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I. INTRODUCTION

X-ray polychromaticity is a well-known source of artifacts
in clinical CT imaging. As a polyenergetic X-ray beam passes
through an object, rays with lower energy are preferentially
attenuated, and thus the spectrum of the beam becomes
increasingly skewed towards high-energy rays. This beam
hardening phenomenon results in inconsistent projection data,
and produces artifacts in images reconstructed using filtered
backprojection (FBP). These artifacts typically appear in the
form of cupping (underestimation of attenuation coefficients,
particularly towards the centre of the object), as well as dark
streaking between regions of high attenuation (e.g. bone).

Methods for reducing or eliminating beam hardening ar-
tifacts can be broadly categorized into post-reconstruction
approaches, which attempt to eliminate artifacts from an
image reconstructed using FBP, or iterative reconstruction
approaches, which attempt to reconstruct an artifact-free image
from the projection data, by incorporating X-ray polychro-
maticity directly into the system model. In this paper we
compare a well-known post-reconstruction approach [1], [2]
with our own iterative approach which is based on one
presented in [3]. Two numerical phantom experiments are used
to demonstrate that the post-reconstruction approach does not
compensate for artifacts caused by more than one different
type of high attenuation material. The iterative approach is
able to reconstruct artifact-free images in both experiments.

II. METHODOLOGY

A. Polyenergetic model

For polyenergetic X-ray beams, the projection measurement
recorded by the ith detector can be modeled as

Pi(µ) =

∫
P0(ε) exp (−Ri [µ (x, ε)]) dε. (1)

Here, ε represents beam energy, P0(ε) is the blank scan
intensity as a function of energy, µ : R2 × R → R is the
energy-dependent attenuation map of the object being imaged,
x is position, and Ri represents the Radon transform of the
object along the line normal to detector i, with 1 ≤ i ≤ Nproj .
For the purposes of reconstruction, we discretize the spectrum
into Nε energy levels, indexed by h, and re-weight P0 (εh)
appropriately to approximate the continuous spectrum. The
attenuation map µ is discretized into Npix pixels, indexed
by j. The problem is then to use this data to reconstruct an
attenuation map of the object at some reference energy, ε0.

B. Post-reconstruction correction

The post-reconstruction correction [1], [2] is a two-step
procedure. The first step is a soft tissue correction where one
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simulates monoenergetic data, based on the assumption that
the object consists only of soft tissue. One first determines
the equivalent length of soft tissue, T s

i , that the beam would
pass through to generate each measurement Pi, by solving the
nonlinear equation

Pi =

Nε∑
h=0

P0(εh) exp (−µsoft(εh) · T s
i ) ,

for all i. One then simulates monoenergetic projection data,
Mi, at the reference energy by

Mi = µsoft(ε0)T
s
i ,

and reconstructs an image from this data using FBP. This stage
tends to produce an image where cupping artifacts are reduced,
but streaks caused by bone still exist. In the second stage of the
method, one segments this image into regions containing bone
and regions containing soft tissue. From this segmentation, one
estimates the length of intersection of each ray with bone, T b

i .
Finally, a new estimate of T s

i is generated from solving

Pi =

Nε∑
h=0

P0(εh) exp
(
−µsoft(εh) · T s

i − µbone(εh) · T b
i

)
.

The updated monoenergetic approximation is then

Mi = µsoft(ε0)T
s
i + µbone(ε0)T

b
i ,

which is used to reconstruct a second image with FBP.

C. Iterative method

Our iterative method follows that of [3], where the energy
dependent values µ(ε) for different materials are modeled as
the sum of a photoelectric component and a Compton scatter-
ing component. The energy dependencies of the photoelectric
effect Φ(ε) and Compton scattering Θ(ε) are

Φ(ε) =
1/ε3

1/ε30
, Θ(ε) =

fKN (ε)

fKN (ε0)
, (2)

where fKN is the Klein-Nishina function. We then have

µ(ε) = ϕ · Φ(ε) + θ ·Θ(ε), (3)

where ϕ and θ are coefficients which depend on the specific
material.

This parameterization would require estimating twice as
many parameters as in a typical reconstruction problem. To
reduce the number of variables further, [3] suggest modeling
θ and ϕ as functions of µ at the reference energy ε0, rather
than as independent quantities. We then have a forward model

P̂i(µ) =

Nε∑
h=1

P0 (εh) exp [−Ri (ϕ(µ) · Φ(εh) + θ(µ) ·Θ(εh))] ,

(4)



TABLE I
MATERIALS USED IN PHANTOM EXPERIMENTS ALONG WITH THEIR

ATTENUATION COEFFICIENTS AT 70 KEV (IN CM−1).

1. Soft 2. Fat 3. Bone 4. Dense
µ(70 keV) 0.1935 0.1717 0.4974 0.2780

where µ is the column vector representing µ(ε0) for every
pixel, and Ri is the ith row of the Nproj × Npix matrix R
representing a discrete approximation to the Radon transform.

While [3] incorporate this model into a maximum-likelihood
algorithm, we consider the reconstruction problem as one of
minimizing the discrepancy between the measured data Pi

and the forward projection of the estimate, P̂i (Eq. 4), for
all i. Since the parameters to be estimated are exponentiated,
we compare the log of the projection data and minimize the
function

G(µ) = ∥F(µ)∥22 , where Fi(µ) = ln P̂i(µ)− lnPi. (5)

From the above equations it follows that the gradient of G is

∂G(µ)

∂µj

= 2

Nproj∑
i=1

Fi(µ)
∂Fi(µ)

∂µj

, (6)

where

∂Fi(µ)

∂µj

=
−Ri,j

P̂i(µ)

Nε∑
h=1

P0(εh)

[
Φ(εh)

dϕ

dµj

+Θ(εh)
dθ

dµj

]
×

exp [−Ri (ϕ(µ) · Φ(εh) + θ(µ) ·Θ(εh))] .
(7)

Given the objective function and its gradient, we can apply
a minimization algorithm to solve the reconstruction problem.
We use limited-memory bounded BFGS [4], a quasi-Newton
approach which uses a Hessian approximation to determine the
minimizer of the objective function, and includes the ability
to impose a non-negativity constraint on µ.

III. RESULTS AND CONCLUSIONS

We consider two 200× 200 pixel numerical phantoms. The
first is a circular phantom consisting of soft tissue, four small
regions containing bone, and an interior region containing
fat. The second phantom consists of soft tissue, three bone
regions, and three other regions containing air, fat, and a dense
material. The measured projection data consisted of 360 views
taken over 180◦ and was generated by averaging projection
data over 124 different energy levels according to a weighted
spectrum. For the purposes of reconstruction, we assumed only
eleven energy levels, and generated the weighting coefficients
P0(εh) using the composite trapezoid rule.

Figs 1 and 2 show the results of the two approaches for
both phantoms, as well as FBP images reconstructed from
ideal monoenergetic data and from polyenergetic data. For
Phantom 1, which consists only of soft tissue, fat and bone,
both methods are able to successfully remove beam hardening
artifacts. For Phantom 2, however, only the iterative approach
successfully removes all the artifacts. The presence of the
region of dense material (denoted (4) in Fig. 2), whose

Fig. 1. Reconstructed images of first phantom. Top left: image reconstructed
from ideal monoenergetic data, with tissue types labeled (cf. Table I). Top
right: image reconstructed from polyenergetic data showing typical beam
hardening artifacts. Bottom left: Image reconstructed using post-reconstruction
technique. Bottom right: image reconstructed using iterative technique. Itera-
tive image has been smoothed using anisotropic diffusion.

Fig. 2. Reconstructed images of second phantom. See Fig. 1 caption for
descriptions.

attenuation coefficient differs significantly from that of bone
and soft tissue, produces artifacts that the post-reconstruction
correction does not remove. We note that the gradient-based
iterative approach presented here does note require any seg-
mentation, is flexible, and can readily incorporate attenuation
models other than (3), if appropriate.
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