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Abstract

In this paper, we discuss three iterative correction methods proposed by G. Van
Gompel et al. [15] for the beam hardening artifacts in computed tomography. We
implement each method, using previous work done by M. Alarfaj [1], and provide
results for comparison of the effectiveness of each method.
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Chapter 1

Introduction

1.1 X-ray Computed Tomography

X-ray computed tomography (CT) is a form of medical imaging that aims to non-
invasively produce cross-sectional images of the inside of the human body using data
obtained via x-rays. The fundamental problem of CT is to reconstruct the image of
an object from its projections. Mathematically speaking, CT aims to reconstruct a
function from its line integrals.

This problem was solved in the early 20th century by Johann Radon, who showed
that a function could be reconstructed from an infinite set of its line integrals [11].
However, it wasn’t until the 1960’s that Allen Cormack, unfamiliar with the work
of Radon, contributed the first mathematical implementation of tomographic recon-
struction. Shortly thereafter, Godfrey Hounsfield developed the first CT scanner to
be used commercially. Cormack and Hounsfield were awarded the Nobel Prize in
Physiology or Medicine in 1979 for their respective contributions to the development
of CT [3] [5].

When a CT scan is taken, the x-rays are attenuated as they pass through the
body. However, they are attenuated differently depending on the material. An x-ray
beam is attenuated more when it passes through a material with high density than
it is when it passes through a material of low density. Thus, because the body is
not homogenous, the attenuation is dependent on the path chosen. For this reason,
projections must be obtained at many different angles. These projections are then
used to estimate the attenuation coefficients for the different materials throughout
the body. In the following pages, when we refer to the density of a material, we mean
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its x-ray attenuation coefficient. Thus, with an accurate estimate of the density of
the materials throughout the body, the image can be reconstructed.

There are, however, many different artifacts that can distort the reconstructed
image from the true image. These artifacts have a variety of causes, including the
patient, the scanner, or the physics involved. Some artifacts caused by the patient
are due to metal objects present in the region being scanned, such as dental fillings
or prosthetic devices, while others arise when the patient moves during the scan.
Artifacts caused by the scanner could be due to the need for recalibration or even
repair. Physics-based artifacts in the image have a number of different causes, one
of which is due to the use of x-rays that are composed of photons of varying energy
levels. This is called the beam hardening artifact. Correcting for this artifact will be
the focus of the remainder of this paper. [2]

1.2 Beam Hardening

As described above, the main goal of CT is to estimate the attenuation coefficients
throughout the body in order to produce a reconstruction of the image. For a
monochromatic energy source, the x-ray beam is made up of photons at the same
energy level. Thus, the attenuation coefficient at each point is unique and depends
only on the material at that point. However, for a polychromatic energy source, the
x-ray beam is made up of photons at different energy levels. As the beam passes
through the body, low energy photons are absorbed more strongly than high energy
photons. Thus, the attenuation of an x-ray at a point in the body depends on the
path traveled as well as the energy level. Low energy x-ray beams are often called
soft beams, while high energy x-ray beams are called hard beams. The composition
of the polychromatic x-ray beam is more predominantly higher energy photons after
it has passed through the body than it was before passing through. Thus, it is said
that the x-ray beam hardens as it passes through the body. This leads to the term
beam hardening. Note that beam hardening does not occur with monochromatic
x-ray beams because all photons are at the same energy level.

Now, assuming an ideal monochromatic energy source, the detected intensity ID
of the x-ray beam can be expressed using Lambert-Beer’s Law, giving

ID = I0e
−

∫
L µ(x,y)ds (1.1)

where I0 is the initial intensity of the monochromatic x-ray beam, L is the line over
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which the beam travels, and µ(x, y) is the linear attenuation coefficient at the point
(x, y) along line L. From this equation, the monochromatic ray sum is defined to be

m = −ln
(
ID
I0

)
=

∫
L

µ(x, y)ds (1.2)

and is not dependent on the energy of the x-ray beam. Additionally, there is a lin-
ear relationship between µ and the monochromatic ray sum leading to an algorithm
which produces a reconstructed image lacking beam hardening artifacts.

In practice, x-ray beams are not monochromatic. Thus, it is necessary to consider
the case where a polychromatic energy source is used. As described above, attenua-
tion is dependent on the energy of the photons. Thus, the detected intensity should
take into account this energy dependence. Define τ(E) to be the probability density
that a given photon is at energy E. Then, the detected intensity ID is given by

ID = I0

∫ Emax

0

τ(E)e−
∫
L µ(x,y,E)dsdE (1.3)

where µ(x, y, E) is the attenuation coefficient at the point (x, y) for energy E and I0

is the initial intensity of the x-ray beam. Defining the polychromatic ray sum in the
same way that the monochromatic ray sum was defined gives

p = −ln
(
ID
I0

)
= −ln

(∫ Emax

0

τ(E)e−
∫
L µ(x,y,E)dsdE

)
(1.4)

and takes into account the energy dependence of the attenuation coefficients. While
the monochromatic ray sum in Eq. (1.2) had a linear relationship with µ, Eq. (1.4)
yields a nonlinear relationship between the polychromatic ray sum and µ. It is this
nonlinearity that causes the beam hardening artifacts in the reconstructed image
when the algorithm obtained for monochromatic data is used.

1.3 The Beam Hardening Artifacts

To observe the beam hardening artifacts, we will use a 200 x 200 density phantom
produced at 60 keV, as seen in Fig. 1.1. The phantom consists of one large disk,
which is assigned the attenuation coefficient of a material similar to that of brain
matter, and four small disks, which are assigned the attenuation coefficient of a ma-
terial similar to bone. The locations of each disk are described by the coordinates
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(x, y) of the center of the disk and by the radius r, with the values for each shown in
Table 1.2. The linear attenuation coefficients of each material are given in Table 1.1
obtained from [9]. Unless otherwise noted, each image was produced using a grey
scale window of [.17,.24].

Table 1.1: Energy spectrum and linear attenuation coefficients
Energy (keV) τ Bone Brain Soft Tissue 1 Soft Tissue 2

41 0.1 0.999 0.265 0.357 0.448
52 0.3 0.595 0.226 0.272 0.3182
60 0.3 0.416 0.210 0.236 0.261
84 0.2 0.265 0.183 0.193 0.203
100 0.1 0.208 0.179 0.178 0.182

Table 1.2: Location parameters used to produce phantom
No. x y r
1 0 0 0.9
2 -0.45 0.45 0.15
3 0.45 0.45 0.15
4 -0.45 -0.45 0.15
5 0.45 -0.45 0.15
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Figure 1.1: Original Phantom

We assume a discretized energy spectrum consisting of energies E1, . . . , EK to
approximate the polychromatic ray sum given in Eq. (1.4), giving

papprox ≈ − ln

(
K∑
k=1

τke
−

∫
L µ(x,y,Ek)ds

)
(1.5)

where τk is approximately the probability that the given photon is at energy Ek. The
discretized energy spectrum and probability density used are given in Table 1.1.

Figure 1.2 shows the original phantom in comparison to the reconstructed image
using monochromatic data as explained above. Overall, the monochromatic recon-
struction appears to be comparable to the original. There is some noise present;
however, the discrepancies seen in the reconstructed image are not those character-
istic of the beam hardening artifacts.
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Figure 1.2: Reconstruction using ideal monochromatic data with grey scale [.17,.24]
and picture size 200 x 200 Top left: Original image, Top right: Density profile for
row 120 of original phantom, Bottom left: Reconstructed image using monochro-
matic data at 60 keV, Bottom right: Density profile for row 120 of monochromatic
reconstruction.

Figure 1.3 shows the original phantom in comparison to the reconstructed im-
age using polychromatic data. Two types of artifacts are characteristic of beam
hardening: the streaking artifact and the cupping artifact. The streaking artifact is
characterized by dark streaks between areas of high density. The cupping artifact
causes areas of constant density to appear cupped. In other words, the reconstructed
density is lower in the interior of the object. Both of these artifacts are present in
this reconstructed image. The dark streaks can be seen between the four disks of
bone. The cupping is seen in the density profile where there are much smaller values
through the middle of the object. The contrast can be seen clearly between the
density profile of the original phantom compared to that of the polychromatic image
below it.
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Figure 1.3: Reconstruction using polychromatic data with beam hardening artifacts,
grey scale [.17,.24], and picture size 200 x 200, Top left: Original image, Top right:
Density profile for row 120 of original phantom, Bottom left: Reconstruction using
polychromatic data, showing the streaking artifact, Bottom right: Density profile
for row 120 of polychromatic reconstruction, showing the cupping artifact.

1.4 Correction of Beam Hardening Artifacts

The problem of correcting for beam hardening artifacts has been the subject of much
research in the past four decades. This has lead to a variety of possible correction
methods. Some of these methods include hardware filtering, linearization, dual en-
ergy, and statistical reconstruction.

Hardware filtering is a common method used to limit the energy spectrum of the
x-rays at the source. As described above, low energy photons are absorbed more
strongly than high energy photons. Thus, a metal plate is placed between the source
and the object to absorb the low energy photons before the x-ray beam reaches the
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object. While this method is effective in reducing the beam hardening artifacts, it
also leads to a decrease in the signal to noise ratio [14] [15].

Linearization correction methods seek to generate monochromatic data from mea-
sured polychromatic data. For objects consisting of multiple materials, this is often
done using an iterative post reconstruction approach [10] [15]. At each iteration,
the sinogram is corrected using estimates for material thicknesses (the length of the
intersection of the material with the x-ray path) and prior knowledge about the
system, including the number of materials present in the image and how the attenu-
ation coefficients depend on the energy level. These methods often assume a certain
amount of prior knowledge which is not always readily available.

The attenuation coefficient of a material represents the effects of two absorp-
tion processes: the photo electric effect and the Compton effect [12]. Dual energy
correction methods [4] model the attenuation coefficients as a linear combination of
basis functions representing the respective contributions from each absorption pro-
cess. One of the drawbacks of this method is that it generally requires two scans to
be done with different energy spectra, increasing the dose that a patient receives.

Statistical reconstruction methods [6] [8] use a maximum likelihood algorithm
to take into account the polychromatic nature of the x-ray beam. This approach
assumes that the base substances are known and that the energy dependence of the
attenuation coefficients can be expressed as a linear combination of the energy de-
pendencies of the base substances. While these methods are flexible, they also have
a higher cost computationally.

In this paper, we will discuss three iterative correction methods for the beam
hardening artifacts presented by G. Van Gompel, K. Van Slambrouck, M. Defrise,
K. Batenburg, J. de Mey, J. Sijbers, and J. Nuyts [15]. Each of these methods is
based on a physical model produced using a given set of parameters. In Chapter
2, we will present each of these correction methods in greater detail. Chapter 3
describes our experiments and results while Chapter 4 provides a comparison on the
effectiveness of each method.
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Chapter 2

Iterative Correction Methods by
Van Gompel, et al.

Three iterative methods to correct for the beam hardening artifact have been pro-
posed in [15]. These methods are the iterative gradient based reconstruction (IGR),
the iterative filtered backprojection approach (IFR), and the iterative sinogram pre-
processing method (ISP). These methods assume that the number of materials in
the body is known and that the energy spectrum can be represented by a small, pre-
defined number of energy ”bins”. These methods can also deal with small variations
in the density of the materials allowing for the reconstruction of materials that are
not perfectly uniform. Additionally, they do not require prior knowledge about the
properties of the materials nor are they limited to a certain number of materials in
the image, unlike many other reconstruction methods.

The goal of each of these methods is to produce an image free of the cupping and
streaking artifacts that are due to beam hardening. This image is produced using
simulated polychromatic data obtained from a given set of estimated parameters,
where the simulated data is based on a physical model. This parameter estimation
is treated as an optimization problem where we aim to minimize the mean square
error between the measured polychromatic data and the simulated polychromatic
data obtained from the estimated parameters.
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2.1 Simulated Polychromatic Data and Parame-

ters

In order to determine the parameters to be estimated, we must first develop an
algorithm for producing simulated polychromatic data. Let N be the number of
materials present in the object to be reconstructed, let J be the total number of
pixels in the image, and let K be the total number of energy bins. Additionally
we define µn(Ek) to be an approximation of the linear attenuation coefficient for
material n at energy Ek. In this method, we assume that each pixel contains only
one material. Thus, we define sn,j such that sn,j = 1 if pixel j contains material
n, and sn,j = 0 otherwise. Finally, as described above, we do not assume that each
material is perfectly uniform. Therefore, we will introduce dj to be the relative
density of the material in pixel j. Now, the attenuation at pixel j for energy Ek can
be expressed by

Aj,k = dj

N∑
n=1

µn(Ek)sn,j (2.1)

Then, the line integral along line i at energy Ek of the discretized image can be
expressed as

Li,k =
J∑
j=1

li,jAj,k

=
N∑
n=1

µn(Ek)
J∑
j=1

li,jdjsn,j (2.2)

where li,j is the length of the intersection of line i with pixel j. Thus, the simulated
polychromatic data along line i can be expressed by

psimi = ln

(
K∑
k=1

τke
−

∑N
n=1 µn(Ek)

∑J
j=1 li,jdjsn,j

)
(2.3)

From this expression of the simulated data, we are able to determine our pa-
rameters to be the attenuation coefficients µ, the fractional intensity τ , the relative
density d, and the segmentation s.
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2.2 Cost Function

The goal of the iterative correction methods is to produce simulated polychromatic
data that closely matches the measured data. In other words, the methods iteratively
minimize a cost function Φ to produce an image free of the beam hardening artifacts.
Let M be the total number of x-ray projection lines. Then, we define

Φ(µ, τ, d, s) =
1

M

M∑
i=1

(pmeasi − psimi )2 (2.4)

where pmeasi is the measured polychromatic data and psimi is the simulated polychro-
matic data. The measured data along line i is defined to be

pmeasi = ln

(
ID,i
I0

)
(2.5)

and the simulated data is given in Eq. (2.3). Thus, we can rewrite the cost function
given in Eq. (2.4) as

Φ(µ, τ, d, s) =
1

M

M∑
i=1

(
ln

(
ID,i
I0

)
− ln

(
K∑
k=1

τke
−

∑N
n=1 µn(Ek)

∑J
j=1 li,jdjsn,j

))2

(2.6)

When computing the simulated polychromatic data in our implementation, we use
MATLAB’s built-in Radon command to approximate Li,k, the expression for the line
integral, given in Eq.(2.2). Also note that the cost function Φ does not have a unique
minimum. For example,

Φ(µ, τ, d, s) = Φ(µ/2, τ, 2d, s) (2.7)

Thus, it is important to initialize the following procedure with good estimates of the
parameters.

2.3 Iterative Gradient based Reconstruction (IGR)

As stated previously, the iterative gradient based reconstruction (IGR) method aims
to iteratively minimize the cost function given in Eq. (2.6). To do this, each step aims
to minimize the cost function for a specific parameter while holding the other param-
eters constant rather than attempting to minimize for all parameters at once. The
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IGR method begins with the user selecting the number of materials N and number
energy bins K, and by performing an initial reconstruction of the measured poly-
chromatic data using the filtered back projection algorithm [16], R0 = FBP (pmeasi ),
in order to obtain good estimates for the parameters. Then, the following occurs at
each iteration, w:

2.3.1 Update the segmentation

To estimate the parameter sn,j, we split the current image, Rw−1, into N segments
via thresholding so as to minimize the cost function. However, the gradient of the
cost function with respect to segmentation is very often near zero. We only see a
considerable change in the cost function when the threshold value is close to the
density of one of the materials. When this happens, changing the threshold slightly
results in a change in the segmentation. When the threshold value is not close to
the density of one of the materials, the segmentation stays essentially the same when
the threshold value is changed slightly. Because of this, it proved difficult to find
threshold values that minimized the cost function using MATLAB’s standard opti-
mization tools. Thus, we implemented an adhoc method developed by A. Faridani
to find initial threshold values for which the gradient of the cost function is not zero.

In this method, we define a function F (x) to be the number of pixels in the
current image with densities less than or equal to x. As x increases, we see that
F (x) also increases because there are more pixels less than or equal to x. Now, F (x)
changes most drastically when x is near the density of one of the materials. Thus,
we approximate F ′(x) and then search for peaks in the data. In other words, we
find densities at which the local maxima of F ′(x) occur and choose those to be our
initial threshold values. We then use a steepest descent method to find thresholds
that minimize the cost function. More specifically, for this we approximate the
gradient using finite differences to find the direction of steepest descent. We then
estimate a step size relative to the threshold values obtained. At this point, we
update the thresholds and reevaluate the cost function. We continue to do this until
the cost function stops decreasing, giving us the new estimate for our thresholds and
segmentation.

2.3.2 Update the relative density

We initialize the relative density, dj, by one in the first iteration for all pixels in the
image. For each iteration w > 1,we use the updated value for s and estimate the
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relative density parameter by minimizing the cost function [Eq. (2.6)]. To do this,
G. Van Gompel et al. [15] develop a gradient descent algorithm by seeking a surro-
gate function ΦA(d,dn) of the cost function given in Eq. (2.6), which satisfies the
conditions ΦA(d,dn) ≥ Φ(d) and ΦA(dn,dn) = Φ(dn) [7] [13]. All other parameters
are held constant during the relative density update. Thus, they are not included
here in the notation. The goal is to obtain a function that is more easily minimized
than the original. To do this, a surrogate function is built for the approximation of
Φ given by a quadratic Taylor expansion:

Φ(d) ' Φ(dn) +
J∑
j=1

∂Φ

∂dj

∣∣∣∣
dn

(dj − dnj ) +
1

2

J∑
j=1

J∑
j=1

∂2Φ

∂dj∂dh

∣∣∣∣
dn

(dj − dnj )(dh− dnh) (2.8)

Now, the first derivative of Φ is given by:

∂Φ(d)

∂dj
=

∂

∂dj

(
1

M

M∑
i=1

(
ln

(
ID,i
I0

)

− ln

(
K∑
k=1

τke
−

∑N
n=1 µn(Ek)

∑J
j=1 li,jdjsn,j

))2) (2.9)

Defining

Pi,k = τke
−

∑N
n=1 µn(Ek)

∑J
j=1 li,jdjsn,j (2.10)

Pi =
K∑
k=1

Pi,k (2.11)

allows Eq. (2.9) to be rewritten as
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∂Φ(d)

∂dj
=

∂

∂dj

(
1

M

M∑
i=1

(
ln

(
ID,i
I0

)
− ln (Pi)

)2
)

=
2

M

M∑
i=1

(
ln

(
ID,i
I0

)
− ln(Pi)

)( K∑
k=1

Pi,k
Pi

N∑
n=1

µn(Ek)li,jsn,j

)

=
2

M

K∑
k=1

M∑
i=1

(
ln

(
ID,i
I0

)
− ln(Pi)

)(
Pi,k
Pi

N∑
n=1

µn(Ek)li,jsn,j

)

=
2

M

K∑
k=1

N∑
n=1

µn(Ek)sn,j

M∑
i=1

(
ln

(
ID,i
I0

)
− ln(Pi)

)
Pi,k
Pi

li,j

=
2

M

K∑
k=1

N∑
n=1

µn(Ek)sn,j

M∑
i=1

li,j

(
ln

(
ID,i
I0

)
− ln(Pi)

)
Pi,k
Pi

(2.12)

The second derivative in Eq. (2.8) is simplified by assuming that
(
ln
(
ID,i

I0

)
− ln(Pi)

)
can be neglected when close enough to the minimum, which leaves only the dominant
term. The second derivative is given by

∂2Φ(d)

∂dh∂dj
=

∂

∂dh

(
2

M

K∑
k=1

N∑
n=1

µn(Ek)sn,j

M∑
i=1

li,j

(
ln

(
ID,i
I0

)
− ln(Pi)

)
Pi,k
Pi

)

=
2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

][
M∑
i=1

li,j

(
∂

∂dh

(
ln

(
ID,i
I0

)
− ln(Pi)

)
Pi,k
Pi

+

(
ln

(
ID,i
I0

)
− ln(Pi)

)
∂

∂dh

(
Pi,k
Pi

))]
(2.13)
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Applying the approximation described allows Eq. (2.13) to be rewritten as

∂2Φ(d)

∂dh∂dj
' Hj,h(d)

.
=

2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

][
M∑
i=1

li,j

(
∂

∂dh

(
ln

(
ID,i
I0

)
− ln(Pi)

))
Pi,k
Pi

]

=
2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

][
M∑
i=1

li,j
Pi,k
Pi

(
K∑
k′=1

N∑
n′=1

µn′(Ek′)sn′,hli,h
Pi,k′

Pi

)]

=
2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

]

·
M∑
i=1

li,jli,h
Pi,k
P 2
i

(
K∑
k′=1

Pi,k′
N∑

n′=1

µn′(Ek′)sn′,h

)
(2.14)

Now, the right hand side of Eq. (2.14) is always positive and

2(dj − dnj )(dh − dnh) ≤ (dj − dnj )2 + (dh − dnh)2 (2.15)

Thus, it follows that

J∑
j=1

J∑
h=1

Hj,h(d
n)(dj − dnj )(dh − dnh) ≤

J∑
j=1

J∑
h=1

Hj,h(d
n)(dj − dnj )2 (2.16)

Applying this inequality to Eq. (2.8), the surrogate function ΦA is defined to be

ΦA(d,dn) = Φ(d) +
J∑
j=1

∂Φ

∂dj

∣∣∣∣
dn

(dj − dnj )

+
1

2

J∑
j=1

J∑
h=1

∂2Φ

∂dj∂dh

∣∣∣∣
dn

(dj − dnj )2 (2.17)

which satisfies the conditions ΦA(d,dn) ≥ Φ(d) and ΦA(dn,dn) = Φ(dn). With the
new surrogate function, minimization is reduced to setting the derivative of ΦA with
respect to dj equal to zero and solving for dj. Thus, we have
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0 =
∂

∂dj
ΦA

=
∂Φ

∂dj

∣∣∣∣
dn

+
J∑
h=1

Hj,h(d
n)(dj − dnj )

=
∂Φ

∂dj

∣∣∣∣
dn

+
J∑
h=1

Hj,h(d
n) · dj −

J∑
h=1

Hj,h(d
n) · dnj (2.18)

Rearranging the terms in Eq. (2.18), we obtain

J∑
h=1

Hj,h(d
n) · dj =

J∑
h=1

Hj,h(d
n) · dnj −

∂Φ

∂dj

∣∣∣∣
dn

dj = dnj −
∂Φ
∂dj

∣∣∣
dn∑J

h=1Hj,h(dn)
, (2.19)

corresponding to a gradient descent with diagonal preconditioner
1∑J

h=1Hj,h(dn)
.

With a nonnegativity constraint added, this leads to a relative density update of

dn+1
j =

[
dnj

−

∑K
k=1

[∑N
n=1 µn(Ek)sn,j

] [∑M
i=1 li,j

(
ln
(
ID,i

I0

)
− ln(Pi)

)
Pi,k

Pi

]
∑K

k=1

[∑N
n=1 µn(Ek)sn,j

]∑M
i=1 li,j

Pi,k

P 2
i

∑K
k′=1 Pi,k′

∑N
n′=1 µn′(Ek′)

∑J
h=1 li,hsn′,h

]
+

(2.20)

where [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0. However, the second derivative in Eq.

(2.14) uses one backprojection
(
represented by

∑
i

li,j
)

for each energy bin k. To

reduce the number of backprojections required, each term of the second derivative is

multiplied by

(
Pi
Pi,k

)
> 1. Thus, the second derivative becomes
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Hj,h(d) =
2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

]

·
M∑
i=1

li,jli,h
Pi,k
P 2
i

(
K∑
k′=1

Pi,k′
N∑

n′=1

µn′(Ek′)sn′,h

)(
Pi
Pi,k

)

=
2

M

K∑
k=1

[
N∑
n=1

µn(Ek)sn,j

]

·
M∑
i=1

li,jli,h
1

Pi

(
K∑
k′=1

Pi,k′
N∑

n′=1

µn′(Ek′)sn′,h

)
(2.21)

and now contains only one backprojection. Because this approximation decreases
the step size, it does not lead to instability. The new relative density update with
this approximation now becomes

dn+1
j =

[
dnj

−

∑K
k=1

[∑N
n=1 µn(Ek)sn,j

] [∑M
i=1 li,j

(
ln
(
ID,i

I0

)
− ln(Pi)

)
Pi,k

Pi

]
∑K

k=1

[∑N
n=1 µn(Ek)sn,j

]∑M
i=1 li,j

1
Pi

∑K
k′=1 Pi,k′

∑N
n′=1 µn′(Ek′)

∑J
h=1 li,hsn′,h

]
+

(2.22)

with [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0.

We implement the relative density update described in Eq.(2.20), which we will
call the Full IGR method (without the approximation), as well as the update de-
scribed in Eq. (2.22), which we will call the Approximated IGR method.

2.3.3 Update the attenuation coefficients and fractional in-
tensity

Using the updated values for s and d, the parameters µ and τ are estimated by
minimizing the cost function. However, in our implementation, we use the known
values of for these parameters as shown in Table (1.1).
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2.3.4 Update the image

Estimated values have now been found for all of the parameters. Thus, the image is
updated for segmentation at the next iteration by

Rw = dwj

N∑
n=1

µwIGR,n(Ek)s
w
n,j (2.23)

where µwIGR,n is the median of {µwn (E1), . . . , µwn (Ek)}. The stopping criteria suggested
by G. Van Gompel, et al is

εw + εw−1

εw−2 + εw−3
> t (2.24)

with 0 < t < 1 a threshold value and where εw = Φ(µw, τw, dw, sw) is defined to be
the polychromatic error of iteration w.

2.4 Iterative Filtered Backprojection (IFR)

The iterative filtered backprojection (IFR) method aims to accelerate the relative
density update step (step 2) of the IGR method. Thus, the IFR method is the
same as the IGR method at all steps except step 2, the relative density update
step. Similarly to the IGR method, the IFR method begins with the user selecting
the number of materials N and number energy bins K, and by performing an initial
reconstruction of the measured polychromatic data using the filtered back projection
algorithm, R0 = FBP (pmesai ), in order to obtain good estimates for the parameters.
Then, the following occurs at each iteration, w:

2.4.1 Update the segmentation

We follow the same procedure as described in the IGR method to update the seg-
mentation parameter sn,j.

2.4.2 Update the relative density

We initialize the relative density, dj, by one in the first iteration for all pixels in
the image. Now, G. Van Gompel et al. found that attempting to estimate dj by
minimizing the cost function was very computationally complex. Thus, we implement
their suggested update. For each iteration w > 1, we update the relative density with
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dw = dw−1 + ωw · FBP (pmeas − psim(µw−1, τw−1, dw−1, sw)) (2.25)

where the dot denotes element wise multiplication and ωw is a relaxation factor with
diagonal elements

ωwj =
1∑N

n=1 µ
w−1
IFR,ns

w
n,j

(2.26)

where µwIFR,n = max{µwn (E1), . . . , µwn (Ek)}. Here, psim is computed using Eq. (2.3).
The drawback here is that the cost function is not guaranteed to decrease.

2.4.3 Update the attenuation coefficients and fractional in-
tensity

Using the updated values for s and d, the parameters µ and τ are estimated by
minimizing the cost function. However, in our implementation, we use the known
values of for these parameters as shown in Table (1.1).

2.4.4 Update the image

We follow the same procedure as described in the IGR method to update the image
Rw.

2.5 Iterative Sinogram Preprocessing (ISP) method

In the iterative sinogram preprocessing (ISP) method, the relative density term d is
omitted in an effort to eliminate negative effects on the conditioning of the optimiza-
tion problem. However, the method still allows for the correction of errors in the
segmentation. As with the previous two methods, the ISP method begins with an
initial reconstruction of the measured polychromatic data, R0 = FBP (pmesai ). The
following occurs at each iteration, w:

2.5.1 Update the segmentation

We follow the same procedure as described in the IGR method to update the seg-
mentation parameter sn,j.
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2.5.2 Update the attenuation coefficients and the fractional
intensity

Using the updated values for s and fixing d = 1, the parameters µ and τ are estimated
by minimizing the cost function. However, in our implementation, we use the known
values of for these parameters as shown in Table (1.1).

2.5.3 Reference attenuation and mono- and polychromatic
simulation

First, the reference attenuation coefficients µwISP,n are calculated (see description
below). Then, the monochromatic and polychromatic simulations are calculated by

msim,w
i =

N∑
n=1

µwISP,n

J∑
j=1

li,js
w
n,j (2.27)

and

psim,wi = ln

(
K∑
k=1

τwk e
−

∑N
n=1 µ

w
n (Ek)

∑J
j=1 li,js

w
n,j

)
. (2.28)

2.5.4 Sinogram correction and image update

The corrected, monochromatized sinogram mcorr,w is calculated with

mcorr,w = pmeas +
(
msim,w − psim,w

)
(2.29)

For the next iteration, the image is given by Rw = FBP (mcore,w).

Reference attenuation coefficients

The reference attenuation coefficients are computed in order to correct for inaccu-
racies in the segmentation. The updated sinogram in Eq. (2.29) consists of the
original measured sinogram as well the correction term produced from the estimated
parameters. Now, if two different low-density materials were classified as the same
material during segmentation, the information distinguishing the two materials from
each other is in the measured sinogram, not the correction term. Thus, we would
like to to select reference attenuation coefficients that minimize the magnitude of
the correction term in Eq. (2.29) so that the information present in the measured
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sinogram is not obscured. In other words, we would like the reference attenuation
coefficients to minimize

Ψ(µw
ISP) =

M∑
i=1

(
msim,w
i − psim,wi

)2

=
M∑
i=1

(
N∑
n=1

µwISP,nt
w
n,i + ln

(
K∑
k=1

τwk e
−

∑N
n=1 µ

w
n (Ek)twn,i

))

where

twn,i =
J∑
j=1

li,js
w
n,j.

The solution to this minimization problem gives

µw
ISP = Bw+v

where Bw+ is the psuedoinverse of the matrix Bw with elements

bwn,n′ =
M∑
i=1

twn,it
w
n′,i

for n, n′ = 1, . . . , N , and the vector v has elements

vwn = −
M∑
i=1

twn,i ln

(
K∑
k=1

τwk e
−

∑N
n=1 µ

w
n (Ek)twn,i

)
for n = 1, . . . , N .
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Chapter 3

Experiments and Results

3.1 Modified Phantom

To test the effectiveness of each of the methods for reducing beam hardening artifacts,
we use a slightly modified phantom from the one previously discussed. Because this
method allows for many materials, we modify the phantom in Fig. 1.1 to include
five materials rather than three. Thus, we now have a 200 x 200 density phantom
produced at 60 keV that consists of one large disk, which is assigned the attenuation
coefficient of a material similar to that of brain matter; two small upper disks, which
are assigned the attenuation coefficients of bone; and two small lower disks, which
are assigned the attenuation coefficients of two low contrast material, soft tissue 1
and soft tissue 2, respectively. This new phantom is seen in Fig. 3.1. The locations
of each disk are the same as previously described in Table 1.2. The linear attenuation
coefficients of all materials are given in Table 1.1.
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Figure 3.1: Modified Phantom, with grey scale [.13,.35]

3.2 Comparison of Full IGR method with Approx-

imated IGR method

As described in Section 2.3.2, we implement two versions of the IGR method: the
Approximated IGR method [Eq. (2.22)] and the Full IGR method (without the ap-
proximation) [Eq. (2.20)]. Here, the Approximated IGR method attempts to limit
the number of backprojections required to calculate the density, leading to a faster
update. We use MATLAB’s built in iradon command to calculate each backprojec-
tion. To test the effectiveness of this approximation, we implemented both versions
of the IGR method on the modified phantom described with the number of iterations
set at 10.

For the Full IGR method, the iradon command was called 101 times, account-
ing for approximately 9.5 % of the total implementation time. In contrast, 60 % of
the total time was required for the update the segmentation. For the Approximated
IGR method, the iradon command was called 61 times, accounting for approximately
5.9 % of the total implementation time. Comparatively, the segmentation update
required 63.5 % of the total time. However, both methods consistently required
the same amount amount of time to complete 10 iterations. Therefore, while we
see that the backprojections required a smaller percentage of the total time for the
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Approximated IGR method, this does not correspond to a decrease in the total im-
plementation time. Additionally, G. Van Gompel et al. [15] developed the IFR
method to reduce the computational complexity of the relative density update. We
see here that it is the optimization of the segmentation that requires the majority
of the total implementation time, not the density update. This could be due to the
particular segmentation algorithm that we implemented. Thus, an improved segmen-
tation algorithm may lead to a decrease in the time required for the optimization of
the segmentation.

3.2.1 Full IGR Method (without the approximation)

Figure 3.2 shows the updated image after 20 iterations of the Full IGR method.
Overall, both the cupping and streaking artifacts are significantly reduced in the re-
constructed image. However, there are significantly higher values at the edge of the
object, as seen in the density profile. There is also a thicker ring around the edge of
the object of material that has been segmented incorrectly. This could be due to the
presence of the cupping artifact in the initial reconstruction. Additionally, from the
density profile, we see that this method is able to make a slight distinction between
the two low density materials. While these low density regions were segmented as the
same material, the relative density parameter is able to make this small distinction.

Figure 3.3 shows the corresponding values of the cost function for 40 iterations.
After approximately 20 iterations, the cost function shows only a very small decrease.
Thus, we see that the cost function has converged to a local minimum. However,
we see a significant decrease between iteration 15 and iteration 20 due to changes in
the segmentation. Unfortunately, these changes in segmentation do not improve the
image, i.e. the updated image looks less like the original image. More specifically,
the update changes certain pixels along the edge of the object that were segmented
as soft tissue 1 to soft tissue 2, a material of higher density. In the original image,
these pixels are occupied by brain material, which has a lower density than both soft
tissues.
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Figure 3.2: Full IGR method (without approx.) after 20 iteration, Top left: Recon-
struction of measured polychromatic data, Top right: Density profile for row 135
of polychromatic reconstruction, Bottom left: Segmented image, Bottom right:
Reconstructed image using Full IGR method at 20 iterations.
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Figure 3.3: Full IGR Cost Function values vs. Iteration

3.2.2 Approximated IGR Method

Figure 3.4 shows the updated image from the Approximated IGR method after 94
iterations. The results we see here are very similar to those that we saw with the
Full IGR method after 20 iterations. There is an overall reduction in the streaking
and cupping artifacts. However, we still see higher values at the edge of the object,
as seen in the density profile, as well as a thicker ring of material along the edge that
has been incorrectly segmented as soft tissue rather than brain. This method also
makes a slight distinction between the two low density materials by means of the
relative density parameter.
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Figure 3.4: Approximated IGR method after 94 iteration, Top left: Reconstruction
of measured polychromatic data, Top right: Density profile for row 135 of poly-
chromatic reconstruction, Bottom left: Segmented image, Bottom right: Recon-
structed image using Approximated IGR method at 94 iterations.

Figure 3.5 shows the values of the cost function at each iteration of the Approxi-
mated IGR method for 100 iterations. We see the cost function continues to decrease
steadily until its drop significantly around iteration 85. After this, we see only a very
small decrease. Again, our cost function has converged to a local minimum.

As stated previously, we obtained very similar results from the Approximated IGR
method after 94 iterations as we did with the Full IGR method after just 20 iterations.
As described by G. Van Gompel et al, the approximation we make to obtain the
density update defined in Eq. (2.22) does not lead to instability because it decreases
the step size. With a decreased step size, we would expect the Approximated IGR
method to require more iterations to reach a minimum than the Full IGR method
without the approximation, which is in fact what we see. Additionally, the thicker
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ring of incorrectly segmented data around the edge of the object in both versions of
the IGR method could be due to the presence of the cupping artifact in the initial
reconstruction from the polychromatic data. It may be possible to correct for this
ring with an improved algorithm to optimize the segmentation parameter.

Figure 3.5: Approximated IGR method Cost Function values vs. Iteration

3.3 IFR Method

All results were obtained using code developed by M. Alarfaj [1]. Figure 3.6 shows
the updated images after 4 iterations of the IFR method compared to the original
phantom. While there are still very high values around the edges of the object, as
seen in the density profile, overall the cupping is not present in the reconstructed
image. Here, we also see that this method was able to distinguish between the two
low contrast materials present. Additionally, the dark streaks between the regions
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of high density have been completely removed.

Figure 3.6: IFR results after 4 iterations, Top left: Reconstruction of measured
polychromatic data, Top right: Density profile for row 135 of polychromatic recon-
struction, Bottom left: Segmented image, Bottom right: Reconstructed image
using IFR method at 4 iterations.

Figure 3.7 shows the values of the cost function at each iteration. We see here that
the cost function is reduced at each iteration; however, the majority of the reduction
occurs in the first four iterations. After that, the reduction in the cost function is
minimal. Thus, we see again that the cost function has converged to a local minimum.
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Figure 3.7: IFR Cost Function values vs. Iteration

3.4 ISP Method

Results were obtained using code developed by M. Alarfaj [1]. Figure 3.8 shows the
updated image after 4 iterations of the ISP method. The streaking artifact is no
longer present in the reconstructed image and the cupping artifact is substantially
reduced. However, we see a thick ring of material around the edge of the object that
is incorrectly segmented as soft material instead brain, similar to the results of the
IGR method. Despite the absence of the relative density parameter, the ISP method
is able to make a slight distinction between the two low-density materials, as seen in
the density profile. Unlike with previous methods, the image produced with the ISP
method has a lower resolution with the edges of the materials appearing less sharp.
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Figure 3.8: ISP results after 4 iterations, Top left: Reconstruction of measured
polychromatic data, Top right: Density profile for row 135 of polychromatic recon-
struction, Bottom left: Segmented image, Bottom right: Reconstructed image
using ISP method at 4 iterations.

Figure 3.9 shows the values of the cost function at each iteration of the ISP
method. This method is not guaranteed to decrease the cost function, which is seen
here. As the cost function increases, the quality of the reconstructed image decreases,
as seen in Figure 3.10. In other words, the reconstructed image looks less like the
original image as we take more iterations. We do not see the cost function converge
to a minimum in this case.
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Figure 3.9: ISP Cost Function values vs. Iteration

Figure 3.10: ISP reconstructed image after 10 iterations
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Chapter 4

Discussion

Figure 4.1 shows the reconstructed images obtained from each of the methods for
the modified phantom described in Figure 3.1. Figure 4.2 shows the corresponding
density profiles for each of the reconstructed images. All of the methods eliminate
the streaking artifact. Additionally, as seen in the density profiles, each method
effectively reduces the cupping artifact. However, the Full IGR, the Approximated
IGR, and the IFR methods all show substantially higher values at the outer edge
of the object. The Full IGR, Approximated IGR, and the ISP methods also all
have a thicker ring of incorrectly segmented material around the outer edge. This
incorrect segmentation could be due to the algorithm used to minimize the cost
function. Thus, this error could possibly be corrected with the use of an improved
minimization algorithm. With both IGR methods, this error improved until the cost
function reached a minimum. This required approximately 20 iterations with the
Full IGR method, as seen in Figure 3.3. The Approximated IGR method required
approximately 90 iterations to reach a minimum, as seen in Figure 3.5. As described
previously, the approximation leading to the density update in the Approximated
IGR method [Eq. (2.22)] decreases the step size taken in each iteration. Therefore,
it would be reasonable to expect the Approximated IGR method to require more
iterations to reach a minimum than the Full IGR method. The ISP method does not
show the same improvement with each iteration. The image improves as the cost
function decreases; however, the cost function is not guaranteed to decrease with
the ISP method. As the cost function increases, as seen in Figure 3.9, the quality
of the reconstructed image declines. In comparison to the other three methods, the
ISP method produces the reconstructed image with the poorest resolution. All four
methods are able to make a distinction between the two low-contrast materials.
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Figure 4.1: Reconstructed images of the modified phantom in Figure 3.1 from each
method, Top left: Reconstruction from Full IGR method at 20 iterations with
grey scale window [0.13,0.35], Top right: Reconstruction from Approximated IGR
method at 94 iterations with grey scale window [0.13,0.35], Bottom left: Recon-
struction from IFR method at 4 iterations with grey scale window [0.13,0.35], Bot-
tom right: Reconstruction from ISP method at 4 iterations with grey scale window
[0.15,0.24].
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Figure 4.2: Density Profiles for row 135 of the reconstructed images in Figure 4.1,
Top left: Density profile for Full IGR method , Top right: Density profile for
Approximated IGR method , Bottom left: Density profile for IFR method, Bottom
right: Density profile for ISP method.

The density update step of the Full IGR method is described as ”the main com-
putational bottleneck” by G. Van Gompel, et al [15], motivating the Approximated
IGR method. As described in Section 3.2, we found that the method required sub-
stantially more time for the segmentation update (60 % of the total time) than it
did for the density update. In an effort to reduce the time required for the segmen-
tation update, we limit the number of steps that can be taken in the direction of
steepest descent with each iteration. Because the method depends on good initial
estimates, we allow the first iteration to take as many steps as needed to minimize
the cost function for the segmentation parameter. For each iteration that follows,
we limit the number of steps to be taken. Figure 4.3 shows the reconstructed image
at 20 iterations with the segmentation limited to 5 steps. Figure 4.4 shows the cor-
responding density profile for 40 iterations. From the density profile, we see that the
cost function decreases by very little after approximately 20 iterations. Thus, the
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cost function is still able to be minimized. The segmentation update still requires a
majority of the total implementation time, approximately 56%. However, the recon-
structed image that we obtain is much closer to the original image than the image
obtained before, without the limit placed on the segmentation steps. As described
previously, one drawback of this method is that the cost function does not have a
unique minimum. This could explain why different images are obtained when we
alter the segmentation algorithm but the cost function is still minimized.

Figure 4.3: Full IGR method (with segmentation limit) after 20 iteration, Top left:
Reconstruction of measured polychromatic data, Top right: Density profile for
row 135 of polychromatic reconstruction, Bottom left: Segmented image, Bottom
right: Reconstructed image at 20 iterations.
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Figure 4.4: Full IGR (with segmentation limit) Cost Function values vs. Iteration

In conclusion, we implemented four iterative reconstruction algorithms to elimi-
nate beam hardening artifacts: the Full IGR method, the Approximated IGR method,
the IFR method, and the ISP method. All methods aim to produce a reconstructed
image free of artifacts by minimizing the mean square error between the measured
polychromatic data and the simulated polychromatic data. Unlike many other meth-
ods, those presented here only assume minimal prior knowledge. They assume that
the number of materials present in the object is known and that the energy spectrum
can be represented by a small, predefined number of energy ”bins”. Both of the IGR
methods as well as the IFR method use a relative density parameter to account for
small non-uniformities in the materials. The ISP method assumes that the materials
are uniform. All methods were able to correct for the beam hardening artifacts.
While the ISP methods was fast, it produced an image with very low resolution and
did not improve with further iterations due to the fact that the cost function is not
guaranteed to decrease. The IFR method converged to a minimum very quickly (5
iterations) and produced a relatively sharp, accurate image. The IFR method, the
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Full IGR method, and the Approximated IGR method were all able to distinguish
between the two low-contrast materials using the relative density parameter despite
them being segmented incorrectly. In both the Full IGR method as well as the Ap-
proximated IGR method, the segmentation update required the greatest amount of
time, unlike what is suggested by G. Van Gompel, et al. However, with an improved
segmentation algorithm, this could change. Additionally, an improved segmentation
algorithm could lead to improved results in both IGR methods, particularly with
the material around the edge of the object which is incorrectly segmented in the
reconstruction. While the Approximated IGR method is able to update the density
faster than the Full IGR method, the decrease in the step size means that more
iterations are required to reach a minimum in the cost function. Another drawback
to these methods is the non uniqueness of the minimizer of the cost function. This
makes it possible for the cost function to be minimized without the reconstructed
image replicating the original image. For this reason, it is important to obtain good
estimates for each parameter at the beginning of each method.
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Appendix A

Full IGR Code

Source code for the Full IGR method.
All code provided by Maryam Alarfaj [1] and edited where noted.

IGRmethodFull.m
1 global RFsim
2 global RFpoly % the measured po lychromat ic data
3 global Nmat % number o f ma t e r i a l s
4 global Npic % number o f p i x e l
5 global pview % # of v iews
6 global Q % # of rays
7 global I e
8 global mu
9 global d
10 global Pcurrent
11
12 itmax = 10 ;
13 Npic = 200 ;
14 [Q, pview ] = s ize ( radon ( zeros (Npic , Npic ) ) ) ;
15 Nmat = 5 ;
16
17 MX=200 ; MY = 200 ; %matrix dimensions
18 r o i=[−1 1 −1 1 ] ; %ro i =[xmin xmax ymin ymax ]
19 %reg ion o f i n t e r e s t where
20 %recons t ru c t i on i s computed
21 c i r c l e = 1 ; % I f c i r c l e = 1 image computed only i n s i d e
22 % c i r c l e i n s c r i b e d in ro i .
23
24 wmin = 0 . 1 7 ; wmax = 0 . 2 5 ;% the minimum and maximum of window3 to ge t a

c l e a r p i c t u r e
25
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26
27 %Spec i f y parameters o f e l l i p s e s f o r mathematical phantom .
28
29 % xe = vec to r o f x−coord ina t e s o f c en t e r s
30 % ye = vec to r o f y−coord ina t e s o f c en t e r s
31 % ae = vec to r o f f i r s t h a l f axes
32 % be = vec to r o f second h a l f axes
33 % alpha = vec to r o f r o t a t i on ang l e s ( degrees )
34 %rho = vec to r o f d e n s i t i e s [ mat1 , mat2 ]
35 xe=[−0.24 0 .24 ] ;
36 ye=[−0.24 0 . 2 4 ] ;
37 ae =[0.5 0 . 4 ] ; %minor ax .
38 be=[0.6 0 . 5 ] ; %major ax .
39 alpha=[0 0 ] ;
40
41
42 I e = [0 . 1 ; 0 . 3 ; 0 . 3 ; 0 . 2 ; 0 . 1 ] ; %1 fo r monochromatic
43 alpha = alpha ∗pi /180 ; % to conver t ( a lpha in degrees ) to ( radian )
44
45
46 rho =[0.999 −0.7340 ; . . .
47 0 .595 −0.3690 ; . . .
48 0 .416 −0.206 ; . . .
49 0 .265 −0.0820 ; . . .
50 0 .208 −0.0340 ] ;
51
52 rho s o f t = rho ( : , 1 ) + rho ( : , 2 ) ; % s o f t t i s s u e a t t enua t i on va l u e s
53 r h o d i f f = −rho ( : , 2 ) ; % rho s o f t + r h o d i f f g i v e s bone a t t enua t i on va l u e s
54
55 dens i ty = [ rho s o f t r h o d i f f /8 r h o d i f f r h o d i f f r h o d i f f / 4 ] . ’ ;
56
57 mu = zeros ( length ( I e ) , Nmat) ;
58 mu( : , 1 ) =0; %ai r
59 mu( : , 2 )=rho s o f t ; % at t en c o e f f f o r bra in
60 mu( : , 3 ) = rho s o f t+r h o d i f f /8 ; % at t en c o e f f f o r s o f t t i s s u e 1
61 mu( : , 4 ) = rho s o f t+r h o d i f f /4 ; % at t en c o e f f f o r s o f t t i s s u e 2
62 mu( : , 5 ) = rho s o f t+r h o d i f f ; % at t enua t i on c o e f f f o r bone
63
64
65 Ne = length ( I e ) ;
66 muav = mu( ce i l (Ne/2) , : )
67 mumax = max(mu) ; mumax(mumax==0)=1;
68
69
70
71

42



72 E l lpa r =[ .9 . 15 . 15 . 15 . 1 5 ;
73 . 9 . 15 . 15 . 15 . 1 5 ;
74 0 −.45 −.45 . 45 . 4 5 ;
75 0 −.45 . 45 . 45 − .45;
76 0 0 0 0 0 ] . ’ ;
77
78 % −−−−−−−−−The po lychromat ic data−−−−−−−
79
80 pview = 180 ; % number o f view ange l s
81 theta = [ 0 : pview −1] ; % d i r e c t i o n o f the view
82 xp = [ −143 :143 ]/100 ; % the coord ina te o f the d e t e c t o r a long the l i n e=s

in r a d on e l l
83 RFpoly = zeros ( length ( xp ) , length ( theta ) ) ;
84 for j = 1 : length ( I e )
85 E = [ dens i ty ( : , j ) E l lpa r ] ;
86 RFpoly = RFpoly + Ie ( j ) ∗ exp(−(Npic /2) ∗ r a d on e l l (E, theta , xp ) ) ;
87 end
88 RFpoly = −log (RFpoly ) ; % the uncorrec ted po lychromat ic data
89
90 I = iradon (RFpoly , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ; % iradon i s used

to r e con s t ru c t a p i c .
91
92 %−−−−−−−−−−−−−−Orig ina l Phantom−−−−−−−−−−−−−−−
93 f igure ;
94 E = [ dens i ty ( : , 3 ) E l lpa r ] ;
95 P = phantom(E,200 ) ;
96 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
97
98 Pcurrent = I ;
99 f igure ;

100 subplot (221)
101 window3 (wmin ,wmax, ro i , Pcurrent ) ; t i t l e ( [ ’ Reconstruct ion from

polychromatic data ’ ] ) ;
102 window3 (wmin ,wmax, ro i , I ) ; t i t l e ( [ ’ Reconstruct ion from polychromatic

data ’ ] ) ;
103 [ t1 , Ftmp ,Dtmp, xdens ,Nmat1]= f i nd th r e sho l d2 ( Pcurrent ) ;
104
105 i f Nmat1 < Nmat
106 t = zeros (Nmat−1 ,1) ;
107 t ( 1 : Nmat1−2) = t1 ( 1 :Nmat1−2) ;
108 t (Nmat1−1:Nmat−2) = t1 (Nmat1−2)+ ( [ 1 : Nmat−Nmat1]/(1+Nmat−Nmat1) ) ∗(

t1 (Nmat1−1)−t1 (Nmat1−2) ) ;
109 t (Nmat−1) = t1 (Nmat1−1) ;
110 else
111 t ( 1 :Nmat−1) = t1 ( 1 :Nmat−1) ;
112 end
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113 SE = thre sho ld ( Pcurrent , t ) ;
114
115
116 subplot (222) ;
117 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ I n i t i a l segmented image . Nmat = ’

num2str(Nmat) ’ mat e r i a l s . ’ ] ) ;
118
119 d= ones ( s ize (SE) ) ;
120 C = cos t fun (mu, Ie , d , SE)
121
122
123 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
124
125 SE = SE1 ; t = t1 ;
126
127 subplot (223)
128 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted

th r e sho ld s ’ ] ) ;
129
130 % −−−−−−−− DENSITY UPDATE WRITTEN BY C.HALL −−−−−−−−
131 En = length ( I e ) ;
132 [ RFsim , Pie , RFspi ] = s imdated i t (mu, Ie , d , SE) ;
133 stmp2 = zeros ( s ize (SE) ) ;
134 for m = 1 :Nmat
135 stmp2 (SE==m) = muav(m) ;
136 end
137 BLint = l i n e i n t (mu, Ie , SE , Pie ) ;
138 Bottom = zeros ( s ize (SE) ) ;
139 Msumt = zeros ( s ize (SE) ) ;
140 for e = 1 :En % sum over e in numerator
141 for m = 1 :Nmat
142 Msumt(SE==m) = mu( e ,m) ; % sum over m of M(m, e )∗ s (m, j )
143 end
144 Pie1 = zeros ( s ize (RFpoly ) ) ;
145 Pie1 ( : , : ) = Pie ( e , : , : ) ;
146 Bbpi = BLint .∗ Pie1 . / ( RFspi . ˆ 2 ) ;
147 Bbp = iradon (Bbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i in

numerator
148 Bottom = Bottom + Msumt .∗Bbp ;
149 end
150 ch i = (Bottom == 0) ;
151 Bottomtmp = ones ( s ize (Bottom) ) ;
152 Bottom( ch i ) = Bottomtmp( ch i ) ;
153
154 Top = zeros ( s ize (SE) ) ;
155 for e = 1 :En % sum over e in numerator
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156 Pie1 = zeros ( s ize (RFpoly ) ) ;
157 Pie1 ( : , : ) = Pie ( e , : , : ) ;
158 Tbpi = (RFpoly−RFsim) .∗ Pie1 . / RFspi ; % ( l o g ( I p , i / I 0 ) − l o g ( P i ) )∗

P i , e/P i
159 Tbp = iradon (Tbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i in

numerator
160 Top = Top + Msumt .∗Tbp ;
161 end
162
163 Update = Top . / Bottom ; % dens i t y update
164
165 d1 = d + Update ;
166 count = 0 ;
167 C1 = cos t fun (mu, Ie , d1 , SE) ;
168 while C1 < C
169 count = count+1
170 d = d1 ;
171 C = C1 ;
172 d1 = d1 + Update ;
173 C1 = cos t fun (mu, Ie , d , SE) ;
174 end
175
176 dtmp = (d >= 0) ;
177 d = d .∗dtmp ;
178 Pcurrent = d .∗ stmp2 ;
179 subplot (224) ;
180 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = 1 ’ ] ) ;
181 % −−−−−−−− END DENSITY UPDATE −−−−−−−−
182
183
184 CF = zeros ( itmax , 1 ) ;
185 CF(1) = cos t fun (mu, Ie , d , SE)
186
187 t = muav ( 2 :end) ;
188 for i t = 2 : itmax
189 i t
190 [ SE1 , phi1 , t1 ] =opt ims3 l im i t ( t , 3 ) ; % to l im i t s t e p s <==========

EDITED BY C.HALL
191 %[SE1 , phi1 , t1 ] =optims3 ( t ) ;
192
193 SE = SE1 ; t = t1 ;
194 f igure
195 subplot (223)
196 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted

th r e sho ld s ’ ] ) ;
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197
198 % −−−−−−−− DENSITY UPDATE WRITTEN BY C.HALL −−−−−−−−
199 En = length ( I e ) ;
200 [ RFsim , Pie , RFspi ] = s imdated i t (mu, Ie , d , SE) ;
201 stmp2 = zeros ( s ize (SE) ) ;
202 for m = 1 :Nmat
203 stmp2 (SE==m) = muav(m) ;
204 end
205 BLint = l i n e i n t (mu, Ie , SE , Pie ) ;
206 Bottom = zeros ( s ize (SE) ) ;
207 Msumt = zeros ( s ize (SE) ) ;
208 for e = 1 :En % sum over e in numerator
209 for m = 1 :Nmat
210 Msumt(SE==m) = mu( e ,m) ; % sum over m of M(m, e )∗ s (m, j )
211 end
212 Pie1 = zeros ( s ize (RFpoly ) ) ;
213 Pie1 ( : , : ) = Pie ( e , : , : ) ;
214 Bbpi = BLint .∗ Pie1 . / ( RFspi . ˆ 2 ) ;
215 Bbp = iradon (Bbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i

in numerator
216 Bottom = Bottom + Msumt .∗Bbp ;
217 end
218 ch i = (Bottom == 0) ;
219 Bottomtmp = ones ( s ize (Bottom) ) ;
220 Bottom( ch i ) = Bottomtmp( ch i ) ;
221
222
223 Top = zeros ( s ize (SE) ) ;
224 for e = 1 :En % sum over e in numerator
225
226 Pie1 = zeros ( s ize (RFpoly ) ) ;
227 Pie1 ( : , : ) = Pie ( e , : , : ) ;
228 Tbpi = (RFpoly−RFsim) .∗ Pie1 . / RFspi ; % ( l o g ( I p , i / I 0 ) − l o g ( P i

) )∗P i , e/P i
229 Tbp = iradon (Tbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i

in numerator
230 Top = Top + Msumt .∗Tbp ;
231 end
232
233 Update = Top . / Bottom ; % dens i t y update
234
235 d1 = d + Update ;
236 count = 0 ;
237 C1 = cos t fun (mu, Ie , d1 , SE) ;
238 while C1 < C
239 count = count+1
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240 d = d1 ;
241 C = C1 ;
242 d1 = d1 + Update ;
243 C1 = cos t fun (mu, Ie , d , SE) ;
244 end
245
246 dtmp = (d >= 0) ;
247 d = d .∗dtmp ;
248 Pcurrent = d .∗ stmp2 ;
249 subplot (224) ;
250 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = ’ num2str( i t ) ] ) ;
251 % −−−−−−−− END DENSITY UPDATE −−−−−−−−
252
253 subplot (221)
254 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
255 subplot (222)
256 plot ( Pcurrent ( 1 3 5 , : ) ) ; t i t l e ( [ ’ Cupping ’ ] ) ; axis ( ’ square ’ ) ; axis ( [ 0

200 0 .15 0 . 3 5 ] ) ;
257
258 CF( i t ) = cos t fun (mu, Ie , d , SE)
259 end
260
261 i t s = [ 1 : itmax ] ;
262 f igure ;
263 plot ( i t s ,CF)

radon ell.m
1
2 function [RF] = r adon e l l (E, theta , s )
3
4 % This func t i on computes the Radon transform of e l l i p s e s
5 % Input : E as f o r MATLAB func t i on phantom
6 % the t a as f o r MATLAB func t i on radon
7 % s : vec t o r wi th r a d i a l coord ina t e s corresponding to each row o f

RF
8 %
9 rho = E( : , 1 ) ; u = E( : , 2 ) ; v = E( : , 3 ) ;
10 x = E( : , 4 ) ; y = E( : , 5 ) ; alpha = E( : , 6 ) ;
11
12 ne = length ( rho ) ;
13 RF = zeros ( length ( s ) , length ( theta ) ) ;
14
15 for j = 1 : length ( theta ) ;
16 phi = pi∗ theta ( j ) /180 ;
17 omega = [ cos ( phi ) ; sin ( phi ) ] ;
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18 tmp =zeros (1 , length ( s ) ) ;
19 for mu = 1 : ne
20 a = (u(mu) ∗cos ( phi−alpha (mu) ) ) ˆ2+(v (mu) ∗ sin ( phi−alpha (mu) ) ) ˆ2 ;
21 t e s t = a−(s−[x (mu) ; y (mu) ] ’∗ omega ) . ˆ 2 ;
22 ind = tes t >0;
23 tmp( ind ) = tmp( ind )+rho (mu) ∗(2∗u(mu) ∗v (mu) ∗sqrt ( t e s t ( ind ) ) ) /a ;
24 end % mu−l oop
25 RF( : , j ) = tmp . ’ ;
26 end

window3.m
1 function pic1 = window3 (mi ,ma, ro i , p i c ) ;
2 %func t i on p ic1 = window3 (mi ,ma, roi , p i c ) ;
3 % d i s p l a y s image p i c wi th coord ina t e s g iven by ro i
4 % ro i = [ xmin xmax ymin ymax ]
5 x = [ r o i (1 ) , r o i (2 ) ] ; y = [ r o i (3 ) , r o i ( 4 ) ] ;
6 c o l o r s = 128 ; co = co l o r s −1;
7 p ic1 = p ic − mi∗ ones ( s ize ( p i c ) ) ;
8 p ic1 = ( co /(ma−mi) ) ∗ pic1 ;
9 P = ( p ic1 >= 0) ;
10 p ic1 = pic1 .∗P;
11 P = ( p ic1 <= co ) ;
12 p ic1 = pic1 .∗P + co ∗( ones ( s ize ( p i c1 ) ) − P) ;
13 colormap (gray ( c o l o r s ) ) ;
14 image(x , f l i p l r ( y ) , fl ipud ( p i c1 ) ) ;
15 axis ( ’ square ’ ) ;

findthreshold2.m
1 function [T,F ,D, xdens ,N] = f i nd th r e sho l d2 (P) ;
2 %Threshold a p i c t u r e known o f con ta in ing N mate r i a l s .
3 % P = p i c t u r e to the t h r s ho l d ed
4 % N = number o f ma t e r i a l s
5 % T = vec to r o f l e n g t h N−1 o f t h r e s h o l d va l u e s .
6 whi = 0 .97
7 r e l t h r e s h = 0 . 0 2 ;
8 Nbin = 50 ;
9 pmin = min(min(P) ) ;
10 pmax = max(max(P) ) ;
11 dx = 1 .2∗ (pmax−pmin ) /Nbin ;
12 xdens = pmin + [ 0 : Nbin ]∗ dx ;
13 F = zeros (Nbin+1 ,1) ;
14 for n = 0 : Nbin
15 F(n+1) = sum(sum(P<= pmin+n∗dx ) ) ;
16 end
17 D= F( 2 :end)−F( 1 :end−1) ;
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18 mph = r e l t h r e s h ∗max(D) ;
19 [ pks , l o c s ] = f indpeaks (D, ’MINPEAKHEIGHT’ ,mph)
20 tmp = [0 ( xdens ( l o c s )−dx/2) ] ;
21 T = whi∗tmp ( 2 :end) + (1−whi ) ∗tmp ( 1 :end−1) ;
22 N = length (T)+1;

threshold.m
1 function S = thre sho ld (P, t )
2 % th r e s ho l d func t i on
3 % t i s t h r e s ho l d va lue
4
5 S= ones ( s ize (P) ) ;
6
7 Nmat = length ( t )+1;
8 for j =1:Nmat−2
9 ch i = ( (P >= t ( j ) )&(P < t ( j +1) ) ) ;
10 S( ch i ) = j +1;
11 end
12 ch i = P >= t (end) ; % end i s the l a s t mate r ia l
13 S( ch i ) = Nmat ;

costfun.m
1 function phi = cos t fun (mu, Ie , d , s )
2 % phi i s the co s t f unc t i on t ha t we want to minimize
3 % mu i s the a t t enua t i on coe f .
4 % I i s the energy spectrum
5 % d i s the r e l a t i v e d en s i t y which models the sma l l v a r i a t i on in

a t t enua t i on
6 % wi th in one mater ia l
7 global Pcurrent
8 global RFsim
9 global RFpoly % the measured po lychromat ic data
10 global Nmat % number o f ma t e r i a l s
11 global Npic % number o f p i x e l
12 global pview % # of v iews
13 global Q % # of rays
14
15
16 RFsim = simdat (mu, Ie , d , s ) ;
17
18 phi = (norm(RFpoly − RFsim , ’ f r o ’ ) ˆ2) /( pview∗Q) ; % phi i s the square o f

the Frobenius norm of the d i f f e r e n c e btween the measured and the
s imu la ted dev ided by the # of data

19
20 end
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optims3.m
1 function [ SE , phi , t ] =optims3 ( t0 )
2
3 global mu
4 global I e
5 global d
6 global Pcurrent
7
8
9 dt f a c = 0 . 1 ;
10 Nt = length ( t0 ) ;
11 dt = zeros (Nt , 1 ) ;
12 SE0 = thre sho ld ( Pcurrent , t0 ) ;
13 phi0 = cos t fun (mu, Ie , d , SE0) ;
14
15 t = zeros (Nt , 1 ) ; t ( 1 : Nt) = t0 ( 1 : Nt) ;
16 t
17 dt (1 ) = dt fa c ∗ t (1 ) ;
18 for k = 2 :Nt
19 dt (k ) = dt fa c ∗( t ( k )−t (k−1) ) ;
20 end
21 gradcos t = zeros (Nt , 1 ) ;
22 Id = eye (Nt) ;
23 for k = 1 :Nt
24 gradcos t ( k ) = ( co s t f un t (mu, Ie , d , t +.5∗dt (k ) ∗ Id ( : , k ) )− . . .
25 co s t f un t (mu, Ie , d , t−.5∗dt (k ) ∗ Id ( : , k ) ) ) /dt ( k ) ;
26 end
27 ng = norm( gradcos t ) ;
28
29 SE=SE0 ; phi = phi0 ;
30 i f ng >= 1 . e−6
31 gradunit = gradcos t /ng ;
32 dtv = min( dt ) ;
33 t ;
34 dtv∗ gradunit ;
35 t1 = t − dtv∗ gradunit ;
36 phi1 = co s t f un t (mu, Ie , d , t1 )
37 while phi1< phi0
38 t = t1 ;
39 phi0 = phi1 ;
40 t1 = t1 − dtv∗ gradunit ;
41 phi1 = co s t f un t (mu, Ie , d , t1 ) ;
42 end
43 SE = thre sho ld ( Pcurrent , t ) ;
44 phi = phi0 ;
45 end
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simdatedit.m
1 function [ RFs , Pie , RFspi ] = s imdated i t (mu, Ie , d , s )
2 % phi i s the co s t f unc t i on t ha t we want to minimize
3 % mu i s the a t t enua t i on coe f .
4 % I i s the energy spectrum
5 % d i s the r e l a t i v e d en s i t y which models the sma l l v a r i a t i on in

a t t enua t i on
6 % wi th in one mater ia l
7 global Pcurrent
8
9 global RFpoly % the measured po lychromat ic data
10 global Nmat % number o f ma t e r i a l s
11 global Npic % number o f p i x e l
12 global pview % # of v iews
13 global Q % # of rays
14
15
16 %P =zeros (Npic , Npic ) ; % in s t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

17
18 RP=zeros (Nmat ,Q, pview ) ;
19 Pie = RP; %<============ EDITED BY C.HALL
20 for n = 1 : Nmat % t h i s loop f o r every n mate r i a l s
21 P =zeros (Npic , Npic ) ; % ins t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

22 ch i = ( s==n) ; % f ind the p i x e l s in the image P where the s =
mater ia l n

23 P( ch i ) = d( ch i ) ; % t h i s i s the d j ∗ sn j
24 RP(n , : , : )=radon (P) ; %the radon data o f the p i c t u r e P( ch i ) which i s

d j ∗ sn j
25 end
26
27
28 RFs = zeros ( s ize (RFpoly ) ) ;% i n i t i a l i z e a matrix wi th the s imu la ted data
29 RFspi = RFs ; %<============ EDITED BY C.HALL
30
31 En = length ( I e ) ;
32 for e = 1 :En % ou t t e r loop f o r energy
33 tmp = zeros ( s ize (RFpoly ) ) ; % temporary v a r i a b l e which rep r e s en t the

n sum
34 for n=1:Nmat % inner loop f o r the mate r ia l
35 R1= zeros ( s ize (RFpoly ) ) ;
36 R1 ( : , : ) = RP(n , : , : ) ; % R1 i s used in s t ead o f RP, to wr i t e the

RP in term of 2 i n d e s i s i n s t ead o f 3
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37 tmp = tmp + mu( e , n) ∗R1 ; % the sum over n
38 Pie ( e , : , : ) = Ie ( e ) ∗exp(−tmp) ; %<============ EDITED BY C.HALL
39 end
40 RFspi = RFspi + Ie ( e ) ∗exp(−tmp) ; % to compute the e sum
41 end
42 RFs = −log ( RFspi ) ; % the s imu la ted po lychromat ic data

lineint.m
1 % −−−−−− CODE ADAPTED FROM simdat .m BY C.HALL −−−−−−
2 function Lint = l i n e i n t (mu, Ie , s , Pie )
3 % phi i s the co s t f unc t i on t ha t we want to minimize
4 % mu i s the a t t enua t i on coe f .
5 % I i s the energy spectrum
6 % d i s the r e l a t i v e d en s i t y which models the sma l l v a r i a t i on in

a t t enua t i on
7 % wi th in one mater ia l
8 global RFpoly % the measured po lychromat ic data
9 global Nmat % number o f ma t e r i a l s
10 global Npic % number o f p i x e l
11 global pview % # of v iews
12 global Q % # of rays
13
14
15
16 RP=zeros (Nmat ,Q, pview ) ;
17 for n = 1 : Nmat % t h i s loop f o r every n mate r i a l s
18 P =zeros (Npic , Npic ) ; % ins t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

19 Itmp = ones (Npic , Npic ) ;
20 ch i = ( s==n) ; % f ind the p i x e l s in the image P where the s =

mater ia l n
21 P( ch i ) = Itmp ( ch i ) ;
22 RP(n , : , : ) = radon (P) ;
23 end
24
25 Lint = zeros ( s ize (RFpoly ) ) ;% i n i t i a l i z e a matrix wi th the l i n e i n t e g r a l
26
27 En = length ( I e ) ;
28 for e = 1 :En % ou t t e r loop f o r energy
29 tmp = zeros ( s ize (RFpoly ) ) ; % temporary v a r i a b l e which rep r e s en t the

n sum
30 for n=1:Nmat % inner loop f o r the mate r ia l
31 R1= zeros ( s ize (RFpoly ) ) ;
32 R1 ( : , : ) = RP(n , : , : ) ; % R1 i s used in s t ead o f RP, to wr i t e the

RP in term of 2 i nd i c e s in s t ead o f 3
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33 tmp = tmp + mu( e , n) ∗R1 ; % the sum over n
34 end
35 Pie1 = zeros ( s ize (RFpoly ) ) ;
36 Pie1 ( : , : ) = Pie ( e , : , : ) ;
37 Lint = Lint + Pie1 .∗ tmp ; % to compute the e sum
38 end

optims3limit.m
1 function [ SE , phi , t ] =opt ims3 l im i t ( t0 , n )
2
3 global mu
4 global I e
5 global d
6 global Pcurrent
7
8
9 dt f a c = 0 . 1 ;
10 Nt = length ( t0 ) ;
11 dt = zeros (Nt , 1 ) ;
12 SE0 = thre sho ld ( Pcurrent , t0 ) ;
13 phi0 = cos t fun (mu, Ie , d , SE0) ;
14
15 t = zeros (Nt , 1 ) ; t ( 1 : Nt) = t0 ( 1 : Nt) ;
16 t
17 dt (1 ) = dt fa c ∗ t (1 ) ;
18 for k = 2 :Nt
19 dt (k ) = dt fa c ∗( t ( k )−t (k−1) ) ;
20 end
21 gradcos t = zeros (Nt , 1 ) ;
22 Id = eye (Nt) ;
23 for k = 1 :Nt
24 gradcos t ( k ) = ( co s t f un t (mu, Ie , d , t +.5∗dt (k ) ∗ Id ( : , k ) )− . . .
25 co s t f un t (mu, Ie , d , t−.5∗dt (k ) ∗ Id ( : , k ) ) ) /dt ( k ) ;
26 end
27 ng = norm( gradcos t ) ;
28
29 SE=SE0 ; phi = phi0 ;
30 i f ng >= 1 . e−6
31 gradunit = gradcos t /ng ;
32 dtv = min( dt ) ;
33 t ;
34 dtv∗ gradunit ;
35 t1 = t − dtv∗ gradunit ;
36 phi1 = co s t f un t (mu, Ie , d , t1 )
37 i t = 0 ; % <========== EDITED BY C.HALL
38 while phi1< phi0 & i t<n % <========== EDITED BY C.HALL
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39 i t = i t +1; % <========== EDITED BY C.HALL
40 t = t1 ;
41 phi0 = phi1 ;
42 t1 = t1 − dtv∗ gradunit ;
43 phi1 = co s t f un t (mu, Ie , d , t1 ) ;
44 end
45 SE = thre sho ld ( Pcurrent , t ) ;
46 phi = phi0 ;
47 end

costfunt.m
1 function phi = co s t f un t (mu, Ie , d , t )
2 % phi i s the co s t f unc t i on t ha t we want to minimize
3 % mu i s the a t t enua t i on coe f .
4 % I i s the energy spectrum
5 % d i s the r e l a t i v e d en s i t y which models the sma l l v a r i a t i on in

a t t enua t i on
6 % wi th in one mater ia l
7 global Pcurrent
8 global RFsim
9 global RFpoly % the measured po lychromat ic data
10 global Nmat % number o f ma t e r i a l s
11 global Npic % number o f p i x e l
12 global pview % # of v iews
13 global Q % # of rays
14
15 s = thre sho ld ( Pcurrent , t ) ;
16
17
18 RP=zeros (Nmat ,Q, pview ) ;
19 for n = 1 : Nmat % t h i s loop f o r every n mate r i a l s
20 P =zeros (Npic , Npic ) ; % ins t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

21 ch i = ( s==n) ; % f ind the p i x e l s in the image P where the s =
mater ia l n

22 P( ch i ) = d( ch i ) ; % t h i s i s the d j ∗ sn j
23 RP(n , : , : )=radon (P) ; %the radon data o f the p i c t u r e P( ch i ) which i s

d j ∗ sn j
24 end
25
26
27 RFsim = zeros ( s ize (RFpoly ) ) ;% i n i t i a l i z e a matrix wi th the s imu la ted

data
28
29
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30 En = length ( I e ) ;
31 for e = 1 :En % ou t t e r loop f o r energy
32 tmp = zeros ( s ize (RFpoly ) ) ; % temporary v a r i a b l e which rep r e s en t the

n sum
33 for n=1:Nmat % inner loop f o r the mate r ia l
34 R1= zeros ( s ize (RFpoly ) ) ;
35 R1 ( : , : ) = RP(n , : , : ) ; % R1 i s used in s t ead o f RP, to wr i t e the

RP in term of 2 i n d e s i s i n s t ead o f 3
36 tmp = tmp + mu( e , n) ∗R1 ; % the sum over n
37 end
38 RFsim = RFsim + Ie ( e ) ∗exp(−tmp) ; % to compute the e sum
39 end
40 RFsim = −log (RFsim) ; % the s imu la ted po lychromat ic data
41 phi = (norm(RFpoly − RFsim , ’ f r o ’ ) ˆ2) /( pview∗Q) ; % phi i s the square o f

the Frobenius norm of the d i f f e r e n c e btween the measured and the
s imu la ted dev ided by the # of data

42 maxRFpoly = max(max(RFpoly ) ) ;
43 maxRFsim = max(max(RFsim) ) ;
44 end
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Appendix B

Approximated IGR Code

Source code for the Approximated IGR method.
All code provided by Maryam Alarfaj [1] and edited where noted.

IGRmethodApprox.m
1 global RFsim
2 global RFpoly % the measured po lychromat ic data
3 global Nmat % number o f ma t e r i a l s
4 global Npic % number o f p i x e l
5 global pview % # of v iews
6 global Q % # of rays
7 global I e
8 global mu
9 global d
10 global Pcurrent
11
12 itmax = 10 ;
13 Npic = 200 ;
14 [Q, pview ] = s ize ( radon ( zeros (Npic , Npic ) ) ) ;
15 Nmat = 5 ;
16
17 MX=200 ; MY = 200 ; %matrix dimensions
18 r o i=[−1 1 −1 1 ] ; %ro i =[xmin xmax ymin ymax ]
19 %reg ion o f i n t e r e s t where
20 %recons t ru c t i on i s computed
21 c i r c l e = 1 ; % I f c i r c l e = 1 image computed only i n s i d e
22 % c i r c l e i n s c r i b e d in ro i .
23
24 wmin = 0 . 1 7 ; wmax = 0 . 2 5 ;% the minimum and maximum of window3 to ge t a

c l e a r p i c t u r e
25
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26
27 %Spec i f y parameters o f e l l i p s e s f o r mathematical phantom .
28
29 % xe = vec to r o f x−coord ina t e s o f c en t e r s
30 % ye = vec to r o f y−coord ina t e s o f c en t e r s
31 % ae = vec to r o f f i r s t h a l f axes
32 % be = vec to r o f second h a l f axes
33 % alpha = vec to r o f r o t a t i on ang l e s ( degrees )
34 %rho = vec to r o f d e n s i t i e s [ mat1 , mat2 ]
35 xe=[−0.24 0 .24 ] ;
36 ye=[−0.24 0 . 2 4 ] ;
37 ae =[0.5 0 . 4 ] ; %minor ax .
38 be=[0.6 0 . 5 ] ; %major ax .
39 alpha=[0 0 ] ;
40
41 I e = [0 . 1 ; 0 . 3 ; 0 . 3 ; 0 . 2 ; 0 . 1 ] ; %1 fo r monochromatic
42 alpha = alpha ∗pi /180 ; % to conver t ( a lpha in degrees ) to ( radian )
43
44 rho =[0.999 −0.7340 ; . . .
45 0 .595 −0.3690 ; . . .
46 0 .416 −0.206 ; . . .
47 0 .265 −0.0820 ; . . .
48 0 .208 −0.0340 ] ;
49
50 rho s o f t = rho ( : , 1 ) + rho ( : , 2 ) ; % s o f t t i s s u e a t t enua t i on va l u e s
51 r h o d i f f = −rho ( : , 2 ) ; % rho s o f t + r h o d i f f g i v e s bone a t t enua t i on va l u e s
52
53 dens i ty = [ rho s o f t r h o d i f f /8 r h o d i f f r h o d i f f r h o d i f f / 4 ] . ’ ;
54
55 mu = zeros ( length ( I e ) , Nmat) ;
56 mu( : , 1 ) =0; %ai r
57 mu( : , 2 )=rho s o f t ; % at t en c o e f f f o r bra in
58 mu( : , 3 ) = rho s o f t+r h o d i f f /8 ; % at t en c o e f f f o r s o f t t i s s u e 1
59 mu( : , 4 ) = rho s o f t+r h o d i f f /4 ; % at t en c o e f f f o r s o f t t i s s u e 2
60 mu( : , 5 ) = rho s o f t+r h o d i f f ; % at t enua t i on c o e f f f o r bone
61
62 mu
63
64 Ne = length ( I e ) ;
65 muav = mu( ce i l (Ne/2) , : )
66 mumax = max(mu) ; mumax(mumax==0)=1;
67
68
69
70
71 E l lpa r =[ .9 . 15 . 15 . 15 . 1 5 ;
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72 . 9 . 15 . 15 . 15 . 1 5 ;
73 0 −.45 −.45 . 45 . 4 5 ;
74 0 −.45 . 45 . 45 − .45;
75 0 0 0 0 0 ] . ’ ;
76
77 % −−−−−−−−−The po lychromat ic data−−−−−−−
78
79 pview = 180 ; % number o f view ange l s
80 theta = [ 0 : pview −1] ; % d i r e c t i o n o f the view
81 xp = [ −143 :143 ]/100 ; % the coord ina te o f the d e t e c t o r a long the l i n e=s

in r a d on e l l
82 RFpoly = zeros ( length ( xp ) , length ( theta ) ) ;
83 for j = 1 : length ( I e )
84 E = [ dens i ty ( : , j ) E l lpa r ] ;
85 RFpoly = RFpoly + Ie ( j ) ∗ exp(−(Npic /2) ∗ r a d on e l l (E, theta , xp ) ) ;
86 end
87 RFpoly = −log (RFpoly ) ; % the uncorrec ted po lychromat ic data
88
89 I = iradon (RFpoly , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ; % iradon i s used

to r e con s t ru c t a p i c .
90
91 %−−−−−−−−−−−−−−Orig ina l Phantom−−−−−−−−−−−−−−−
92 f igure ;
93 E = [ dens i ty ( : , 3 ) E l lpa r ] ;
94 P = phantom(E,200 ) ;
95 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
96
97
98 Pcurrent = I ;
99 f igure ;

100 subplot (221)
101 window3 (wmin ,wmax, ro i , Pcurrent ) ; t i t l e ( [ ’ Reconstruct ion from

polychromatic data ’ ] ) ;
102 window3 (wmin ,wmax, ro i , I ) ; t i t l e ( [ ’ Reconstruct ion from polychromatic

data ’ ] ) ;
103 [ t1 , Ftmp ,Dtmp, xdens ,Nmat1]= f i nd th r e sho l d2 ( Pcurrent ) ;
104
105 i f Nmat1 < Nmat
106 t = zeros (Nmat−1 ,1) ;
107 t ( 1 : Nmat1−2) = t1 ( 1 :Nmat1−2) ;
108 t (Nmat1−1:Nmat−2) = t1 (Nmat1−2)+ ( [ 1 : Nmat−Nmat1]/(1+Nmat−Nmat1) ) ∗(

t1 (Nmat1−1)−t1 (Nmat1−2) ) ;
109 t (Nmat−1) = t1 (Nmat1−1) ;
110 else
111 t ( 1 :Nmat−1) = t1 ( 1 :Nmat−1) ;
112 end
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113 SE = thre sho ld ( Pcurrent , t ) ;
114
115
116 subplot (222) ;
117 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ I n i t i a l segmented image . Nmat = ’

num2str(Nmat) ’ mat e r i a l s . ’ ] ) ;
118
119 d= ones ( s ize (SE) ) ;
120 C = cos t fun (mu, Ie , d , SE)
121
122
123 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
124
125 SE = SE1 ; t = t1 ;
126
127 subplot (223)
128 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted

th r e sho ld s ’ ] ) ;
129
130
131 % −−−−−−−− DENSITY UPDATE WRITTEN BY C.HALL −−−−−−−−
132 En = length ( I e ) ;
133 [ RFsim , Pie , RFspi ] = s imdated i t (mu, Ie , d , SE) ;
134 Mesum = sum(mu) ; % sum over ene r g i e s ( e ) o f mu(m, e )
135 Msumb = zeros ( s ize (SE) ) ;
136 stmp2 = zeros ( s ize (SE) ) ;
137 for m = 1 :Nmat
138 Msumb(SE==m) = Mesum(m) ; % sum over m of sum over e o f mu(m, e )∗ s (m,

j )
139 stmp2 (SE==m) = muav(m) ;
140 end
141 Lint = l i n e i n t (mu, Ie , SE , Pie ) ;
142 I rd = iradon ( Lint . / RFspi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ;
143 denom = Msumb.∗ I rd ; % computing denominator o f d en s i t y approx .
144 ch i = (denom == 0) ;
145 denomtmp = ones ( s ize (denom) ) ;
146 denom( ch i ) = denomtmp( ch i ) ;
147
148 Msumt = zeros ( s ize (SE) ) ;
149 Top = zeros ( s ize (SE) ) ;
150 for e = 1 :En % sum over e in numerator
151 for m = 1 :Nmat
152 Msumt(SE==m) = mu( e ,m) ; % sum over m of M(m, e )∗ s (m, j )
153 end
154 Pie1 = zeros ( s ize (RFpoly ) ) ;
155 Pie1 ( : , : ) = Pie ( e , : , : ) ;
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156 Tbpi = (RFpoly−RFsim) .∗ Pie1 . / RFspi ; % ( l o g ( I p , i / I 0 ) − l o g ( P i ) )∗
P i , e/P i

157 Tbp = iradon (Tbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i in
numerator

158 Top = Top + Msumt .∗Tbp ;
159 end
160
161 Update = Top . / denom ; % dens i t y update
162
163 d1 = d + Update ;
164 count = 0 ;
165 C1 = cos t fun (mu, Ie , d1 , SE) ;
166 while C1 < C
167 count = count+1
168 d = d1 ;
169 C = C1 ;
170 d1 = d1 + Update ;
171 C1 = cos t fun (mu, Ie , d , SE) ;
172 end
173
174 dtmp = (d >= 0) ;
175 d = d .∗dtmp ;
176 Pcurrent = d .∗ stmp2 ;
177 time (1 ) = toc
178 subplot (224) ;
179 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = 1 ’ ] ) ;
180 % −−−−−−−− END DENSITY UPDATE −−−−−−−−
181
182
183 CF = zeros ( itmax , 1 ) ;
184 CF(1) = cos t fun (mu, Ie , d , SE)
185
186
187 t = muav ( 2 :end) ;
188 for i t = 2 : itmax
189 i t
190 %[SE1 , phi1 , t1 ] =optims3 ( t ) ;
191 [ SE1 , phi1 , t1 ] =opt ims3 l im i t ( t , 5 ) ; % to l im i t s t e p s <==========

EDITED BY C.HALL
192
193
194 SE = SE1 ; t = t1 ;
195 f igure
196 subplot (223)
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197 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted
th r e sho ld s ’ ] ) ;

198
199 % −−−−−−−− DENSITY UPDATE WRITTEN BY C.HALL −−−−−−−−
200 En = length ( I e ) ;
201 [ RFsim , Pie , RFspi ] = s imdated i t (mu, Ie , d , SE) ;
202 Mesum = sum(mu) ; % sum over ene r g i e s ( e ) o f mu(m, e )
203 Msumb = zeros ( s ize (SE) ) ;
204 stmp2 = zeros ( s ize (SE) ) ;
205 for m = 1 :Nmat
206 Msumb(SE==m) = Mesum(m) ; % sum over m of sum over e o f mu(m, e )∗

s (m, j )
207 stmp2 (SE==m) = muav(m) ;
208 end
209 Lint = l i n e i n t (mu, Ie , SE , Pie ) ;
210 I rd = iradon ( Lint . / RFspi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ;
211 denom = Msumb.∗ I rd ; % computing denominator o f d en s i t y approx .
212 ch i = (denom == 0) ;
213 denomtmp = ones ( s ize (denom) ) ;
214 denom( ch i ) = denomtmp( ch i ) ;
215
216 Msumt = zeros ( s ize (SE) ) ;
217 Top = zeros ( s ize (SE) ) ;
218 for e = 1 :En % sum over e in numerator
219 for m = 1 :Nmat
220 Msumt(SE==m) = mu( e ,m) ; % sum over m of M(m, e )∗ s (m, j )
221 end
222 Pie1 = zeros ( s ize (RFpoly ) ) ;
223 Pie1 ( : , : ) = Pie ( e , : , : ) ;
224 Tbpi = (RFpoly−RFsim) .∗ Pie1 . / RFspi ; % ( l o g ( I p , i / I 0 ) − l o g ( P i

) )∗P i , e/P i
225 Tbp = iradon (Tbpi , theta , ’ l i n e a r ’ , ’ none ’ ,1 , Npic ) ; % sum over i

in numerator
226 Top = Top + Msumt .∗Tbp ;
227 end
228
229 Update = Top . / denom ; % dens i t y update
230
231 d1 = d + Update ;
232 count = 0 ;
233 C1 = cos t fun (mu, Ie , d1 , SE) ;
234 while C1 < C
235 count = count+1
236 d = d1 ;
237 C = C1 ;
238 d1 = d1 + Update ;
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239 C1 = cos t fun (mu, Ie , d , SE) ;
240 end
241
242 dtmp = (d >= 0) ;
243 d = d .∗dtmp ;
244 Pcurrent = d .∗ stmp2 ;
245 time ( i t ) = toc
246 subplot (224) ;
247 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = ’ num2str( i t ) ] ) ;
248 % −−−−−−−− END DENSITY UPDATE −−−−−−−−
249
250 subplot (221)
251 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
252 subplot (222)
253 plot ( Pcurrent ( 1 3 5 , : ) ) ; t i t l e ( [ ’ Cupping ’ ] ) ; axis ( ’ square ’ ) ; axis ( [ 0

200 0 .15 0 . 3 5 ] ) ;
254
255 CF( i t ) = cos t fun (mu, Ie , d , SE)
256 end
257
258 i t s = [ 1 : itmax ] ;
259 f igure ;
260 plot ( i t s ,CF)
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Appendix C

IFR Code

Source code for the IFR method.
All code provided by Maryam Alarfaj [1].

IFRmethod.m
1 global RFsim
2 global RFpoly % the measured po lychromat ic data
3 global Nmat % number o f ma t e r i a l s
4 global Npic % number o f p i x e l
5 global pview % # of v iews
6 global Q % # of rays
7 global I e
8 global mu
9 global d
10 global Pcurrent
11
12 itmax = 10 ;
13 Npic = 200 ;
14 [Q, pview ] = s ize ( radon ( zeros (Npic , Npic ) ) ) ;
15 Nmat = 5 ;
16
17 MX=200 ; MY = 200 ; %matrix dimensions
18 r o i=[−1 1 −1 1 ] ; %ro i =[xmin xmax ymin ymax ]
19 %reg ion o f i n t e r e s t where
20 %recons t ru c t i on i s computed
21 c i r c l e = 1 ; % I f c i r c l e = 1 image computed only i n s i d e
22 % c i r c l e i n s c r i b e d in ro i .
23
24 wmin = 0 . 1 7 ; wmax = 0 . 2 5 ;% the minimum and maximum of window3 to ge t a

c l e a r p i c t u r e
25
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26
27 %Spec i f y parameters o f e l l i p s e s f o r mathematical phantom .
28
29 % xe = vec to r o f x−coord ina t e s o f c en t e r s
30 % ye = vec to r o f y−coord ina t e s o f c en t e r s
31 % ae = vec to r o f f i r s t h a l f axes
32 % be = vec to r o f second h a l f axes
33 % alpha = vec to r o f r o t a t i on ang l e s ( degrees )
34 %rho = vec to r o f d e n s i t i e s [ mat1 , mat2 ]
35 xe=[−0.24 0 .24 ] ;
36 ye=[−0.24 0 . 2 4 ] ;
37 ae =[0.5 0 . 4 ] ; %minor ax .
38 be=[0.6 0 . 5 ] ; %major ax .
39 alpha=[0 0 ] ;
40
41
42 I e = [0 . 1 ; 0 . 3 ; 0 . 3 ; 0 . 2 ; 0 . 1 ] ; %1 fo r monochromatic
43 alpha = alpha ∗pi /180 ; % to conver t ( a lpha in degrees ) to ( radian )
44
45
46 rho =[0.999 −0.7340 ; . . .
47 0 .595 −0.3690 ; . . .
48 0 .416 −0.206 ; . . .
49 0 .265 −0.0820 ; . . .
50 0 .208 −0.0340 ] ;
51
52 rho s o f t = rho ( : , 1 ) + rho ( : , 2 ) ; % s o f t t i s s u e a t t enua t i on va l u e s
53 r h o d i f f = −rho ( : , 2 ) ; % rho s o f t + r h o d i f f g i v e s bone a t t enua t i on va l u e s
54
55 dens i ty = [ rho s o f t r h o d i f f /8 r h o d i f f r h o d i f f r h o d i f f / 4 ] . ’ ;
56
57 mu = zeros ( length ( I e ) , Nmat) ;
58 mu( : , 1 ) =0; %ai r
59 mu( : , 2 )=rho s o f t ; % at t en c o e f f f o r bra in
60 mu( : , 3 ) = rho s o f t+r h o d i f f /8 ; % at t en c o e f f f o r s o f t t i s s u e 1
61 mu( : , 4 ) = rho s o f t+r h o d i f f /4 ; % at t en c o e f f f o r s o f t t i s s u e 2
62 mu( : , 5 ) = rho s o f t+r h o d i f f ; % at t enua t i on c o e f f f o r bone
63
64 mu
65
66 Ne = length ( I e ) ;
67 muav = mu( ce i l (Ne/2) , : )
68 mumax = max(mu) ; mumax(mumax==0)=1;
69
70
71
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72
73 E l lpa r =[ .9 . 15 . 15 . 15 . 1 5 ;
74 . 9 . 15 . 15 . 15 . 1 5 ;
75 0 −.45 −.45 . 45 . 4 5 ;
76 0 −.45 . 45 . 45 − .45;
77 0 0 0 0 0 ] . ’ ;
78 % −−−−−−−−−The po lychromat ic data−−−−−−−
79
80 pview = 180 ; % number o f view ange l s
81 theta = [ 0 : pview −1] ; % d i r e c t i o n o f the view
82 xp = [ −143 :143 ]/100 ; % the coord ina te o f the d e t e c t o r a long the l i n e=s

in r a d on e l l
83 RFpoly = zeros ( length ( xp ) , length ( theta ) ) ;
84 for j = 1 : length ( I e )
85 E = [ dens i ty ( : , j ) E l lpa r ] ;
86 RFpoly = RFpoly + Ie ( j ) ∗ exp(−(Npic /2) ∗ r a d on e l l (E, theta , xp ) ) ;
87 end
88 RFpoly = −log (RFpoly ) ; % the uncorrec ted po lychromat ic data
89
90 I = iradon (RFpoly , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ; % iradon i s used

to r e con s t ru c t a p i c .
91
92 f igure ;
93 E = [ dens i ty ( : , 3 ) E l lpa r ] ;
94 P = phantom(E,200 ) ;
95 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
96
97
98 %−−−−Computing the segmented Image
99 Pcurrent = I ;

100 f igure ;
101 subplot (221)
102 window3 (wmin ,wmax, ro i , Pcurrent ) ; t i t l e ( [ ’ Reconstruct ion from

polychromatic data ’ ] ) ;
103 window3 (wmin ,wmax, ro i , I ) ; t i t l e ( [ ’ Reconstruct ion from polychromatic

data ’ ] ) ;
104
105 [ t1 , Ftmp ,Dtmp, xdens ,Nmat1]= f i nd th r e sho l d2 ( Pcurrent ) ;
106
107 i f Nmat1 < Nmat
108 t = zeros (Nmat−1 ,1) ;
109 t ( 1 : Nmat1−2) = t1 ( 1 :Nmat1−2) ;
110 t (Nmat1−1:Nmat−2) = t1 (Nmat1−2)+ ( [ 1 : Nmat−Nmat1]/(1+Nmat−Nmat1) ) ∗(

t1 (Nmat1−1)−t1 (Nmat1−2) ) ;
111 t (Nmat−1) = t1 (Nmat1−1) ;
112 else
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113 t ( 1 :Nmat−1) = t1 ( 1 :Nmat−1) ;
114 end
115 SE = thre sho ld ( Pcurrent , t ) ;
116
117
118 %−−−− i n i t i a l guess f o r a segmented image
119 subplot (222) ;
120 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ I n i t i a l segmented image . Nmat = ’

num2str(Nmat) ’ mat e r i a l s . ’ ] ) ;
121
122 d= ones ( s ize (SE) ) ;
123 C = cos t fun (mu, Ie , d , SE)
124
125
126 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
127
128 SE = SE1 ; t = t1 ;
129
130 subplot (223)
131 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted

th r e sho ld s ’ ] ) ;
132 RFsim = simdat (mu, Ie , d , SE) ;
133 Ptmp = iradon (RFpoly−RFsim , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ;
134 stmp1 = zeros ( s ize (SE) ) ; stmp2 = stmp1 ;
135 for k = 1 :Nmat
136 stmp1 (SE==k) = 1/mumax(k ) ;
137 stmp2 (SE==k) = muav(k ) ;
138 end
139 d = d + Ptmp.∗ stmp1 ;
140 Pcurrent = d .∗ stmp2 ;
141 subplot (224) ;
142 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = 1 ’ ] ) ;
143 CF = zeros ( itmax , 1 ) ;
144 CF(1) = cos t fun (mu, Ie , d , SE)
145
146
147 t = muav ( 2 :end) ;
148 for i t = 2 : itmax
149 i t
150 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
151
152
153 SE = SE1 ; t = t1 ;
154 f igure
155 subplot (223)
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156 window3 (1 ,Nmat , ro i , SE) ; t i t l e ( [ ’ Segmented image with adjusted
th r e sho ld s ’ ] ) ;

157 RFsim = simdat (mu, Ie , d , SE) ;
158 Ptmp = iradon (RFpoly−RFsim , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ;
159 stmp1 = zeros ( s ize (SE) ) ; stmp2 = stmp1 ;
160 for k = 1 :Nmat
161 stmp1 (SE==k) = 1/mumax(k ) ;
162 stmp2 (SE==k) = muav(k ) ;
163 end
164 d = d + Ptmp.∗ stmp1 ;
165 Pcurrent = d .∗ stmp2 ;
166 subplot (224) ;
167 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ; t i t l e ( [ ’ Updated image .

I t e r a t i o n = ’ num2str( i t ) ] ) ;
168
169 subplot (221)
170 window3 ( 0 . 1 3 , 0 . 3 5 , ro i ,P) ; t i t l e ( [ ’ Or i g i na l Phantom ’ ] ) ;
171 subplot (222)
172 plot ( Pcurrent ( 1 3 5 , : ) ) ; t i t l e ( [ ’ Cupping ’ ] ) ; axis ( ’ square ’ ) ; axis ( [ 0

200 0 .15 0 . 3 5 ] ) ;
173
174 CF( i t ) = cos t fun (mu, Ie , d , SE)
175 end
176
177 i t s = [ 1 : itmax ] ;
178 f igure ;
179 plot ( i t s ,CF)

simdat.m
1 function RFs = simdat (mu, Ie , d , s )
2 % phi i s the co s t f unc t i on t ha t we want to minimize
3 % mu i s the a t t enua t i on coe f .
4 % I i s the energy spectrum
5 % d i s the r e l a t i v e d en s i t y which models the sma l l v a r i a t i on in

a t t enua t i on
6 % wi th in one mater ia l
7 global Pcurrent
8 %g l o b a l RFsim
9 global RFpoly % the measured po lychromat ic data
10 global Nmat % number o f ma t e r i a l s
11 global Npic % number o f p i x e l
12 global pview % # of v iews
13 global Q % # of rays
14 %g l o b a l Ie
15
16 %g l o b a l D
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17
18
19 %P =zeros (Npic , Npic ) ; % in s t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

20
21 RP=zeros (Nmat ,Q, pview ) ;
22 for n = 1 : Nmat % t h i s loop f o r every n mate r i a l s
23 P =zeros (Npic , Npic ) ; % ins t ead o f have a s t a c k o f images we use a

s i n g l e image wi th t h r ee d i f f e r e n t va l u e s ( s==n) to r ep re s en t the
t h r ee ma t e r i a l s

24 ch i = ( s==n) ; % f ind the p i x e l s in the image P where the s =
mater ia l n

25 P( ch i ) = d( ch i ) ; % t h i s i s the d j ∗ sn j
26 RP(n , : , : )=radon (P) ; %the radon data o f the p i c t u r e P( ch i ) which i s

d j ∗ sn j
27 end
28
29
30 RFs = zeros ( s ize (RFpoly ) ) ;% i n i t i a l i z e a matrix wi th the s imu la ted data
31
32
33 En = length ( I e ) ;
34 for e = 1 :En % ou t t e r loop f o r energy
35 tmp = zeros ( s ize (RFpoly ) ) ; % temporary v a r i a b l e which rep r e s en t the

n sum
36 for n=1:Nmat % inner loop f o r the mate r ia l
37 R1= zeros ( s ize (RFpoly ) ) ;
38 R1 ( : , : ) = RP(n , : , : ) ; % R1 i s used in s t ead o f RP, to wr i t e the

RP in term of 2 i n d e s i s i n s t ead o f 3
39 tmp = tmp + mu( e , n) ∗R1 ; % the sum over n
40 end
41 RFs = RFs + Ie ( e ) ∗exp(−tmp) ; % to compute the e sum
42 end
43 RFs = −log (RFs) ; % the s imu la ted po lychromat ic data
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Appendix D

ISP Code

Source code for the ISP method.
All code provided by Maryam Alarfaj [1].

ISPmethod.m
1 % main rou t ine f o r ISP method
2 global RFpoly % the measured po lychromat ic data
3 global Nmat % number o f ma t e r i a l s
4 global Npic % number o f p i x e l
5 global pview % # of v iews
6 global Q % t o t a l # of rays
7 global I e
8 global mu
9 global d
10 global Pcurrent
11 global RFsim
12
13
14 itmax = 4 ; % number o f i t e r a t i o n s
15 Npic = 200 ;
16 [Q, pview ] = s ize ( radon ( zeros (Npic , Npic ) ) ) ;
17 Nmat = 5 ; % number o f ma t e r i a l s
18
19 MX=200 ; MY = 200 ; %matrix dimensions
20 r o i=[−1 1 −1 1 ] ; %ro i =[xmin xmax ymin ymax ]
21
22 c i r c l e = 1 ; % I f c i r c l e = 1 image computed only i n s i d e
23
24 wmin = 0 . 1 4 ; wmax = 0 . 2 2 ;
25
26 % Spec i f y parameters o f e l l i p s e s f o r mathematical phantom .
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27 % xe = vec to r o f x−coord ina t e s o f c en t e r s
28 % ye = vec to r o f y−coord ina t e s o f c en t e r s
29 % ae = vec to r o f f i r s t h a l f axes
30 % be = vec to r o f second h a l f axes
31 % alpha = vec to r o f r o t a t i on ang l e s ( degrees )
32 %rho = vec to r o f d e n s i t i e s [ mat1 , mat2 ]
33 xe=[−0.24 0 .24 ] ;
34 ye=[−0.24 0 . 2 4 ] ;
35 ae =[0.5 0 . 4 ] ;
36 be=[0.6 0 . 5 ] ;
37 alpha=[0 0 ] ;
38
39 I e = [0 . 1 ; 0 . 3 ; 0 . 3 ; 0 . 2 ; 0 . 1 ] ;
40 alpha = alpha ∗pi /180 ;
41 rho =[0.999 −0.7340 ; . . .
42 0 .595 −0.3690 ; . . .
43 0 .416 − 0 . 2 0 6 ; . . .
44 0 .265 −0.0820 ; . . .
45 0 .208 −0.0340 ] ;
46
47 rho s o f t = rho ( : , 1 ) + rho ( : , 2 ) ;
48 r h o d i f f = −rho ( : , 2 ) ;
49 dens i ty = [ rho s o f t r h o d i f f /8 r h o d i f f r h o d i f f r h o d i f f / 4 ] . ’ ;
50
51 mu = zeros ( length ( I e ) , Nmat) ;
52 mu( : , 1 ) =0;
53 mu( : , 2 ) =rho s o f t ;
54 mu( : , 3 ) = rho s o f t+r h o d i f f /8 ;
55 mu( : , 4 ) = rho s o f t+r h o d i f f /4 ;
56 mu( : , 5 ) = rho s o f t+r h o d i f f ;
57
58 mu
59
60 Ne = length ( I e ) ;
61 muav = mu( ce i l (Ne/2) , : )
62 mumax = max(mu) ; mumax(mumax==0)=1;
63 E l lpa r =[ .9 . 15 . 15 . 15 . 1 5 ; . . .
64 . 9 . 15 . 15 . 15 . 1 5 ; . . .
65 0 −.45 −.45 . 45 . 4 5 ; . . .
66 0 −.45 . 45 . 45 − . 4 5 ; . . .
67 0 0 0 0 0 ] . ’ ;
68
69
70 % −−−−−−−−−The measured po lychromat ic data RFpoly−−−−−−−
71 pview = 180 ;
72 theta = [ 0 : pview −1] ;
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73 xp = [ −143 :143 ]/100 ;
74 RFpoly = zeros ( length ( xp ) , length ( theta ) ) ;
75 for j = 1 : length ( I e )
76 E = [ dens i ty ( : , j ) E l lpa r ] ;
77 RFpoly = RFpoly + Ie ( j ) ∗ exp(−(Npic /2) ∗ r a d on e l l (E, theta , xp ) ) ;
78 end
79 RFpoly = −log (RFpoly ) ; % the uncorrec ted po lychromat ic data
80 I = iradon (RFpoly , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ;
81
82
83 %−−−−−−−−−Computing the segmented Image−−−−−−−−−−−
84 Pcurrent = I ;
85 f igure ;
86 subplot (221)
87 window3 (wmin ,wmax, ro i , Pcurrent ) ;
88 t i t l e ( [ ’ Reconstruct ion from polychromatic data ’ ] ) ;
89
90 % −−−−−−−−−−−f i n d an i n i t i a l t h r e s h o l d −−−−−−−−−−−
91 [ t1 , Ftmp ,Dtmp, xdens ,Nmat1]= f i nd th r e sho l d2 ( Pcurrent ) ;
92
93 i f Nmat1 < Nmat
94 t = zeros (Nmat−1 ,1) ;
95 t ( 1 : Nmat1−2) = t1 ( 1 :Nmat1−2) ;
96 t (Nmat1−1:Nmat−2) = t1 (Nmat1−2)+ ( [ 1 : Nmat−Nmat1 ] / . . .
97 (1+Nmat−Nmat1) ) ∗( t1 (Nmat1−1)−t1 (Nmat1−2) ) ;
98 t (Nmat−1) = t1 (Nmat1−1) ;
99 else

100 t ( 1 :Nmat−1) = t1 ( 1 :Nmat−1) ;
101 end
102 SE = thre sho ld ( Pcurrent , t ) ;
103
104 d= ones ( s ize (SE) ) ;
105
106 subplot (222) ;
107 window3 (1 ,Nmat , ro i , SE) ;
108 t i t l e ( [ ’ I n i t i a l segmented image . Nmat = ’ num2str(Nmat) ’ mat e r i a l s . ’ ] )

;
109
110 C = cos t fun (mu, Ie , d , SE)
111
112 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
113
114 SE = SE1 ; t = t1 ;
115
116 subplot (223)
117 window3 (1 ,Nmat , ro i , SE) ;
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118 t i t l e ( [ ’ Segmented image with adjusted th r e sho ld s ’ ] ) ;
119 RFsim = simdat (mu, Ie , d , SE) ;
120
121
122 % −−−−−−−−−−compute mu refrence f o r ISP−−−−−−−−−
123
124 [muISP1 ,B,V] = muISP(mu, Ie , SE) ;
125
126
127 % −−−−−− the s imu la ted monochromatic data−−−−−−−−
128 RP=zeros (Nmat ,Q, pview ) ;
129 RFmono = zeros ( s ize (RFpoly ) ) ;
130 R2 = zeros ( s ize (RFmono) ) ;
131 tmp1 = zeros ( s ize (RFmono) ) ;
132 for n1= 1 :Nmat
133 P =zeros (Npic , Npic ) ;
134 ch i = (SE==n1 ) ;
135 P( ch i ) = d( ch i ) ;
136 RP(n1 , : , : )=radon (P) ;
137 R2 ( : , : ) = RP(n1 , : , : ) ;
138 tmp1 = tmp1+ muISP1( n1 ) ∗R2 ;
139 end
140 RFmono = RFmono+tmp1 ;
141
142
143 %−−−−−−−−−image update−−−−−−−−
144 RFcor = zeros ( s ize (RFpoly ) ) ;
145 RFcor = RFpoly+(RFmono−RFsim) ;
146 Pcurrent = iradon ( ( RFcor ) , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ;
147
148 max(max(RFcor ) )
149 min(min(RFcor ) )
150
151 subplot (224) ;
152 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ;
153 t i t l e ( [ ’ Updated image . I t e r a t i o n = 1 ’ ] ) ;
154 CF = zeros ( itmax , 1 ) ;
155 CF(1) = cos t fun (mu, Ie , d , SE)
156
157 [ t , Ftmp ,Dtmp, xdens ,Nmat1]= f i nd th r e sho l d2 ( Pcurrent ) ;
158 i f Nmat1 < Nmat
159 t = zeros (Nmat−1 ,1) ;
160 t ( 1 : Nmat1−2) = t1 ( 1 :Nmat1−2) ;
161 t (Nmat1−1:Nmat−2) = t1 (Nmat1−2)+ ( [ 1 : Nmat−Nmat1 ] / . . .
162 (1+Nmat−Nmat1) ) ∗( t1 (Nmat1−1)−t1 (Nmat1−2) ) ;
163 t (Nmat−1) = t1 (Nmat1−1) ;
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164 else
165 t ( 1 :Nmat−1) = t1 ( 1 :Nmat−1) ;
166 end
167
168 CF = zeros ( itmax , 1 ) ;
169 for i t = 1 : itmax
170 i t
171 [ SE1 , phi1 , t1 ] =optims3 ( t ) ;
172
173 SE = SE1 ; t = t1 ;
174 f igure
175 subplot (223)
176 window3 (1 ,Nmat , ro i , SE) ;
177 t i t l e ( [ ’ Segmented image with adjusted th r e sho ld s ’ ] ) ;
178 RFsim = simdat (mu, Ie , d , SE) ;
179
180 [muISP1 ,B,V] = muISP(mu, Ie , SE) ;
181 RP=zeros (Nmat ,Q, pview ) ;
182 RFmono = zeros ( s ize (RFpoly ) ) ;
183 R2 = zeros ( s ize (RFmono) ) ;
184 tmp1 = zeros ( s ize (RFmono) ) ;
185
186 for n1= 1 :Nmat
187 P =zeros (Npic , Npic ) ;
188 ch i = (SE==n1 ) ;
189 P( ch i ) = d( ch i ) ;
190 RP(n1 , : , : )=radon (P) ;
191 R2 ( : , : ) = RP(n1 , : , : ) ;
192 tmp1 = tmp1+ muISP1( n1 ) ∗R2 ;
193 end
194 RFmono = RFmono+tmp1 ;
195
196 RFcor = zeros ( s ize (RFpoly ) ) ;
197 RFcor = RFpoly+(RFmono−RFsim) ;
198 Pcurrent = iradon ( ( RFcor ) , [ 0 : 1 7 9 ] , ’ l i n e a r ’ , ’Hamming ’ ,1 , Npic ) ;
199
200 max(max(RFcor ) )
201 min(min(RFcor ) )
202
203 subplot (224) ;
204 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ;
205 t i t l e ( [ ’ Updated image . I t e r a t i o n = 1 ’ ] ) ;
206
207 subplot (224) ;
208 window3 (min(muav) ,max(muav) , ro i , Pcurrent ) ;
209 t i t l e ( [ ’ Updated image . I t e r a t i o n = ’ num2str( i t ) ] ) ;
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210 CF( i t ) = cos t fun (mu, Ie , d , SE)
211 end

muISP.m
1 % −−−−−−−−−−−−Computing the r e f e r ence a t t enuat ion−−−−−−−−
2 function [ muISP1 ,B,V] = muISP(mu, Ie , s )
3 % muISP i s a func t i on to compute the r e f e r ence a t t enua t i on f o r ISP
4 global Pcurrent
5 global RFpoly % the measured po lychromat ic data
6 global Nmat % number o f ma t e r i a l s
7 global Npic % number o f p i x e l
8 global pview % # of v iews
9 global Q % # of rays
10 global d
11
12
13 d = ones ( s ize ( s ) ) ;
14
15 RP=zeros (Nmat ,Q, pview ) ;
16 for n = 1 : Nmat
17 P =zeros (Npic , Npic ) ;
18 ch i = ( s==n) ;
19 P( ch i ) = d( ch i ) ;
20 RP(n , : , : )=radon (P) ;
21 end
22
23 V= zeros (Nmat , 1 ) ;
24 RFs = zeros ( s ize (RFpoly ) ) ;
25
26 En = length ( I e ) ;
27 for e = 1 :En
28 tmp = zeros ( s ize (RFpoly ) ) ;
29 for n=1:Nmat
30 R1= zeros ( s ize (RFpoly ) ) ;
31 R1 ( : , : ) = RP(n , : , : ) ;
32 tmp = tmp + mu( e , n) ∗R1 ;
33 end
34 RFs = RFs + Ie ( e ) ∗exp(−tmp) ;
35 end
36
37 RFs = −log (RFs) ; % the s imu la ted po lychromat ic data
38
39 for n= 1 :Nmat
40 R1= zeros ( s ize (RFpoly ) ) ;
41 R1 ( : , : ) = RP(n , : , : ) ;
42 V(n) = sum(sum(R1 .∗RFs) ) ;
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43 end
44
45 B = zeros (Nmat ,Nmat) ;
46 for n = 1 :Nmat
47 for m=1:Nmat
48 B(n ,m) = sum(sum(RP(n , : , : ) .∗RP(m, : , : ) ) ) ;
49 end
50 end
51
52 muISP1 = pinv (B) ∗V
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