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ABSTRACT
In this paper, we present a generalisation of the classical Shannon sampling theorem
that allows for sampling sets that are perturbations of the set of zeros of a sine-type
function. Such sampling sets may be non-equidistant and non-periodic.
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1. Introduction and preliminaries

The Shannon sampling theorem, which is also known as the Whittaker-Kotelnikov-
Shannon (WKS) theorem, allows the reconstruction of a band-limited function from
its sampled values. It reads as follows: if a function f is band-limited to [−π, π], i.e.,
it is represented as

f(t) =

∫ π

−π
g(x)e−ixtdx, t ∈ R

for some function g ∈ L2 (−π, π), then f can be reconstructed from its samples, f(k),
k ∈ Z. The reconstruction formula is

f(t) =

∞∑
k=−∞

f(k)
sinπ (t− k)

π (t− k)
, t ∈ R. (1)

The series converges absolutely, in the L2-sense, and uniformly on R.
Some early works in this field include those by Whittaker [1], Ogura [2], Kotelnikov

[3], and Shannon [4]. For a historical overview on sampling theorems, see [5–8].
We require some definitions and results that will explain the theme of the gener-

alisation we are interested in. An entire function f is of exponential type at most σ

CONTACT Hussain Al-Hammali. Email: hussain@knu.ac.kr



(σ > 0), and we write f is a function of exponential type ≤ σ, if for any ε > 0 there
exists an Aε such that

|f(z)| ≤ Aεe(σ+ε)|z|

for all z ∈ C. Let E denote the space of all entire functions and let Eσ denote the
class of all entire functions of exponential type ≤ σ. The Paley- Wiener spaces PWp

σ

are defined as follows.

Definition 1.1. A function f is in the Paley- Wiener space PWp
σ, 1 ≤ p ≤ ∞, if

f(z) =
∫ σ
−σ g(w)eizwdw, z ∈ C for some g ∈ Lp[−σ, σ], where the norm is given by

‖f‖PWp
σ

:=

(
1

2π

∫ σ

−σ
|g (w)|p dw

)1/p

for 1 ≤ p <∞.

A band-limited function is a tempered distribution whose Fourier transform has
compact support. The functions in the spaces PW2

σ and PW1
σ are examples of band-

limited functions. A closely related function space is the Bernstein space Bpσ which
consists of all functions in Eσ whose restrictions to the real line are in Lp(R). The
norm for Bpσ, 1 ≤ p ≤ ∞ is given by ‖f‖Bpσ := ‖f‖p. Again the functions in this space
are band-limited functions. This can be seen by the theorems of Phragmén-Lindelöf
[9, p. 39] and Paley-Wiener-Schwartz [10, p. 198].

The two normed spaces B2
σ and PW2

σ are identical and this can be seen by the
theorems of Plancherel [11, Theorem 2.13], and Paley-Wiener [11, p. 67]. The Bernstein
and Paley-Wiener spaces can be ordered as follows:

B1
σ ⊂ B2

σ ⊂ . . . ⊂ B∞σ

and

. . . ⊂ PW2
σ ⊂ PW1

σ.

In addition, we obtain the following ordered inclusions:

B2
σ = PW2

σ ⊂ PW1
σ ⊂ B∞σ,0 ⊂ B∞σ ,

where the elements f in B∞σ,0 are those in B∞σ that satisfy lim|t|→∞ f(t) = 0. A function
of exponential type ≤ σ is said to be a σ-sine-type function if

(i) the zeros of f are simple and separated (that is, uniformly discrete,
infj 6=k |λj − λk| ≥ δ for all k ∈ Z and some δ > 0) and

(ii) there exist A, B, and η such that

Aeσ|y| ≤ |f(x+ iy)| ≤ Beσ|y| (2)

for all x, y ∈ R and |y| ≥ η.
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By the horizontal strip of finite width, we shall mean the following:

L = {x+ iy ∈ C | x ∈ R, |y| ≤M for some positive numberM} .

Looking at condition (ii) we see that the zeros of a π-sine-type function lie on a
horizontal strip of finite width.

The function sinπz is an example of a π-sine-type function. An example of a π-sine-
type function with non-equidistant zeros is

ϕα,β(z) = cosπz − β sinαπz

for some suitable choices of 0 < α < 1 and 0 ≤ β ≤ 1. For example, one may choose
α = 1/

√
3 and β = 0.5.

We now define the generating function that will be used to create the sampling
basis. The generating function is defined by the following canonical product

ϕ (z) = lim
N→∞

∏
|k|≤N

(
1− z

λk

)
, (3)

where (1 − z/λk) is replaced by z if λk = 0. If the λk’s are the integers, then the
canonical product (3) yields 1

π sinπz. A result by Levin-Ostrovskii [12, p. 85] shows
that the canonical product (3) forms a π-sine-type function if the λk’s differ from the
zeros of a π-sine-type function by a sequence {δk}k∈Z ∈ lp, 1 < p <∞.

Boche and Mönich [13, Theorem 2] deduced a sampling series for the class of func-
tions B∞σ,0 ⊃ B2

σ = PW2
σ that generalizes (1) where the sampling set is the zeros of a

π-sine-type function instead of the integers. In their sampling series, one can obtain
(1) when the sampling set is chosen to be the integers. Thus, the WKS sampling series
can be used for the class B∞σ,0 where the convergence is uniform over compact subsets
of R. Another type of a generalisation of the WKS sampling series is the following
result by Higgins. It is a generalisation in a sense that it allows a reconstruction using
a perturbed sampling set from the integers within a quarter. It reads as follows.

Theorem 1.2 (Higgins [14]; see also Seip [15]). Let {λk}k∈Z be a sequence of real
numbers such that

|λk − k| ≤ D <
1

4
,

and let ϕ(t) be defined as in (3). Then for all f ∈ PW2
π, we obtain

f(t) =

∞∑
k=−∞

f(λk)
ϕ(t)

ϕ′(λk) (t− λk)
. (4)

The convergence is uniform over R.

The series (4) is of Lagrange-type form, i.e., the sampling basis elements satisfy the
condition

ϕk (λl) =
ϕ (λl)

ϕ′ (λk) (λl − λk)
= δkl, k, l ∈ Z.
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We can point out that the sampling series (4) with the restriction λ−k = −λk
is called the Paley-Wiener-Levinson theorem, see [16, p. 115] and [17]. In [17] A.
G. Garćıa deduced the sampling series (4) using the fact that the Fourier transform
defines an isometric isomorphism from L2 [−π, π] onto the space PW2

π and had the
series extended to a horizontal strip of finite width. A sequence of vectors {ϕk}k∈Z in
a separable Hilbert space H is called a Riesz basis if {ϕk}k∈Z is complete in H and
there exist constants A and B such that for all M , N ∈ N and arbitrary scalars ck’s
we have

A

N∑
k=−M

|ck|2 ≤

∥∥∥∥∥
N∑

k=−M
ckϕk

∥∥∥∥∥
2

≤ B
N∑

k=−M
|ck|2 . (5)

When we have to deal with perturbations in the sampling set, we use Kadec’s 1/4-
theorem, see [18, p. 36].

Theorem 1.3 (Kadec). If {λk}k∈Z is a sequence of real numbers for which

|λk − k| ≤ D <
1

4
, k = 0,±1,±2, . . .

then
{
eiλkt

}
k∈Z forms a Riesz basis for L2 [−π, π].

Later we present a result that generalizes the above result by Kadec.

2. Derivation of the Main Result

Let us now consider the perturbation as λ∗k = λk + δk where {δk}k∈Z ∈ l∞ and define
ϕ∗ as

ϕ∗(z) = lim
N→∞

∏
|k|≤N

(
1− z

λk + δk

)
,

where (1− z/(λk + δk)) is replaced by z if λk + δk = 0. In addition, we define ϕ∗k (z) as

ϕ∗k (z) =
ϕ∗ (z)

ϕ ∗′
(
λ∗k
) (
z − λ∗k

) .
Two sequences {xn} and {yn} in a Hilbert space H are said to be biorthogonal if

〈xn, ym〉 = δnm

for every n and m. In his proof of the Paley- Wiener- Levinson theorem (Theorem 1.2
with t chosen to be complex), A. G. Garćıa [17] used a theorem by Titchmarsh. The
theorem can be stated as follows, cf. [19, Theorem VI].

Theorem 2.1 (Titchmarsh). Let g ∈ L1 [−π, π] and define the entire function f as

f(z) =

∫ π

−π
g(w)ezwdw.

4



Then, f has infinitely many zeros, {zn}n∈N, with nondecreasing absolute values, such
that

f (z) = Azme(
a+b

2 )z
∞∏
n=1

(
1− z

zn

)

for some m ∈ N∪{0}, where [a, b] ⊆ [−π, π] is the smallest interval that contains the
support of g. The infinite product is conditionally convergent.

For our application of Titchmarsh’s theorem, we also need the following lemma.
Recall that a sequence of vectors {fk}k∈Z in a normed space X is said to be complete
if its linear span is dense in X. For the completeness in Hilbert spaces, it is equivalent
to saying that the only vector that is orthogonal to all fk’s is the zero vector. Let
Λ = {λk}k∈Z be a sequence of real or complex numbers. The completeness radius of Λ
is defined to be the number

R (Λ) = sup
{
r |
{
eiλkt

}
k∈Z

is complete in C [−r, r]
}
.

The completeness radius does not change if we replace C [−r, r] by the spaces Lp [−r, r]
with 1 ≤ p <∞, see [18, p. 120].

Lemma 2.2. Let Λ = {λk}k∈Z be such that {fk(t) = eiλkt, k ∈ Z} is a Riesz basis
of L2 (−π, π). Let {gk}k∈Z denote the corresponding biorthogonal basis of {fk}k∈Z.
Let [αk, βk] ⊆ [−π, π] be the smallest interval that contains the support of gk. Then
αk = −π and βk = π.

Proof. Assume that [αk, βk] is a proper subset of [−π, π] for some k ∈ Z, let c = (αk+
βk)/2, and consider the shifted function h(t) = gk(t+c). Then h is supported in [−(βk−
αk)/2, (βk − αk)/2] = [−βπ, βπ] for some β ∈ (0, 1). The inverse Fourier transform
of h now satisfies h̃(λn) =

∫
h(t)eiλntdt =

∫
gk(t+ c)eiλnt dt = e−iλnc

∫
gk(t)e

iλnt dt =

e−iλnc〈fn, gk〉 = e−iλncδkn, i.e., h̃ vanishes on Λ′ = Λ − {λk}. According to Beurling
and Malliavin [20], the closure radii (the completeness radii) of Λ and Λ′ are equal.
Therefore, because β < 1, h̃ ∈ PW2

βπ vanishes on Λ′, so it must vanish identically,
which is a contradiction.

We restate the following theorem by Katsnel’son, cf. [21].

Theorem 2.3 (Katsnel’son). Let {λk}k∈Z be the set of zeros of a σ-sine-type function
and let {δk}k∈Z be a sequence of complex numbers satisfying the conditions

|Re δk| ≤ dp, sup
k∈Z
|Im δk| <∞

where p = infk |Reλk − Reλk+1| and d < 1
4 is a constant. Then, the sequence{

ei(λk+δk)t
}
k∈Z is a Riesz basis in L2 (−σ, σ).

The following is the main result of this paper. It is a generalisation in the sense that
the perturbed sampling points in Higgins’s result are replaced by complex numbers
with a certain maximum distance from the zeros of a π-sine-type function.
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Theorem 2.4. Let {λk}k∈Z be the set of zeros of a π-sine-type function and let
{λ∗k}k∈Z be a sequence of complex numbers satisfying

|Reλ∗k − Reλk| ≤ dp, sup
k∈Z
|Imλ∗k − Imλk| <∞, (6)

where d < 1
4 and p = infk |Reλk − Reλk+1|. Then, for all f ∈ PW2

π, we obtain

f(z) =
∑
k∈Z

f (λ∗k)
ϕ∗(z)

ϕ∗′(λ∗k)(z − λ∗k)
, (7)

where the convergence is uniform on any horizontal strip in C of finite width.

Proof. By Theorem 2.3, we have that the sequence
{
eiλ
∗
k(.)
}
k∈Z forms a Riesz basis

over L2 (−π, π). The sequence
{
eiλ
∗
k(.)
}
k∈Z possesses a complete biorthogonal sequence

{gk}k∈Z in L2 (−π, π), see [18, Theorem 9, p. 27]. The sequence {gk}k∈Z is a Riesz basis

being biorthogonal to
{
eiλ
∗
k(.)
}
k∈Z, see [18, p. 30]. Let hk = gk. It follows that∫ π

−π
hn(x)eiλ

∗
mxdx =

〈
eiλ
∗
m(.), gn

〉
= δmn. (8)

We define the function Gn as

Gn(z) =

∫ π

−π
hn(x)eizxdx. (9)

By using the biorthogonality condition (8) we obtain that

Gn(z) =
ϕ∗(z)

(z − λ∗n)
K(z),

with K(λ∗n) 6= 0. We claim that the function K has no zeros. The claim will be proved
by way of contradiction. Assume that K(µ) = 0 for µ 6= λ∗n and define the function H
as

H(z) = Gn(z)
(z − λ∗n)

(z − µ)
.

Then, the function H belongs to PW2
π = B2

π because Gn does, and the factor (z−λ∗n)
(z−µ)

is asymptotically equal to 1. The function H vanishes on the complete interpolating
set Λ = {λ∗k}k∈Z and thus H ≡ 0. This implies that Gn is identically equal to zero,
a contradiction. Therefore, the function K is different from zero everywhere. Now, by
virtue of Theorem 2.1 and Lemma 2.2, we obtain

Gn(z) =
ϕ∗(z)

z − λ∗n
K(z) = Azm

∞∏
n=1

(
1− z

zn

)
.

As ϕ∗ has only simple zeros and K(z) has no zeros, we have that zk 6= zl for k 6= l.
Furthermore, one has either m = 0 and λ0 6= 0, or m = 1 and λ0 = 0. In either case
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{zk | k = 1, 2, . . .} = {λ∗k | k ∈ Z, k 6= n}. It follows that K(z) is a constant. By the
biorthogonality condition, we obtain that

1 = Gn (λ∗n) = lim
z→λ∗n

Gn (z) = ϕ∗′ (λ∗n)K (λ∗n)

and, thus, we rewrite (9) as∫ π

−π
hn(x)eizxdx =

ϕ∗(z)

ϕ∗′ (λ∗n) (z − λ∗n)
= ϕ∗n(z). (10)

Now, if f ∈ PW2
π, then

f(z) =

∫ π

−π
g(w)eizwdw

for some g in L2 (−π, π). We have that {hk}k∈Z forms a Riesz basis for L2 (−π, π) and
so

g(w) = lim
N→∞

N∑
m=−N

cmhm(w)

converges in the L2 sense. It follows that f(λ∗m) =
〈
eiλ
∗
m(.), g

〉
=
〈
eiλ
∗
m(.),

∑
k∈Z ckgk

〉
=

cm by biorthogonality. Now,

∣∣∣∣∣f(z)−
N∑

m=−N
f(λ∗m)

ϕ∗(z)

ϕ∗′(λ∗m)(z − λ∗m)

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

−π
g(w)eizwdw −

N∑
m=−N

cm

∫ π

−π
hm(w)eizwdw

∣∣∣∣∣
=

∣∣∣∣∣
∫ π

−π

[
g(w)−

N∑
m=−N

cmhm(w)

]
eizwdw

∣∣∣∣∣
≤
√

2π

∥∥∥∥∥g −
N∑

m=−N
cmhm

∥∥∥∥∥
2

eπ|Imz|.

Thus, for |Imz| ≤M for some M ∈ R, we have

lim
N→∞

∣∣∣∣∣f(z)−
N∑

m=−N
f(λ∗m)

ϕ∗(z)

ϕ∗′(λ∗m)(z − λ∗m)

∣∣∣∣∣ ≤ lim
N→∞

√
2π

∥∥∥∥∥g −
N∑

m=−N
cmhm

∥∥∥∥∥
2

eπ|Imz| = 0,

which shows that the convergence is uniform over any horizontal strip of finite width.

In the following, we give some examples that boil down to specific known results.

Example 2.5. If {λ∗k}k∈Z is a sequence of real numbers and {λk}k∈Z = Z, which
are zeros of a π-sine-type function, then p = infk |Reλk − Reλk+1| = 1 and
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|Reλ∗k − Reλk| ≤ d < 1
4 , and thus for all f ∈ B2

π = PW2
π we obtain that

f(t) =
∑
k∈Z

f (λ∗k)
ϕ∗(t)

ϕ∗′(λ∗k)(t− λ∗k)
, t ∈ R,

where the convergence is uniform over R. This is the sampling series by Higgins, see
Theorem 1.2. Furthermore, if we additionally set d = 0, then we obtain the WKS
sampling series (1).

3. Stability

The question of stability of the function reconstruction comes into play when we deal
with perturbations. We state the following theorem to establish the stability in the
sense of Riesz, cf. [11, Theorem 3.12].

Theorem 3.1. Under Fourier transformation, the pre-image of a Riesz basis for
L2 (−π, π) is a Riesz basis for PW2

π.

With this result, we see that the sequence {ϕ∗k}k∈Z, the sampling basis, forms a

Riesz basis for PW2
π because it is a pre-image of the Riesz basis {hk}k∈Z ∈ L2 (−π, π);

see the first part of the proof of Theorem 2.4 together with (10). Hence, the stability
in the sense of (5) follows.

Another type of stability is defined from the sampling set point of view. The set
Λ = {λk}k∈Z is called a set of stable sampling (or sampling) for the space PW2

π, if
there exists a constant K such that

‖f‖2L2 ≤ K
∑
k∈Z
|f(λk)|2

for all f ∈ PW2
π. Now, if f ∈ PW2

π, then the sampling series (7) holds. It is shown
above that the sequence

ϕ∗k (z) =
ϕ∗ (z)

ϕ∗′
(
λ∗k
) (
z − λ∗k

)
forms a Riesz basis for PW2

π and so (5) holds. Therefore, the stability of {λ∗k}k∈Z, the

set that satisfies (6), in the sense of stable sampling for the space PW2
π follows from

the right-hand side of (5).

4. An Extension to the Function Space PW1
π

In this section, we extend the sampling series to larger function spaces. In practice,
the perturbation occurs on a finite number of points. More generally, if we assume
that the sequence of perturbation {δk}k∈Z ∈ l2, then the sampling series (7) can be

used for the space PW1
π ⊃ PW2

π. We state the Phragmén-Lindelöf theorem for use in
the next result.
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Theorem 4.1 (Phragmén-Lindelöf). If f (z) is an entire function of exponential type
σ, and |f (z)| ≤M , −∞ < x <∞, then

|f (x+ iy)| ≤Meσ|y|

in the whole plane C.

A special case of a result by Levin-Ostrovskii [12, p. 85] is proved below.

Theorem 4.2. Let {λk}k∈Z be the zeros of a π-sine-type function and let {δk}k∈Z ∈ l2.
Then, the function

ϕ∗ (z) =
∏
k∈Z

(
1− z

λk + δk

)

is a π-sine-type function.

Proof. First, if {δk}k∈Z is the zero sequence, then there is nothing to prove. Next, we
show that ϕ∗ is a π-sine-type function. We define Φ as

Φ (z) =

∣∣∣∣ϕ∗ (z)

ϕ (z)

∣∣∣∣ ,
and we let z ∈ S = {x+ iy | y = H} with

H = sup
k∈Z
{|Imλk|}+ 2. sup

k∈Z
{|δk|} .

We reorder the terms as

Φ (z) =

∣∣∣∣∣∣ lim
N→∞

∏
|k|≤N

(
1− z

λk + δk

)
/ lim
N→∞

∏
|k|≤N

(
1− z

λk

)∣∣∣∣∣∣
= lim

N→∞

∣∣∣∣∣∣
∏
|k|≤N

(
1− z

λk + δk

)
/
∏
|k|≤N

(
1− z

λk

)∣∣∣∣∣∣
= lim

N→∞

∣∣∣∣∣∣
∏
|k|≤N

{(
λk − z + δk
λk + δk

)
·
(

λk
λk − z

)}∣∣∣∣∣∣
= lim

N→∞

∏
|k|≤N

∣∣∣∣{(λk − z + δk
λk − z

)
·
(
λk + δk − δk
λk + δk

)}∣∣∣∣
= lim

N→∞

∏
|k|≤N

∣∣∣∣{(1 +
δk

λk − z

)
·
(

1− δk
λk + δk

)}∣∣∣∣ (11)

≤ lim
N→∞

∏
|k|≤N

(
1 +

|δk|
|λk − z|

)
· lim
N→∞

∏
|k|≤N

(
1 +

|δk|
|λk + δk|

)
. (12)

The limit in (11) splits into the two limits in (12) because each limit exists and is
different from zero. Now, we show the convergence of the limits in (12) and that will
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be done by showing the convergence of the series

∑
k∈Z

|δk|
|λk − z|

.

We consider the following partitioning of the zeros

Jk = {λn | λn ∈ [k, k + 1)× [−iH, iH]} .

Let N = maxn∈ZCard(Jn). The set {λk}k∈Z is uniformly discrete and so there exists
λnk ∈ Jk such that |z − λnk | ≤ |z − λn| for all λn ∈ Jk. For an arbitrarily fixed z, we
have Rez ∈ [m,m+ 1) for some m ∈ Z. Thus, there exists ε > 0 such that

|z − λnk | > ε (|k −m|+ 1) for all k ∈ Z.

Hence, ∑
k∈Z

1

|z − λk|2
=
∑
k∈Z

∑
λn∈Jk

1

|z − λk|2

≤
∑
k∈Z

∑
λn∈Jk

1

|z − λnk |
2

≤
∑
k∈Z

N

|z − λnk |
2

<
N

ε2

∑
k∈Z

1

(|k −m|+ 1)2 = γ <∞.

Thus,

∑
k∈Z

|δk|
|λk − z|

≤

(∑
k∈Z
|δk|2

)1/2

(γ)1/2 <∞ (13)

by using the Cauchy- Schwarz inequality. Therefore, |ϕ∗ (z)| ≤ C |ϕ (z)| ≤ C̃eπ|H| for
all z ∈ S which means that |ϕ∗ (z)| is bounded on the horizontal line y = H. Now,
ψ (z) = ϕ∗ (x+ i (y +H)) is an entire function of exponential type ≤ π since ϕ∗ has
the zeros {λk + δk}k∈Z where {λk}k∈Z is the set of zeros of a π-sine-type function and
{δk}k∈Z is a bounded sequence of complex numbers; see [12, p. 80]. Thus, by Theorem
4.1, we obtain

|ψ (x+ iy)| ≤Meπ|y|.

Now, shifting up the function ψ by replacing y 7→ y −H, we have

|ϕ∗ (x+ iy)| ≤Meπ|y−H| ≤ M̃eπ|y| (14)

for some M̃ > 0 and all y ∈ R. For the lower bound, we use the reverse triangle
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inequality in (11) to obtain

Φ (z) ≥ lim
N→∞

∏
|k|≤N

(
1− |δk|
|λk − z|

)
. lim
N→∞

∏
|k|≤N

(
1− |δk|
|λk + δk|

)
= ∆ (|y|) , (15)

where |y| ≥ H. The right-hand side of the inequality (15) converges to a non-zero limit
by using (13). Thus,

|ϕ∗ (x+ iy)| ≥ ∆ (|y|) |ϕ (x+ iy)| ≥ ∆ (|y|)meπ|y|

for all |y| ≥ H. Note that the function ∆ (|y|) is increasing, which makes ∆ (|y|) ≥
∆ (H). Therefore,

|ϕ∗ (x+ iy)| ≥ m̃eπ|y| (16)

for all |y| ≥ H. By obtaining the inequalities (16) and (14), the proof is complete.

Theorem 4.3. Let {λn}n∈Z be the set of zeros of a π-sine-type function, ϕ(z) be the
function defined as in (3) and let

ϕn (z) =
ϕ (z)

ϕ′ (λn) (z − λn)
.

Then, for all f ∈ B∞π and all z in a compact subset C ⊂ C we obtain∣∣∣∣∣f (z)−
N∑

n=−N
f (λn)ϕn (z)

∣∣∣∣∣ ≤ CC ‖f‖∞
for a sufficiently large N .

Proof. Let z ∈ C and H = sup {|y| | x+ iy ∈ C}. Then, by using the Cauchy integral
formula, we obtain

f(z) =
1

2πi

∮
Γn

f(w)

(w − z)
dw

=
1

2πi

∮
Γn

[ϕ(w)− ϕ(z) + ϕ(z)]

(w − z)
f(w)

ϕ(w)
dw

=
1

2πi

∮
Γn

[ϕ(w)− ϕ(z)]

(w − z)
f(w)

ϕ(w)
dw +

1

2πi

∮
Γn

ϕ(z)

(w − z)
f(w)

ϕ(w)
dw (17)

For the first integral in (17), we use the residue theorem with the rectangular contour
Γn. The contour Γn is defined as Γn = η1 ∪ η2 ∪ γ1 ∪ γ2 where

η1 = {x+ iyn | x−n = Re(λ−n + λ−n−1)/2 ≤ x ≤ xn = Re(λn + λn+1)/2, yn = xn} ,

η2 = {x− iyn | x−n = Re(λ−n + λ−n−1)/2 ≤ x ≤ xn = Re(λn + λn+1)/2, yn = xn} ,
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γ1 = {xn + iy | xn = Re(λn + λn+1)/2, |y| < xn} ,

and

γ2 = {x−n + iy | x−n = Re(λ−n + λ−n−1)/2, |y| < xn} .

It follows that

Res

(
[ϕ(w)− ϕ(z)]

(w − z)
f(w)

ϕ(w)
, λk

)
=

ϕ(z)f(λk)

(z − λk)ϕ′(λk)
,

for all λk’s that are inside the contour Γn. Thus,

f(z) =

n∑
k=−n

f(λk)
ϕ(z)

(z − λk)ϕ′(λk)
+ En(z),

where

En(z) =
1

2πi

∮
Γn

ϕ(z)

(w − z)
f(w)

ϕ(w)
dw.

For the contour integral En(z), we only carry out the computation over the first
quadrant because the computation over the other quadrants follows in the same way.
We perform the computation over the vertical segment and the horizontal segment as
follows:

Iγ1 =

∣∣∣∣∮
γ1

f (w)ϕ (z)

(w − z)ϕ (w)
dw

∣∣∣∣ ≤ C1 ‖ϕ‖∞ e
π|H|

∫
[0,xn]

‖f‖∞ eπ|y|

eπ|y| |xn − Rez|
dy

≤
C1 ‖ϕ‖∞ ‖f‖∞ eπ|H| |xn|

|xn − Rez|

by using Theorem 4.1 and (2) for the functions f and ϕ. For a sufficiently large n, we
have xn 6= Rez. Then,

Iγ1 = O (‖f‖∞) asn→∞.

Similarly,

Iη1 =

∣∣∣∣∮
η1

f (w)ϕ (z)

(w − z)ϕ (w)
dw

∣∣∣∣ ≤ C1 ‖ϕ‖∞ e
π|H|

∫
[0,xn]

‖f‖∞ eπ|y|

eπ|y| |i (xn − Imz)|
dx

≤
C1 ‖ϕ‖∞ ‖f‖∞ eπ|H| |xn|

|i (xn − Imz)|

and so

Iη1 = O (‖f‖∞) as n→∞.

12



Therefore, ∣∣∣∣∣f (z)−
N∑

n=−N
f (λn)ϕn (z)

∣∣∣∣∣ ≤ CC ‖f‖∞ ,
which completes the proof.

In the next result, the density property of PW2
π in PW1

π is used to obtain an
approximate reconstruction for the functions in the space PW1

π.

Theorem 4.4. Let ϕ be a function of π-sine-type with zeros {λk}k∈Z and let λ∗k =
λk + δk with {δk}k∈Z ∈ l2 satisfy

|Reλ∗k − Reλk| ≤ dp, sup
k∈Z
|Imλ∗k − Imλk| <∞,

where d < 1
4 and p = infk |Reλk − Reλk+1|. Then, for all f ∈ PW1

π, we have

f(z) =
∑
k∈Z

f (λ∗k)ϕ
∗
k (z) ,

where the convergence is uniform over any compact subset C of C.

Proof. Let z ∈ C, H = sup {|y| | x+ iy ∈ C}, f ∈ PW1
π, and ε > 0. Then, there exist

gε ∈ PW2
π such that ‖f − gε‖PW1

π
< ε. Now,∣∣∣∣∣f (z)−

N∑
k=−N

f (λ∗k)ϕ
∗
k (z)

∣∣∣∣∣ =∣∣∣∣∣f (z)− gε (z) + gε (z)−
N∑

k=−N
gε (λ∗k)ϕ

∗
k (z) +

N∑
k=−N

gε (λ∗k)ϕ
∗
k (z)−

N∑
k=−N

f (λ∗k)ϕ
∗
k (z)

∣∣∣∣∣
=

∣∣∣∣∣(f − gε) (z)−

(
N∑

k=−N
f (λ∗k)ϕ

∗
k (z)−

N∑
k=−N

gε (λ∗k)ϕ
∗
k (z)

)
+ gε (z)−

N∑
k=−N

gε (λ∗k)ϕ
∗
k (z)

∣∣∣∣∣
≤

∣∣∣∣∣(f − gε) (z)−

(
N∑

k=−N
(f − gε) (λ∗k)ϕ

∗
k (z)

)∣∣∣∣∣+

∣∣∣∣∣gε (z)−
N∑

k=−N
gε (λ∗k)ϕ

∗
k (z)

∣∣∣∣∣
≤ 2πCC ‖f − gε‖PW1

π
+ (2π)3/2eπ|H|

∥∥∥∥∥gε (.)−
N∑

k=−N
gε (λ∗k)ϕ

∗
k (.)

∥∥∥∥∥
PW2

π

< 2πCCε+ (2π)3/2 eπ|H|ε =
(

2πCC + (2π)3/2 eπ|H|
)
ε

by using Theorem 4.3 for the first part of the inequality and Theorem 2.4 and the fact
|.| ≤ 2πeπ|y| ‖.‖PW1

π
≤ (2π)3/2eπ|y| ‖.‖PW2

π
for the second part.
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5. Numerical Example

In this section, we give an example for Theorem 2.4. In the following, we have the plot
of the function

f (x) =
sinπ

(
x− 2

10

)(
x− 2

10

) +
sin π

3

(
x− 23

10

)(
x− 23

10

)
that is in the space PW2

π. We consider sampling points that are the zeros of a π-sine-
type function. The π-sine-type function we consider here is g(x) = cosπx−0.5 sin π√

3
x.

It has zeros with p = 0.7448. The zeros form a set of non-equidistant and non-periodic
sampling points. We perturb the first ten positive zeros. The perturbation achieved
by a random function that maintains the quarter condition in Theorem 2.4. The num-
ber of terms used for the reconstruction is 2N + 1 = 801. The truncation error is
‖e‖L∞[−10,10] = 0.0025.

-10 -8 -6 -4 -2 0 2 4 6 8 10
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-0.5

0
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4
exact
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Figure 1. The reconstruction with sampling points that are the zeros of a sine-type function. The recon-
struction is on the left and the error is on the right.
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[17] Garćıa, A.. The paley-wiener-levinson theorem revisited. International Journal of Math-
ematics and Mathematical Sciences 1997;20(2):229–234.

[18] Young, R.M.. An Introduction to Non-Harmonic Fourier Series, Revised Edition, 93.
Academic Press; 2001.

[19] Titchmarsh, E.C.. The zeros of certain integral functions. Proceedings of the London
Mathematical Society 1926;2(1):283–302.

[20] Beurling, A., Malliavin, P.. On the closure of characters and the zeros of entire functions.
Acta Mathematica 1967;118(1):79–93.

[21] Katsnel’son, V.. Exponential bases in l 2. Functional Analysis and Its Applications
1971;5(1):31–38.

15


