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Reconstruction of CT Images from Sparse-View
Polyenergetic Data Using Total Variation

Minimization
T. Humphries and A. Faridani

Abstract—Recent work in CT image reconstruction has seen
increasing interest in the use of compressive sensing techniques
to reconstruct images from sparse-view projection data, with the
goal of reducing radiation dose as well as scan time. Most often
these reconstruction approaches exploit sparsity in the gradient
of the image using total variation (TV) minimization. Following
the existing theoretical results from compressive sensing, these
approaches typically assume a linear measurement model, which
corresponds to data generated from a monoenergetic X-ray beam.
Most clinical CT systems generate X-rays from a polyenergetic
spectrum, however, which is inconsistent with a linear system
model and produces the well-known beam hardening artifacts.
Such artifacts have been observed in some studies on sparse-view
CT reconstruction using a linear model.

In this work we incorporate an existing polyenergetic iterative
technique known as polyenergetic SART (pSART) into a TV
minimization reconstruction algorithm. Using numerical phan-
tom experiments, we demonstrate that this polyenergetic TV
minimization algorithm is able to reconstruct images free of both
undersampling and beam hardening artifacts from sparse-view,
polyenergetic projection data.

I. INTRODUCTION

Techniques for reconstructing CT images from sparse-view
data have the potential to reduce radiation dose to the patient
and to reduce scan times. Research in the field of compressive
sensing [1]–[3] indicates that given a linear model

b = Ax, (1)

with b ∈ Rm, x ∈ Rn, and A ∈ Rm×n, it is possible
in some circumstances to recover x exactly from b even in
the underdetermined case m < n. Theoretical guarantees of
recoverability require that the measurement matrix A satisfy
some properties (e.g. the restricted isometry property [3]),
and that the image x is sparse in some sense; the sparser
the image, the fewer measurements are required to recover
it from b. In CT, it may be reasonable to assume that
the discrete gradient magnitude of the image is sparse, i.e.
that the object being imaged consists of regions of largely
homogeneous tissue separated by sharp edges. Although the
system matrices encountered in CT imaging do not satisfy the
necessary conditions for compressive sensing theory to guar-
antee recoverability from sparse-view data [4], reconstruction
approaches based on minimizing the total variation (TV) of
the image, a measure of the discrete gradient magnitude, have
been empirically successful (e.g. [5]–[9]).
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A typical problem formulation is to find

x∗ = arg min
x

‖x‖TV ,

such that ‖Ax− b‖2 ≤ ε, and xi ≥ 0 ∀ i,
(2)

where
‖x‖TV =

∑
j

‖Djx‖2. (3)

Here x represents the attenuation map of the image, b is the
post-log measured projection data, A is the CT system matrix,
and Dj is a discrete approximation to the gradient of the image
at the jth pixel. A standard approach to solving (2) consists
of an iteration that alternates between improving data fidelity
and minimizing the image TV by steepest descent. Since these
two objectives compete with one another, some heuristic is
required to ensure continual improvement of the data fidelity.
Two examples of algorithms taking this approach are adaptive
steepest descent projection onto convex sets (ASD-POCS) [5]
and improved TV (iTV) [8].

The use of a linear model (1) for reconstruction of CT
images assumes that the measurements are generated from
a monoenergetic X-ray beam. If the X-ray beam is polyen-
ergetic, as is the case on many clinical systems, the post-log
measured data are a nonlinear function of attenuation. Using a
linear model to reconstruct polyenergetic data produces images
afflicted by beam hardening artifacts, such as cupping and
streaking, which can obscure important diagnostic features of
the image. This has led to the development of approaches for
reconstructing images from polyenergetic data (e.g. [10]–[15]).
To date, however, nearly all approaches for reconstructing
images from sparse-view data using TV minimization have
used a linear model, cf. (2). It was noted in at least one study
that images produced using this approach contained noticeable
beam hardening artifacts [7].

Recent work in compressive sensing has shown that recov-
ery of sparse signals from undersampled nonlinear measure-
ments is also possible under certain conditions [16]. As in the
linear case, it is difficult to establish whether these conditions
hold for a polyenergetic CT forward model. Nonetheless, in
light of the established empirical success of TV minimization
for sparse-view CT reconstruction using a linear model, we
investigate a polyenergetic sparse-view reconstruction algo-
rithm. In numerical experiments, we show that the algorithm,
denoted pSART-iTV, is able to produce images free of both
beam hardening and undersampling artifacts.
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II. METHODOLOGY

Our algorithm combines two existing iterative algorithms;
iTV [8] and polyenergetic SART [15]. The improved TV (iTV)
algorithm consists of an alternating iteration that uses the
Simultaneous Algebraic Reconstruction Technique (SART) to
promote data fidelity, followed by a steepest descent mini-
mization to reduce the image TV. The main feature of iTV
is a heuristic that ensures continual improvement of the data
fidelity. Specifically, let x(k) denote the iterative solution to (2)
generated by iTV after k iterations. The (k+1)th iteration first
consists of an iteration of SART, which generates an image
denoted by x

(k+1)
SART . This is followed by one or more iterations

of TV minimization, which produce an image denoted x
(k+1)
TV .

We then define the following three quantities:

ε(k) =
∥∥∥Ax(k) − b

∥∥∥2
2

ε
(k+1)
SART =

∥∥∥Ax(k+1)
SART − b

∥∥∥2
2

(4)

ε
(k+1)
TV =

∥∥∥Ax(k+1)
TV − b

∥∥∥2
2
.

One expects that ε(k+1)
SART < ε(k) and ε

(k+1)
SART < ε

(k+1)
TV since

SART improves data fidelity and the TV step worsens it
somewhat. To ensure continual improvement of data fidelity,
iTV checks the condition

ε
(k+1)
TV < (1− ω)ε

(k+1)
SART + ωε(k), ω ∈ (0, 1) (5)

at the end of the iteration. The parameter ω controls the
permissible amount of smoothing due to TV minimization;
a value of ω = 0 implies no smoothing, while ω = 1 would
allow smoothing to the point of undoing all progress from the
SART iteration. If (5) is satisfied after the TV step, x(k+1)

TV

is accepted and assigned to x(k+1) . Otherwise, the algorithm
sets

x(k+1) = λx
(k+1)
TV + (1− λ)x

(k+1)
SART , λ ∈ (0, 1), (6)

where λ is chosen such that∥∥∥Ax(k+1) − b
∥∥∥2
2

= (1− ω)ε
(k+1)
SART + ωε(k). (7)

The new image is a convex combination of x(k+1)
SART and x

(k+1)
TV

which satisfies the “target” data fidelity given by the right side
of the inequality (5). The value of λ can be found analytically
by solving a quadratic equation [8].

Polyenergetic SART (pSART) [15] is a recently proposed
adaptation of SART which accounts for polyenergetic data.
The linear forward projection of the image, Ax, is replaced by
a nonlinear polyenergetic forward projection, P : Rn → Rm.
This operation is given by

P(x) = − ln

[∑
h

Ih exp (−Aµ(x, εh))

]
, (8)

where Ih is a weighted, discrete approximation to the con-
tinuous beam spectrum at energy level εh, and x is the
attenuation map at some reference energy, such as 70 keV.
The function µ(x, ε) generates an attenuation map of the
object at energy ε using linear interpolation between tabulated

1: x← 0, k ← 0
2: while k < K do
3: ε(k) ← ‖P(x)− b‖22
4: for i from 1 to ns do (pSART)
5: x← x−Ds(i)A

T
s(i)Ms(i)

[
Ps(i)(x)− bs(i)

]
6: x← max(x, 0)

7: xpSART ← x
8: εpSART ← ‖P (xpSART )− b‖22
9: ε(k+1) ← (1− ω)εpSART + ωε(k)

10: for j from 1 to J do (TV minimization)
11: x← x− α · ∇(‖x‖TV )
12: j ← j + 1

13: xTV ← x
14: εTV ← ‖P (xTV )− b‖22
15: if εTV < ε(k+1) then
16: x← xTV

17: ε(k+1) ← εTV

18: else
19: Use Newton’s method to find λ satisfying

‖P [(1− λ)xpSART + λxTV ]− b‖22 = ε(k+1)

20: x← (1− λ)xpSART + λxTV

21: if
(
ε(k) − ε(k+1)

)
< ∆εmin then (convergence)

22: break
23: k ← k + 1

24: return x

Fig. 1. Pseudocode of the pSART-iTV algorithm.

attenuation curves for base materials such as fat, soft tissue
and bone. In particular, if xj denotes the linear attenuation
coefficient (LAC) of pixel j at the reference energy ε0, then
the attenuation coefficient of that pixel at all other energies is
computed as

µ(xj , ε) =
[µk+1(ε0)− xj ]µk(ε) + [xj − µk(ε0)]µk+1(ε)

µk+1(ε0)− µk(ε0)
,

(9)
where µk(ε) and µk+1(ε) are the tabulated, energy-dependent
LAC functions for the two base materials with LAC values
adjacent to xj at the reference energy.

To combine iTV and pSART into a polyenergetic TV min-
imization reconstruction approach (pSART-iTV), we replace
the SART iteration of iTV with an iteration of pSART. All lin-
ear forward projection operations are replaced with the polyen-
ergetic projection P(x). Finally, the use of a polyenergetic for-
ward projection operation means that it is no longer possible to
find the value of λ in (7) analytically. The value can be found
iteratively using Newton’s method, however. The proposed
algorithm is described in Fig. 1. The matrices D and M on

line 4 are defined as D = diag

{
1

/∑m
k=1 |akj |, j = 1 . . . n

}
,

M = diag

{
1

/∑n
k=1 |aik|, i = 1 . . .m

}
, as in SART. Con-

vergence of pSART was accelerated using an ordered subsets
approach, where s(i) denotes the ith subset of the projection
data.
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III. NUMERICAL EXPERIMENTS

We test the effectiveness of the pSART-iTV method using
the the FORBILD head phantom [17]. This phantom simulates
a 2D slice through the head, and includes an option to include
an “ear insert” on the right side of the phantom. The ear
insert produces a phantom whose gradient is less sparse, and
also creates more severe beam hardening artifacts. We used a
phantom size of 800× 800 pixels with a pixel width of 0.375
mm. Two types of data were generated: “exact” data, which
were produced using the same forward model P as pSART-
iTV (i.e. the inverse crime), and “inconsistent” data, which
included noise and other sources of inconsistency due to model
mismatch. While the “exact” data is obviously not realistic,
it is useful for determining the undersampling potential of
pSART-iTV under ideal circumstances.

In addition to pSART-iTV, a second approach to correct for
both beam hardening and undersampling was also investigated.
This approach consists of applying a well-known classical
technique for beam hardening correction proposed by Joseph
and Spital [11], followed by TV minimization applied as a
post-processing step. The goal of the comparison was to eval-
uate whether this less computationally intensive, “smoothed
JS” approach is competitive with pSART-iTV. Images were
reconstructed from 1440, 720, 360, 288 and 144 equally
spaced views over 180◦. iTV and pSART-iTV were run for
a total of 25 iterations, with an ω value of 0.5. All images
were reconstructed at a reference energy of 70 keV.

Fig. 2 shows reconstructions obtained for the phantom with
no ear using 288 views. The FBP and monoenergetic iTV
images (left column) suffer from artifacts which obscure low-
contrast features near the edge of the skull. In contrast, the
pSART-iTV image using exact data (top center) is almost
entirely free of undersampling and beam hardening artifacts.
The image produced using inconsistent data (bottom center)
is somewhat degraded due to the noise and model mismatch,
but the important features are still discernible.

Images produced using the smoothed JS approach (right
column) are free of severe beam hardening artifacts, but are
streakier and noisier than the images produced using pSART-
iTV, particularly for the case of inconsistent data. When apply-
ing TV minimization as a post-processing step, it is difficult to
balance the trade-off of smoothing the undersampling artifacts
while also preserving image contrast. In contrast, a strength of
the pSART-iTV method is the integration of TV minimization
within the iterative reconstruction, which allows the amount
of smoothing performed at each iteration to be controlled by
ω.

Fig. 3 shows equivalent images for the phantom with
the right ear insert, using 360 views. The image quality is
comparable to that obtained for the phantom with no ear insert,
although the severe streaking artifact caused by the ear insert is
challenging to remove. With exact data it is nearly eliminated
by pSART-iTV after 25 iterations, while in the inconsistent
data case, the streak persists to some extent. As before, we
note that the images produced using pSART are qualitatively
less streaky and noisy than those produced by smoothed JS.

In Figs. 4 and 5, we show reconstructed images of the two

phantoms using pSART-iTV as the number of views decreases.
Close inspection reveals mild artifacts appearing in both cases
at 360 views; at 288 views there are still only mild artifacts
for the phantom with no ear insert, while the phantom with
the ear insert has a noticeable artifact on the left side. This
is consistent with theoretical results indicating that increased
sparsity allows reconstruction of an object from fewer views.
At a sampling level of 144 views, there are significant artifacts
in both images.

IV. CONCLUSIONS

In this paper we have demonstrated empirically that existing
techniques for reconstruction of linear (monoenergetic) sparse-
view data can be adapted to reconstruction of nonlinear
(polyenergetic) data. Our proposed pSART-iTV method is
effective in removing artifacts due to both undersampling
and beam hardening in digital phantom simulations, including
cases with inconsistent and noisy data. A comparison with a
second approach, based on classical beam hardening correction
followed by TV minimization, demonstrates that the fully
iterative pSART-iTV approach produces images that are less
streaky and noisy.
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Fig. 2. Images of the phantom with no ear insert produced from 288 view. Top left: image produced from soft tissue corrected FBP. Bottom left: image
produced by monoenergetic iTV with soft tissue correction. Top center: image produced using pSART iTV with exact data. Bottom center: image produced
using pSART-iTV and inconsistent data. Top right: image produced with the smoothed JS correction and exact data. Bottom right: image produced with the
smoothed JS correction and inconsistent data.
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Fig. 3. Images of the phantom with ear insert produced from 360 views. Legend is the same as for Fig. 2.
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Fig. 4. Images of the phantom with no ear reconstructed with pSART-iTV at different sampling levels. All images reconstructed from the exact data with
25 iterations and ω = 0.5.
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Fig. 5. Images of the phantom with ear insert reconstructed with pSART-iTV at different sampling levels. Parameters are the same as in Fig. 4


