P do not overlap

K (see Definition 2.7 in [4]). Two examples are found in Figures 14,15 and
discussed in Section 5.5. Note that this is more restrictive than the hypothesis
of the Petersen-Middleton theorem, Theorem 2, which only requires that the
translates K + η, η ∈ L⊥

W be disjoint. In contrast, Theorem 4 permits a finite
number of overlaps.

5.2 The Third-Generation Problem

Since one of the major reasons for the work of Izen et al. was to overcome the
third-generation problem, we feel compelled to discuss how this could be done.

In a third-generation CT scanner the x-ray source and detector array are
mounted on a common rotating frame. When scanning, the source continuously
fires an uninterrupted fan of x-rays and, at discrete time intervals, the detec-
tors measure and record the strength of the beams. Increasing or decreasing
the number of source locations is accomplished by shortening or lengthening
the time between measurements. Thus, reducing the number of measurements
does not reduce the amount of radiation and has no real medical or diagnostic
benefits, though it may ease the computational burden.

The true diagnostic advantage comes from being able to take the available
data and reconstruct an image whose resolution is higher than what is normally
possible.

The maximum attainable resolution, for most third-generation scanners, is
set by the spacing ∆β between detectors. Since the detector array is a contigu-
ous collection of detectors, the detector spacing ∆β is also the detector width.
This implies a maximum sampling-determined bandwidth of b = π/∆β in the
∆β direction. Recalling that a b-bandlimited function cannot represent details
smaller than 2π/b, we see that only details larger than 2∆β are visible.

On the other hand, the mathematical model for the detector array suggests
that the measured data is 2b = 2π/∆β-bandlimited in the β direction[4]. To
see this, suppose that each detector responds equally to all x-rays within ∆β/2
of its center. Then the measured data D′f is a convolution of Df with the
detector response function. That is

D′f(α, β) =
1

∆β

∫ ∆β/2

−∆β/2

Df(α, β − t)dt

=
1

∆β
Df(α, β) ∗ χ[−∆β/2,∆β/2].

We know from our discussion in Section 1.1 that the essential bandwidth of
χ[−∆β/2,∆β/2] is π

∆β/2 = 2π/∆β. Thus, the detectors are capable of measuring

a cutoff frequency of 2b = 2π/∆β but their placement in the detector array
reduces that frequency to b = π/∆β. The question of how to reconstruct at
the higher hardware-determined bandwidth 2b is what constitutes the third-
generation problem.
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Figure 11: The oversampling factor γ (5.12) caused by the condition q′ = 1 in
Theorem 6. Note that γ = 1 when ρ/r = 1/3 so there is no oversampling.

Our solution is to follow the technique outlined in Section 5.1. A doubly
fine sample is taken in the α direction, Theorem 5 is used to generate the
matrix P and the shifts am and then, provided all of the conditions are met,
Theorem 4 allows us to compensate for the undersampling in β. This will permit
reconstruction at the maximum resolution consistent with the characteristics of
the detector.

5.3 Oversampling

In Theorem 6 we asked that q′ = 1 or, equivalently, that p be a positive integer
multiple of q. This simplification can force us to oversample, or take more data
than than the sampling conditions require. In this subsection we explain the
causes and the extent of the oversampling in Theorem 6.

Third-generation scanners have a fixed number of detectors, so q and ∆β are
predetermined. The source radius r and the scan radius ρ are also set by the
physical geometry of the scanner. Thus, the sampling-determined bandwidth b
is fixed. We assume that the scanner has been constructed so that

∆β =
π

q
≤ π

br
. (5.10)

The only parameter that we can choose somewhat freely is the number p of
source locations. However, to reconstruct with a bandwidth of 2b, p needs to
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be chosen so that the sampling condition

∆α =
2π

p
≤ r + ρ

ρ

π

2br
(5.11)

is met.
Optimal sampling occurs when there is equality in (5.10),(5.11) and we let

po =
4brρ

r + ρ
, qo = br,

denote the optimal values of p and q. Whenever we use a p or q larger than the
optimal value we we oversample by a factor of γ. It is desirable to make this as
close to 1 as possible.

If q′ = 1 then we must also make sure that p is an integer multiple of q. This
additional constraint will be the cause of the oversampling.

One way to ensure that q′ = 1 is to set ρ/r = 1/3. Many medical CT
scanners are designed with ρ/r ≤ 1/3 and ρ/r ≤ 1/2 almost always. Note that
0 < ρ/r < 1 since 0 < ρ < r. If ρ/r = 1/3 then

po

qo
=

4ρ

r + ρ
=

4ρ/r

1 + ρ/r
= 1,

and q′ = 1. Thus, when ρ/r = 1/3 no oversampling is necessary–the optimal
values satisfy both the sampling condition and the condition on q′.

When ρ/r < 1/3, the optimal value of p is less than the optimal value for q.
To make q′ = 1 we need to use p = qo instead of p = po. Thus, we are forced

to take γ = p
po

= 1+ρ/r
4ρ/r times more measurements than what the sampling

conditions require.
If ρ/r is just slightly larger than 1/3 then po > qo. If we accepted the

fact that q was fixed then the oversampling would jump suddenly on account
of the stipulation that p/q ∈ Z+. However, designers of the scanner would
undoubtedly know the ratio ρ/r and would instead choose to slightly increase q

by taking q = po. This results in an oversampling factor of γ =
4brρ
r+ρ

br = 4ρ
r+ρ .

Thus, when q′ = 1, the oversampling factor γ is given by

γ =

{
1+ρ/r
4ρ/r if 0 < ρ/r ≤ 1/3,
4ρ

r+ρ if 1/3 < ρ/r < 1.
(5.12)

The graph of γ is found in Figure 11.

5.4 Numerical Results

The results of Section 5.1 suggest that it is possible to reconstruct an image with
the same resolution as the standard reconstruction algorithm but with just half
of the data or, equivalently, double the resolution with just twice the data.

To confirm these findings we generate data for the phantom found in [4]
which models a disk of water with two small pins of bone. This phantom was
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Figure 12: Periodic reconstruction (a) with p = 600, q = 600 has twice the
resolution as the standard reconstruction in (b) where p = 300, q = 600, b =
200. (c) uses the same data as (a) but in the standard algorithm and is no
improvement over (b). (d) is comparable to (a) but needs p = 600, q = 1200.

selected to test the scheme’s ability to recover details near the edge of the scan
circle. We use a source radius of r = 3 and scan radius ρ = 1 with a simulated
bandwidth of b = 200.

To reconstruct with a bandwidth of 2b = 400 we let p = 600, q = 600. Then,
since we know q′ = 1, we use Theorem 6 to interpolate the missing data and
reconstruct with the standard algorithm (Algorithm 5.3 in [17]). The result is
seen in Figure 12a.

If our scanner only had q = 600 samples available in β then it would be
impossible to implement Algorithm 5.3 in [17] with 2b = 400 directly since the
sampling conditions (5.1) require p ≥ 4brρ

r+ρ = 600 and q ≥ 2br = 1200. The
highest possible resolution would corresponding to a bandwidth of b = 200 with
p ≥ 300, q = 600 (see Figure 12b).
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Figure 13: Periodic reconstruction (a) of the Shepp-Logan phantom has twice
the detail of the standard reconstruction in (b) but just twice the data. (c) has
the data of (a) but the detail of (b). (d) matches the resolution of (a) but needs
four times the data of (b).

Thus, without the combination of Theorems 4 and 5, a third-generation
scanner would be unable to achieve the detail of Figure 12a but would be limited
to the resolution seen in Figure 12b.

Increasing p to 600 in the standard algorithm does little to improve the
resolution, as can be seen in Figure 12c. It only serves to oversample by a factor
of 2 in the α direction.

To apply the standard algorithm at a bandwidth of 2b = 400 we would need
q = 1200 β samples and p = 600 α samples (see Figure 12d). While this image
has the same level of detail as Figure 12a, it requires twice the data.

The experiment was repeated for the Shepp-Logan head phantom [22] using
the same p, q, b values as above. The reconstructed images are found in Figure 13
and verify the results obtained with the other phantom. This substantiates the
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Figure 14: The essential bandregion K of Df , solid, is shown with some of the
translates K + η, η ∈ L⊥

W . In (a) K is not shift-convex since the translates
overlap K. This is not the case in (b) where K is shift-convex. In both L⊥

W =
W⊥

Z
2 where W⊥ is defined by (5.13) in (a) and by (5.15) in (b).

theory of [4] and illustrates the practical application of Theorem 6.

5.5 A Few Words On Shift-Convexity

The reconstruction algorithm presented [4] (Algorithm 3.2) requires the essential
bandregion K to be shift-convex. In neither of the examples in Section 5.4 was
K shift-convex. With ρ/r = 1/3 and equality in (5.11,5.10) we have

W =

( r+ρ
ρ

π
2br 0

0 π
br

)
, W⊥ =

(4brρ
r+ρ 0

0 2br

)
. (5.13)

As can be seen in Figure 14a, both K + W⊥(0, 1)T and K + W⊥(0,−1) overlap
K which, by replacing b by 2b in (3.2, is given by

K = {(s, t) ∈ Z
2 : |s − t| < 2br, |s|r < |s − t|ρ}. (5.14)

To make K shift-convex we would need to have chosen

W =

( r+ρ
ρ

π
2br 0

0 π
2br

)
W⊥ =

( 4brρ
r+ρ 0

0 4br

)
, (5.15)

as is done in [4] (see section 3.2.2). A few of the translates K + η, η ∈ L⊥
W are

in Figure 14b.
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Figure 15: The reconstruction algorithm of Izen et. al (Algorithm 3.2 in [4])
requires the essential bandregion K of Df , solid, to be shift convex with respect
to L⊥

W and L⊥
P . Translates by L⊥

W are in black while shifts by L⊥
P are gray.

In (a) the translates K + η, η ∈ L⊥
W do not overlap K but additional shifts by

elements of L⊥
P reintroduce overlap,. Such is not the case in (b) where K is

shift-convex. Both figures are drawn with W and P as in (5.15) and (5.16). (a)
corresponds to ρ/r = 1/2 and in (b) ρ/r = 1/3.

As was mentioned earlier, a bandregion K can fail to be shift-convex even
when K ∩ (K + η) = ∅ for all η ∈ LW

⊥. This happens when additional shifting
by elements of L⊥

P causes overlap with K. As an example, let ρ/r = 1/2 with
equality in (5.11,5.10). Take W and W⊥ as in (5.15) and

P =

(
r+ρ

ρ
π

2br 0

0 πq′

br

)
, P⊥ =

(
4brρ
r+ρ 0

0 2br
q′

)
. (5.16)

Since ρ/r = 1/2, p/q = 4/3 so q′ = 3. Then K∩(K+W⊥(1, 0)T +P⊥(0, 1)T ) 6=
∅ as can be seen in Figure 15a. Several multiples of P⊥(0, 1)T also reintroduce
overlap. However, K is shift convex with respect to L⊥

W and L⊥
P if we use (5.15)

and (5.16) with ρ/r = 1/3 (see Figure 15b).
We conclude this section with a reconstruction of both phantoms for a decid-

edly non-shift-convex bandregion K. This is done simply to illustrate the flexi-
bility of combining Theorems 5 and 4. With, ρ/r = 1/2, equality in (5.11,5.10),
and W, P as in (5.13),(5.16), overlap occurs both with shifts from L⊥

W and with
additional shifts from L⊥

P . We chose b = 400 so that the images could be
compared with the earlier reconstructions. With equality (5.11,5.10) we have
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Figure 16: Reconstruction of two phantoms with ρ/r = 1/2 and bandwidth b =
400. With ρ/r = 1/2 the essential bandregion K is as in Figure 15b and is not
shift-convex, and Algorithm 3.2 in [4] would be unable to produce this image.

p = 1067 and q = 800. The upsampling, as in the earlier reconstructions,
was performed by Faridani’s PSMD software package and the reconstruction
followed Algorithm 5.3 in [17]. Figure 16 shows the results.

6 Conclusions

We have verified the results of Izen et al. in [4] and have avoided the restrictive
hypothesis of shift convexity by employing Faridani’s periodic multi-dimensional
sampling theory, Theorem 4. The results showed that the number of data needed
for accurate reconstruction in the fan beam geometry can be effectively cut in
half.

This led to the presentation of a new scheme which is more efficient than
standard reconstruction and is easier to implement than the efficient scheme
of Natterer [15]. It also provided an answer to the undersampling inherent in
the design of third-generation CT scanners, permitting reconstruction at the
maximum possible. The validity of the theory was demonstrated through a
numerical implementation of Theorem 6.

Theorem 6 is not intended to be the only possible application of Theorems 4
and 5, but simply a concrete example of their combined power. As we saw in
Figure 16, the PSMD software package developed by Faridani in conjunction
with [7] permits interpolation regardless of the value of q′.
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