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Abstract

Computed tomography (CT) entails the reconstruction of a function f from
line integrals of f . This mathematical problem is encountered in a growing number
of diverse settings in medicine, science, and technology. This introductory arti-
cle is divided into three parts. The first part is concerned with general theory
and explores questions of uniqueness, stability and inversion, as well as detection
of singularities. The second part is devoted to local tomography and is centered
around a discussion of recently developed methods for computing jumps of a func-
tion from local tomographic data. The third part treats optimal sampling and
has at its core a detailed error analysis of the parallel-beam filtered backprojection
algorithm. Matlab source code for the filtered backprojection algorithm and the
Feldkamp-Davis-Kress algorithm is included in an appendix.

1 Introduction

Computed tomography (CT) entails the reconstruction of a function f from line integrals
of f . This mathematical problem is encountered in a growing number of diverse settings
in medicine, science, and technology, ranging from the famous application in diagnostic
radiology to research in quantum optics. As a consequence, many aspects of CT have been
extensively studied and are now well understood, thus providing an interesting model
case for the study of other inverse problems. Other aspects, notably three-dimensional
reconstructions, still provide numerous open problems.

The purpose of this article is to give an introduction to the topic, treat some aspects
in more detail, and to point out references for further study. The reader interested
in a broader overview of the field, its relation to various branches of pure and applied
mathematics, and its development over the years may wish to consult the monographs
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[6, 31, 32, 36, 62, 67, 78], the volumes [21, 22, 28, 33, 34, 76, 77], and review articles
[42, 49, 56, 58, 66, 84, 89].

In practice only integrals over finitely many lines can be measured, and the distribu-
tion of these lines is sometimes restricted. The following presentation is centered around
the question: What features of f can be stably recovered from a given collection of line
integrals of f? For example, we may ask what resolution can be achieved with the avail-
able data. If a full reconstruction of f is not possible, we may try to detect the location
of boundaries (jump discontinuities of f), or also the sizes of the jumps.

The exposition is divided into three parts. The first part is concerned with general
theory. Its main themes are questions of uniqueness, stability and inversion for the x-
ray transform, as well as detection of singularities. The second part is devoted to local
tomography. The exposition is similar to [17] and is centered around a discussion of
recently developed methods for computing jumps of a function from local tomographic
data. The third part treats optimal sampling and has at its core a detailed error anal-
ysis of the parallel-beam filtered backprojection algorithm. The article conludes with
three appendices containing basic results on wavelets, Matlab source code for the filtered
backprojection algorithm and the Feldkamp-Davis-Kress algorithm, and some exercises.

2 The x-ray and Radon transforms

We begin by introducing some notation and background material. IRn consists of n-tuples
of real numbers, usually designated by single letters, x = (x1, . . . , xn), y = (y1, . . . , yn),
etc. The inner product and absolute value are defined by < x, y >=

∑n
1 xiyi and |x| =√

< x, x >. The unit sphere Sn−1 consists of the points with absolute value 1. C∞
0 (IRn)

denotes the set of infinitely differentiable functions on IRn with compact support. A
continuous linear functional on C∞

0 is called a distribution. If X is a set, X◦ denotes
its interior, X its closure, and Xc its complement. χX and χn denote the characteristic
functions (indicator functions) ofX, and of the unit ball in IRn, respectively. I.e., χX(x) =
1 if x ∈ X, and χX(x) = 0 if x 6∈ X. |X| denotes the n-dimensional Lebesgue measure
of X ⊂ IRn. However, when it is clear that X should be treated as a set of dimension
m < n, |X| is the m-dimensional area measure. Thus

|Sk−1| = 2πk/2/Γ(k/2)

is the (k − 1)-dimensional area of the (k − 1)-dimensional sphere.
The convolution of two functions is given by

f ∗ g(x) =
∫

IRn
f(x− y)g(y)dy.

The Fourier transform is defined by

f̂(ξ) = (2π)−n/2
∫

IRn
f(x)e−i<x,ξ> dx
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for integrable functions f , and is extended to larger classes of functions or distributions
by continuity or duality. For square-integrable functions f, g we have

f ∗ g(x) =
∫

IRn
f̂(ξ)ĝ(ξ)ei<x,ξ> dξ. (1)

The integral transforms most relevant for tomography are the x-ray transform and
the Radon transform.

Definition 2.1 Let θ ∈ Sn−1 and Θ⊥ the hyperplane through the origin orthogonal to θ.
We parametrize a line l(θ, y) in IRn by specifying its direction θ ∈ Sn−1 and the point y
where the line intersects the hyperplane Θ⊥.

The x-ray transform of a function f ∈ L1(IR
n) is given by

Pf(θ, y) = Pθf(y) =
∫

IR
f(y + tθ)dt, y ∈ Θ⊥. (2)

The Radon transform of f is defined by

Rf(θ, s) = Rθf(s) =
∫

Θ⊥

f(x+ sθ)dx, s ∈ IR. (3)

We see that Pf(θ, x) is the integral of f over the line l(θ, y) parallel to θ which passes
through y ∈ Θ⊥, and that Rf(θ, s) is the integral of f over the hyperplane orthogonal to
θ with signed distance s from the origin. In the following we will be mostly concerned
with the x-ray transform. In two dimensions the two transforms coincide apart from the
parameterization: We parametrize θ ∈ S1 by its polar angle ϕ and define a vector θ⊥

orthogonal to θ such that

θ = (cosϕ, sinϕ), θ⊥ = (− sinϕ, cosϕ). (4)

Then the points in the subspace Θ⊥ are given by Θ⊥ = {sθ⊥, s ∈ IR} and we have the
relation Pf(θ, sθ⊥) = Rf(θ⊥, s). Also, when working in two dimensions, we will often
use the simplified notation Pf(θ, s) or Pθf(s) instead of Pf(θ, sθ⊥). Occasionally we will
also replace θ by the polar angle ϕ according to (4) and write Pf(ϕ, s) .

Let us consider two examples. Let G be the Gaussian function G(x) = e−<x,x>/2.
Then

PG(θ, y) = e−<y,y>/2
∫

IR
e−<tθ,tθ>/2dt = (2π)1/2e−<y,y>/2, y ∈ Θ⊥. (5)

For χn, the characteristic function of the unit ball in IRn, we can use a geometrical
argument. We obtain Pχn(θ, y) = 0 for |y| > 1 since then the line l(θ, y) does not
intersect the unit ball. For |y| ≤ 1 observe that the intersection of the line l(θ, y) with

the unit ball in IRn is a line segment of length 2
√

1 − |y|2 and that Pχn(θ, y) is equal to
this length.

The following relation between the Fourier transforms of Pθf and f will prove to be
useful:

3



Theorem 2.2 Under the hypotheses of Definition 2.1,

(Pθf)∧(η) = (2π)1/2f̂(η), η ∈ Θ⊥ (6)

(Rθf)∧(σ) = (2π)(n−1)/2f̂(σθ), σ ∈ IR (7)

Proof: This is a straightforward computation. We demonstrate it for the x-ray transform.
Let η ∈ Θ⊥. Then

(Pf)∧(θ, η)

= (2π)(1−n)/2
∫

Θ⊥

Pf(θ, x)e−i<x,η> dx

= (2π)(1−n)/2
∫

Θ⊥

∫

IR
f(x+ sθ) ds e−i<x,η>dx

= (2π)(1−n)/2
∫

IRn
f(y)e−i<y,η> dy

=
√

2π f̂(η), η ∈ Θ⊥.2

As we will see below, Theorem 2.2 can be used to explore questions of uniqueness, non-
uniqueness, stability, and inversion.

Current medical scanners employ an x-ray source which moves around the patient.
To describe this type of data collection, the parameterization of lines by θ ∈ Sn−1 and
y ∈ Θ⊥ is less convenient. It is more suitable to introduce the divergent beam x-ray
transform

Df(a, θ) = Daf(θ) =
∫ ∞

0
f(a+ tθ)dt, θ ∈ Sn−1, (8)

which gives the integral of f over the ray with direction θ emanating from the source
point a.

The x-ray and Radon transforms are special cases of the general k-plane transform,
which maps a function into its integrals over k-dimensional affine subspaces; see, e.g.,
[42].

3 Uniqueness and nonuniqueness

Theorem 3.1 ([89, 42]) Let f ∈ L2(IR
n) have compact support, and let Pf(θ, ·) ≡ 0 for

infinitely many θ. Then f ≡ 0.
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Proof: The Fourier transform f̂ is analytic and f̂(η) = P̂θf(η) = 0 on the hyper-
planes < η, θ >= 0. Since no nontrivial entire function can vanish on an infinite set of
hyperplanes through the origin, we must have f̂ ≡ 0. 2

As an application, consider the so-called limited angle problem. Let Pf(θ, ·) be given
for infinitely many θ concentrated in a cone C. Then f is uniquely determined, even if C
is very small. However, if C 6= Sn−1, the reconstruction is not stable. Indeed, the proof
of the above theorem shows that reconstructing f is equivalent to analytic continuation
of f̂ , and analytic continuation is known to be extremely unstable.

The uniqueness result requires an infinite number of directions, while in practice only
a finite number can be measured. It was already recognized by the pioneers of CT that
this entails the loss of uniqueness; see the example given in [3]. The next theorem shows
that the nonuniqueness is quite extensive, i.e., given Pf(θj, ·) for finitely many directions
θj, there are null functions which can be prescribed arbitrarily on a large portion of their
domain.

Theorem 3.2 ([89]) Let θ1, . . . , θp ∈ Sn−1, K ⊂ IRn compact, and f ∈ C∞
0 (K). Let

K0 ⊂ U ⊂ K with U open and K0 compact. Then there is f0 ∈ C∞
0 (K), f0 = f on K0,

and Pf0(θk, ·) ≡ 0, k = 1, . . . , p.

While this result makes it seem difficult to obtain reliable reconstructions in practice,
it is not the end of the story. It turns out that the null functions for the x-ray transform
are high-frequency functions [51, 52, 53, 60] , and that it is possible to suppress such
functions in practical reconstructions.

Theorem 3.3 [51, 52, 53] Let f0 ∈ L2(IR
2) with support contained in the unit disk. If

Pf0(θk, ·) ≡ 0 for k = 1, . . . , p, then

f̂0(σθ) =
∑

m>p

imσ−1Jm+1(σ)qm(θ),

where σ ∈ IR, θ ∈ S1, Jm+1 the order m + 1 Bessel function of the first kind and qm a
polynomial of degree m.

Since Jl(t) is very small for l > t, it follows that if Pθf vanishes for p distinct directions
θj, then f̂(ξ) is almost entirely concentrated in the set {ξ ∈ IRn : |ξ| > p} [60]. This means

that measuring Pθj
f determines f̂(ξ) reliably for |ξ| < p. However, the reconstruction

problem may still be severely unstable, e.g., when the directions are concentrated in a
narrow range. In cases where sufficient stability is present, a low-pass filtered version of
f may be recovered. A loose application of Shannon’s sampling theorem yields that the
reconstruction will resolve details of size 2π/p or greater.

Remark 3.4 It follows that the influence of nonuniqueness may be avoided in practice
under the following conditions:
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a) A-priori information that |f̂(ξ)| is small for |ξ| > b is available.
b) Data Pθj

f for p > b directions θj are measured.

c) The reconstruction method used produces a function fR with |f̂R(ξ)| small for
|ξ| > b.

Nonuniqueness theorems for the divergent beam x-ray transform have been proved in
[48, 93]. A generalization to the general k-plane transform has been given in [42].

4 Inversion and Ill-posedness

Calderón’s operator Λ is defined in terms of Fourier transforms by

(Λϕ)∧(ξ) = |ξ|ϕ̂(ξ), ϕ ∈ C∞
0 (IRn).

It is extended by duality to the class of functions f for which (1+ |x|)−1−nf is integrable
[14]. Note that

Λ2 = −∆, ∆ = Laplacian. (9)

For n ≥ 2, Λ−1, the inverse of Λ, is given by convolution with the Riesz kernel R1:

Λ−1f = R1 ∗ f, R1(x) = (π|Sn−2|)−1|x|1−n. (10)

In dimension n = 1 we have Λf = H∂f , where ∂f denotes the derivative of f and H
denotes the Hilbert transform

Hf(s) =
1

π

∫

IR

f(t)

s− t
dt (11)

where the integral is understood as a principal value.
We can formally derive an inversion formula for Pf by combining Theorem 2.2 and

the inverse Fourier transform. For simplicity we first consider dimension n = 2. Using the
Fourier inversion formula, Theorem 2.2, the relation (4) and changing to polar coordinates
we obtain

f(x) = (2π)−1
∫

IR2
f̂(ξ)ei<x,ξ>dξ

= (2π)−1
∫ 2π

0

∫ ∞

0
σf̂(σθ⊥)ei<x,σθ⊥>dσdϕ

= (4π)−1
∫ 2π

0

∫ ∞

−∞
|σ|f̂(σθ⊥)ei<x,σθ⊥>dσdϕ

=
1

2
(2π)−3/2

∫ 2π

0

∫ ∞

−∞
|σ|P̂θf(σ)eiσ<x,θ⊥>dσdϕ (12)
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=
1

2
(2π)−3/2

∫ 2π

0

∫

IR
(ΛPθf)∧(σ)eiσ<x,θ⊥>dσdϕ

= (4π)−1
∫ 2π

0
ΛPθf(< x, θ⊥ >)dϕ (13)

=
1

4π2

∫ 2π

0

∫

IR

∂Pθf(s)

< x, θ⊥ > −s dsdϕ (14)

In the last step we made use of the relation Λg = H∂g mentioned above.
For general dimension n one uses the change of variables

∫

IRn
g(ξ)dξ = |Sn−2|−1

∫

Sn−1

∫

Θ⊥

|η|g(η)dηdθ (15)

([89, Formula (9.2’)] ), and obtains

f(x) =
(
2π|Sn−2|

)−1
∫

Sn−1

ΛPθf(EΘ⊥x)dθ (16)

where EΘ⊥x denotes the orthogonal projection of x onto the subspace Θ⊥.
If we use the backprojection operator P ♯ defined by

P ♯g(x) =
∫

Sn−1

g(θ, EΘ⊥x)dθ, (17)

then (16) assumes the compact form

f(x) =
(
2π|Sn−2|

)−1
P ♯ΛPf(x). (18)

An inversion formula for the Radon transform can be derived in a similar way. For other
inversion formulas see [62, §II.2].

From equation (14) we see that computation of f(x) requires integrals over lines
far from x, because the Hilbert transform kernel has unbounded support. Note that
Pθf(< x, θ⊥ >) is the integral over the line with direction θ which passes through x.
Hence the inversion formula is not “local”. A local inversion formula would utilize only
values Pθf(s) with s close to < x, θ⊥ >. We will discuss what can be done with local
formulas in a later section.

Equation (12) gives us valuable information about the stability of the inversion. The
factor |σ| in the inverse Fourier integral will become arbitrarily large. This means that
the inversion is unstable. In practice measurement and discretization errors will prevent
accurate computation of P̂θf(σ) for large |σ|, and these errors are then amplified by
multiplication with |σ|. In other words, due to the integration in P , Pf is smoother than
f itself. The inversion has to reverse this smoothing and this makes it unstable. The
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extent of this instability will depend on the amount of smoothing inherent in P . This
can be quantified using Sobolev norms. For functions f with compact support we define

‖ f ‖Hα
0

=
(∫

IRn
(1 + |ξ|2)α |f̂(ξ)|2 dξ

)1/2

‖ Pf ‖α =
(∫

Sn−1

dθ
∫

Θ⊥

dη (1 + |η|2)α |P̂θf(η)|2
)1/2

.

Then we have

Theorem 4.1 [62, p. 42] If f ∈ C∞
0 is supported in the unit ball, then there are constants

c(α, n), C(α, n) such that

c(α, n) ‖ f ‖Hα
0

≤ ‖ Pf ‖α+ 1

2
≤ C(α, n) ‖ f ‖Hα

0
.

Hence the operator P smoothes by an order 1/2 measured in a Sobolev scale. In order
to see what the instability might mean in practice we assume that we have measured data
gǫ such that ‖ Pf − gǫ ‖L2

≤ ǫ, and a-priori information about f of the form ‖ f ‖Hβ
0

≤ ρ.

For β > 0 this excludes highly oscillatory functions, so this condition corresponds to
condition a) in Remark 3.4. Let f1, f2 be two candidate functions for reconstruction, i.e.,
f1, f2 both satisfy the a-priori condition and ‖ Pfi−gǫ ‖L2

≤ ǫ. We are interested to know
by how much f1 and f2 can differ. Since ‖ P (f1 − f2) ‖L2

≤ 2ǫ and ‖ f1 − f2 ‖Hβ
0

≤ 2ρ, we

have the worst case error

‖ f1 − f2 ‖L2 ≤ d(ǫ, ρ, β), with

d(ǫ, ρ, β) = sup
{
‖ f ‖L2

: ‖ Pf ‖L2
≤ 2ǫ, ‖ f ‖Hβ

0

≤ 2ρ
}
.

A natural choice for β is such that functions which are smooth except for jump
discontinuities along smooth boundaries are in Hβ

0 . This leads to the condition β < 1/2
[62, p. 92]. For the limiting case β = 1/2 the worst case error satisfies ([62, p.94])

d(ǫ, ρ,
1

2
) ≤ c(n)

√
ǫρ.

This means that the reconstruction problem is moderately ill-posed. We expect a gain
of 2k digits in data accuracy to yield k additional accurate digits in the reconstruction.
In other words, the instability in the reconstruction causes a loss of half the number of
accurate digits.

Another approach to quantify the degree of ill-posedness is provided by the singular
value decomposition of P [60]. Here one looks at how fast the singular values converge
to zero. Again, the assessment of moderate ill-posedness is confirmed.
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In order to use the inversion formula in practice we have to stabilize it. This involves
a well-known trade-off between stability and accuracy of the reconstruction. Here we
give up the goal of recovering the function f itself, and aim instead at reconstructing
an approximation e ∗ f , where e is an approximate delta function. As the computation
below shows, stabilization requires the Fourier transform ê(ξ) to decay sufficiently fast for
large |ξ|. The price to pay for the stabilization is limited resolution, so e must be chosen
carefully, depending on the amount and accuracy of the available measurements. Note
also that a proper choice of e helps to satisfy the condition c) for avoiding the influence
of nonuniqueness given in Remark 3.4.

As we will see later, it is sometimes advantageous to reconstruct Λmf instead of f ,
with m > −1 an integer. The case m = 0 of course yields an approximation to the
function f itself. Using the convolution theorem (1) for the Fourier transform we obtain
in a similar way as above

e ∗ Λmf(x)

=
∫

IRn
ê(ξ)|ξ|mf̂(ξ)ei<x,ξ>dξ

= |Sn−2|−1
∫

Sn−1

∫

Θ⊥

|η|m+1ê(η)f̂(η)ei<x,η>dηdθ

= (2π)−1|Sn−2|−1
∫

Sn−1

∫

Θ⊥

|η|m+1(Pθe)
∧(η)(Pθf)∧(η)ei<E

Θ⊥x,η>dηdθ

=
∫

Sn−1

(k ∗ Pθf)(EΘ⊥x)dθ, m ≥ −1, (19)

with the convolution kernel

k(y) = (2π|Sn−2|)−1Λm+1Pθe(y), y ∈ Θ⊥. (20)

If e is a radial function, then Pθe and the convolution kernel k are independent of θ.
A corresponding formula for the Radon transform can be derived by using polar

coordinates in IRn instead of (15). For rigorous proofs and general conditions on e and
f for which (19) is valid see [48], [90] and [59]. Of greatest interest are the case m = 0,
which gives the formulas for reconstructing the function f itself, and the cases m = ±1.
Letting e→ δ yields the exact inversion formula

Λmf(x) = (2π|Sn−2|)−1
∫

Sn−1

Λm+1Pθf(EΘ⊥x)dθ. (21)

A desirable property would be the possibility of local reconstruction, i.e., reconstruc-
tion at a point should require only lines passing through a small neighborhood of that
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point. Since the parameters θ and y ∈ Θ⊥ of a line passing through a point x must
satisfy the equation EΘ⊥x = y, reconstruction according to (19) will be local if the
kernel k is supported in a small neighborhood of the origin. However, for m even and∫
IRn e(x)dx 6= 0, k̂ is not analytic, so k cannot have compact support. Hence ordinary

tomography is global, not local. On the other hand, it follows from (20) and (9) that
k has compact support if m ≥ −1 is odd and e has compact support. This explains
the interest in the cases m = ±1. Computing Λ−1f(x) consists of taking the average
of all integrals over lines passing through x. This was done in early imaging techniques
preceding CT. However, the result is a very blurry image of f which by itself is of limited
usefulness; see the bottom left picture in Fig. 1. Current local tomography, reviewed
below, avoids this disadvantage by computing a linear combination of Λf and Λ−1f .

If f is supported in the unit ball, and the source points a lie on a sphere A with center
in the origin and radius R > 1, then the approximate inversion formula for the divergent
beam x-ray transform reads [90]

e ∗ Λmf(x) = R−1
∫

A

∫

Sn−1

Daf(θ) | < a, θ > | k(EΘ⊥(x− a)) dθda, (22)

with m ≥ −1 and k as in (20).
We conclude this section with a few remarks on reconstruction algorithms. The filtered

backprojection algorithm is the most popular reconstruction method. It is a computer
implementation of the approximate reconstruction formulas (19) and (22) for parallel-
beam and fan-beam sampling, respectively. We will discuss it in detail in a later section.
For references on the filtered backprojection algorithm see, e.g., [49].

The Fourier reconstruction algorithm uses the Fast Fourier transform to compute

P̂θj
f(η) =

√
2πf̂(η), η ∈ Θ⊥

j , j = 0, ..., P − 1.

In 2D this gives values of f̂ on a polar grid. These are now interpolated onto a rectan-
gular grid and a 2D inverse FFT is used to obtain f . This is much faster than filtered
backprojection, but the interpolation is problematic, i.e., prone to cause artifacts in the
reconstructed image. For further discussion and references on methods to overcome these
drawbacks see [66].

Algebraic methods do not discretize an inversion formula or use the projection slice
theorem, but start from an ansatz f(x) =

∑N
i=1 ci ψi(x) and then solve the linear system

N∑

i=1

ci Pθj
ψi(yk) = gjk, j, k = 1, 2, . . .

for the unknown coefficients ci. Here gjk = Pθj
f(yk) are the measured data. Often the

basis functions are the characteristic functions of pixels or voxels, but this is of course
not the only choice. Indeed, the advantage of such methods lies in their flexibility, e.g., in
incorporating irregular sampling geometries or available a-priori information on f . The
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resulting linear systems are large and sparse and require special (usually iterative) algo-
rithms for sufficiently fast solution. Stabilization can be achieved by limiting resolution
or by stopping the iteration before convergence is achieved (see, e.g., Fig. V.12 in [62]).

Numerous other reconstruction algorithms have been developed. For a survey see,
e.g., [62, Ch. V] and [65, 66].

5 Incomplete data problems and detection of singu-

larities

Incomplete data problems arise when measurements of Pθf(y) are unavailable for a cer-
tain range of arguments (θ, y). In dimension 2 the most common examples are the limited
angle problem, the exterior problem, and the interior problem. Assume that f has com-
pact support contained in the unit disk. In the limited angle problem, measurements
Pf(ϕ, s) are available only in an angular range ϕ ∈ [ϕ1, ϕ2] with |ϕ1 − ϕ2| < π. Note
that because of Pf(ϕ, s) = Pf(ϕ+π,−s), an angular range of π is sufficient for complete
data. It follows from Theorem 3.1 that f is uniquely determined by the limited angle data.
The problem is lack of stability. We see from Theorem 2.2 that the data determine the
Fourier transform f̂(ξ) in the cone {ξ = σ(cosϕ, sinϕ) : ϕ ∈ [ϕ1+π/2, ϕ2+π/2], σ ∈ IR}.
Reconstructing f is therefore equivalent to accomplishing an analytic continuation of f̂ ,
and analytic continuation is severely ill-posed. A more detailed picture emerges from the
singular value decomposition of the limited angle transform [54]. The severe ill-posedness
is reflected in exponentially decaying singular values. However, the spectrum splits into
two parts, one with singular values close to the singular values in the full-range case, and
the other with singular values close to 0. The components of f corresponding to singular
functions in the first part are therefore recoverable. The characterization of the unre-
coverable singular functions in [54] allows to predict and recognize typical reconstruction
artifacts.

In the exterior problem only line integrals Pθf(s) with |s| > a > 0 are available.
Uniqueness holds in the measured region but stability is missing. The singular value
decomposition was given in [70, 73], and used to develop a reconstruction algorithm
[74, 75].

Finally, the interior problem is characterized by measurements in the range |s| ≤ a <
1. Uniqueness does not hold, not even inside the disk |x| < a where for each point x all
integrals over lines passing through a small neighborhood of x are measured. A singular
value decomposition has been derived in [61]. Promising new methods for the interior
problem also include the wavelet-based approaches of [2, 80] and pseudolocal tomography
[41]. The wavelet localization method presented in [68] requires additional integrals over
a small number of lines not intersecting the disk |x| < a.

None of these problems provides both uniqueness and stability. It is now natural to
ask that if the function f itself cannot be recovered stably, what features of f can? One
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answer to this question is provided by the singular value decompositions, which tell us
that components of f corresponding to singular functions with large singular values are
recoverable. Another approach is to ask which singularities of f can be stably recovered.
In many applications f can be considered to be approximately piecewise constant with
jump discontinuities along the boundaries between different features. Identifying the
singularities of f thus allows to determine the shape of such features. A general answer
has been given in [75] based on the correspondence between the wavefront sets of f and
Pf . In the special case of f being smooth except for jump discontinuities along a smooth
curve Γ, a singularity at a point x is detected stably if and only if integrals over lines
in a neighborhood of the tangent line to Γ at x are available. Applying this rule to the
incomplete data problems mentioned above yields that in the limited angle and exterior
problems not all jumps can be stably detected, since for any point x there are lines
passing through x for which the data are not available. On the other hand, in case of the
interior problem one can stably determine all singularities inside the disk |x| < a. It is
thus interesting to note that the interior problem is the worst behaved of the three with
respect to uniqueness, but is the best behaved with respect to detecting singularities.

For general reconstruction methods where the reconstruction preserves the stable
singularities see [45]. Several methods have been suggested to detect singularities directly
from the line integrals without first performing a reconstruction [39, 75, 79].

A problem of great practical interest which still poses many open problems is three-
dimensional cone-beam reconstruction with sources on a curve. See, e.g., [97] for an
inversion formula, [19] for a general stability result, [75] for conditions to detect singular-
ities, and [8, 18, 23, 57, 64] for reconstruction algorithms and other developments. The
approximate inversion formula (19) is very useful in two dimensions, but not so in three
dimensions. It needs integrals over all lines, but in three dimensions the lines form a four
parameter family, so (19) requires far more data than should be needed to determine
a function of three variables. In practical 3D tomography an x-ray source moves on a
curve, so only integrals over lines intersecting the curve are measured. This situation is
modelled by the divergent beam x-ray transform Daf(θ), where a runs through the curve
Γ. The conditions on the source curve Γ for stable inversion are restrictive, so that in
most practical situations one has an incomplete data problem. Based on the exposition
in [75], we now state the precise definitions for the microlocal concepts mentioned above
and apply them to this situation. The reader interested in a deeper treatment may wish
to first read [75] and [27], and then proceed to articles such as [1, 24, 25, 26, 72].

The following concept of a wavefront set uses the fact that the Fourier transform
of a C∞

0 function decays rapidly. A local version of this fact can be obtained by first
multiplying f with a C∞

0 cut-off function Φ with small support, and seeing if the Fourier
transform of the product Φf decays rapidly. The wavefront set gives even more specific,
so-called microlocal information, inasmuch as it identifies the directions in which the
Fourier transform of Φf does not decrease rapidly.

Definition 5.1 Let f be a distribution and let x0, ξ0 ∈ IRn, ξ0 6= 0. Then (x0, ξ0) is in
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the wavefront set of f if and only if for each cut-off function Φ in C∞
0 with Φ(x0) 6= 0,

the Fourier transform of Φf does not decrease rapidly in any conic neighborhood of the
ray {tξ0, t > 0}.

Loosely speaking, we say that a singularity of f can be stably detected from available
x-ray data, if there exists a corresponding singularity of comparable strength in the data.
The strength of a singularity can be quantified microlocally using Sobolev space concepts:

Definition 5.2 A distribution f is in the Sobolev space Hs microlocally near (x0, ξ0)
if and only if there is a cut-off function Φ ∈ C∞

0 (IRn) with Φ(x0) 6= 0 and function
u(ξ) homogeneous of degree zero and smooth on IRn\{0} and with u(ξ0) 6= 0 such that

u(ξ) ̂(Φf)(ξ) ∈ L2(IRn, (1 + |ξ|2)s).

First, one localizes near x0 by multiplying f by Φ, then one microlocalizes near ξ0 by
forming uΦ̂f . and sees how rapidly Φ̂f decays at infinity.

For 3D tomography with sources on a curve we have the following result:

Theorem 5.3 (cf. [75, Theorem 4.1], and [1, 24]) Let Γ be a smooth curve in IR3 and
f a distribution whose support is compact and disjoint from Γ. Then any wavefront set
of f at (x0, ξ0) is stably detected from divergent beam x-ray data Df with sources on Γ if
and only if

the plane P through x0 and orthogonal to ξ0, intersects Γ transversally.
If data are taken over an open set of rays with sources on Γ, then a ray in P from

Γ to x0 must be in the data set for stable detection to apply. In these cases f is in Hs

microlocally near (x0, ξ0) if and only if the corresponding singularity of Df is in Hs+1/2.

We see that the corresponding singularities of Df are weaker by 1/2 Sobolev order,
but this is still strong enough to allow stable detection in practice.

Theorem 5.3 allows to analyze singularity detection in 3D tomography in the same
way as described above in the two-dimensional case.

It is now interesting to ask if the available numerical algorithms can actually re-
construct all the stable singularities. The results for a general class of restricted x-ray
transforms obtained in [24, 25, 26] show that microlocal analysis is also a powerful tool
to answer such a question. For an introduction to these results see [27]. Explicit cal-
culations analysing an algorithm for contour reconstruction proposed in [57] and some
closely related methods have recently been given in [38, 47].

The algorithm of [57] aims to reconstruct the function

fR = −∆D∗Df, (23)

with

D∗g(x) =
∫

Γ
‖ x− a ‖−1 g

(
a,

x− a

‖ x− a ‖

)
da.
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The results in [24, 38, 47] show that the wavefront set of fR consists of two parts. The
first part contains those wavefronts (x, ξ) of f for which the plane through x and normal
to ξ intersects Γ. The second part may introduce new singularities, namely on the line
from a source point a ∈ Γ to x, the location of the original singularity in f . This will
happen if the plane through x and normal to ξ contains a and the tangent vector to Γ
at a is orthogonal to ξ, i.e., the plane touches Γ but does not intersect Γ transversally.
In addition, the acceleration vector of the curve at a should not be orthogonal to ξ.
The Sobolev strength of these additional singularities is the same as the reconstructed
part of the original wavefront set [25, 26, 38], and they appear as artifacts in numerical
simulations [17, 35, 38].

An advantage of the formula (23) is that reconstruction of fR is local, i.e., recon-
struction at a point x requires only integrals over lines close to x. In [57] it is shown
that fR approximates Λf in certain cases. Another, and apparently the historically first
method for 3D local tomography is an adaptation of the algorithm by Feldkamp et al.
[18] developed by P.J. Thomas at the Mayo Clinic. While the details of this algorithm
have not been published, it has been used in various papers, e.g., [94, 14].
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6 Local tomography

Often only part of an object needs to be imaged. In this case it would be preferable if only
integrals over lines which intersect the region of interest (ROI) are needed. We know from
the discussion of the interior problem above that we don’t have uniqueness. However,
it turns out that the null functions are nearly constant inside the ROI, and we know
already that all singularities inside the ROI are stably determined. Several approaches
have been developed in the literature. For example, the wavelet based method of [68]
exploits the fact that the error contains mostly low frequencies, and that these can be
recovered by supplementing the data with relatively few measurements outside the ROI.
The method of [80] which will be discussed below, extrapolates the missing data and
aims at reconstruction of f up to a constant error. Another method using extrapolation
of the missing data is described in [62, §VI.4].

Lambda tomography, the main topic of this section, was introduced independently
in [98] and [90]. It does not attempt to reconstruct the function f itself but instead
produces the related function Lf = Λf +µΛ−1f . This has the advantage that the recon-
struction is strictly local in the sense that computation of Lf(x) requires only integrals
over lines passing arbitrarily close to x. Local tomography has found applications in med-
ical imaging [94], nondestructive testing [85, 99], and microtomography [15, 16, 83, 86].
Extensions to more general settings have been presented in [37, 45]. Other approaches
include [2] and [41].

Intelligent use of Lambda tomography requires knowledge of what kind of useful
information about f is retained in Lf . Let us consider an example. The upper left of
Fig. 1 shows an ordinary, global reconstruction of the density function f of a calibration
object used by the Siemens company. The data come from an old generation Siemens
hospital scanner. Units are such that the radius of the global reconstruction circle is
one. The figure displays the reconstruction inside the rectangle [−.5, .5]2. The scanning
geometry is a fan-beam geometry (53) with source radius R = 2.868, p = 720 source
positions, and 2q = 512 rays per source. The upper right of Fig. 1 shows a reconstruction
of Λf . Reconstructions of Λ−1f and Lf = Λf + 46Λ−1f are shown in the lower left and
lower right, respectively. The similarity between the images of f and Λf is at first
glance surprising. We expect that a good local reconstruction method should detect the
singularities of f , since these are stably determined by the data. Indeed, since Λ is an
invertible elliptic pseudo-differential operator, f and Λf have precisely the same singular
set. However, we see that Λf is cupped where f is constant, and that the singularities
are amplified in Λf . The image of Λ−1f by itself seems less useful, but it provides a
countercup for the cup in Λf . Thus, the image of Lf shows less cupping and looks even
more similar to f than the image of Λf . For example, the image of Lf indicates that
the density just inside the boundary of the object is larger than the density outside the
object, while this can not be clearly seen from the image of Λf . To achieve this effect, a
good selection of µ is necessary. A prescription for selecting µ can be found in [15].
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A more detailed understanding of images of Λf or Lf is obtained from studying
quantitative relations between Λf , Λ−1f and f [14, 15]. Some of the results for Λf are
as follows. For corresponding results on Λ−1 see [14].

Theorem 6.1 ([14]) Let X and Y be measurable sets, n ≥ 2, and let (1 + |x|)−1−nf be
integrable.

(a) If fr(x) = f(x/r), then Λfr(x) = r−1Λf(x/r).
(b) ΛχX(x) > 0 on X◦, and < 0 on Xc◦; ΛχXc = −ΛχX .
(c) ΛχX is subharmonic (Laplacian ≥ 0) on X◦, and superharmonic on Xc◦. This

implies that ΛχX cannot have a local maximum in X◦, nor a local minimum in Xc◦.
(d) If x is outside the support of f , then

Λf(x) =
1 − n

π|Sn−2|
∫

IRn
|x− y|−1−nf(y)dy.

(e) Near ∂X, |ΛχX(y)| ∼ 1
d(y,∂X)

, where d(x, ∂X) denotes the distance of x to ∂X.

Remark 6.2 The results for ΛχX are of practical interest, since in many applications
the function f can be modeled as a linear combination of characteristic functions.

• As a consequence of (a), small features are amplified in images of Λf . This is
beneficial for the detection of small, low contrast details. For example, in Fig. 1
the small holes in the rectangular pieces are more clearly visible in the image of Λf
than in the image of f .

• Part (b) indicates that the jumps of Λf at discontinuities of f have the same direc-
tion as those of f .

• Part (c) explains why there are no oscillations which could be mistaken for actual
details in images of Λf .

• Part (d) shows that if f has compact support, then Λf cannot. This means that
there are global effects in images of Λf in the sense that the value of Λf(x0) depends
on the values of f everywhere. However, Part d) implies that Λf(x) will decay at
least as O(|x|−1−n) for |x| → ∞. More refined estimates are derived in [15].

• Part (e) shows that a finite jump in f causes an infinite jump in Λf . In a neigh-
borhood of ∂X, Λf is not a function but a principal value distribution [14].

While Lf retains the signs of jumps in density, it does not give direct information
about the size of these jumps. However, such information about density differences
may be extracted in certain cases. In the following we will describe several methods. We
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assume that f is a linear combination of a smooth function and of characteristic functions
of sets:

f = f0 +
∑

ciχXi
, f0 ∈ C∞

0 , |∂Xi| = 0, Xi = X◦
i , X◦

i ∩X◦
j = ∅ if i 6= j. (24)

We are interested in estimating cj −ci when Xj, Xi have a common nontrivial bound-
ary Γ,

Γ = ∂Xi ∩ ∂Xj ∩W 6= ∅, W = (Xi ∪Xj)
◦. (25)

We first discuss the method developed in [15]. It is based on Theorem 6.3 below. The
theorem expresses the fact that for x sufficiently close to Γ,

cj − ci =
Λf(x)

ΛχXj
(x)

+ O(d), and

|cj − ci| =
|∇Λf(x)|
|∇ΛχXj

(x)| + O(d2),

where d is the distance from x to Γ.
Recall that a set Y has curvature ≤ 1/r along a subset Y0 of ∂Y if for each point

ȳ ∈ Y0 there are open balls B ⊂ Y and B′ ⊂ Y c of radius r with ȳ ∈ B̄ ∩ B′. The
distance of a point x to a set Y is denoted by d(x, Y ).

Theorem 6.3 ([15]) Let f be as in (24). Fix i, j, let W = (Xi ∪Xj)
◦ and assume that

Γ = ∂Xi ∩ ∂Xj ∩W 6= ∅.

Let Xj have curvature ≤ 1/r, r > 0, along a closed subset Γ0 of Γ. Let x ∈W\Γ be such
that d(x, ∂Xj) = d(x,Γ0) = d. Then

∣∣∣∣∣
Λf(x)

ΛχXj
(x)

− (cj − ci)

∣∣∣∣∣

≤ F1(d/r)

(
max |Λf0| + C1

(maxk 6=j |ck|)
d(x, ∂W )

)
d (26)

∣∣∣∣∣
|∇Λf(x)|
|∇ΛχXj

(x)| − |cj − ci|
∣∣∣∣∣

≤ F2(d/r)

(
max |∇Λf0| + C2

(maxk 6=j |ck|)
d(x, ∂W )2

)
d2 (27)
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The constants C1 and C2 and the functions F1, F2 can be given explicitly. E.g., for n = 2,
C1 = 2, and C2 = 3. Furthermore,

lim
t→0+

F1(t) = lim
t→0+

F2(t) = π.

The error terms on the right-hand sides of (26) and (27) indicate that in general the
estimate (27) should be more accurate than (26) when d is small. The terms involving
d(x, ∂W ) come from the influence of other boundaries than Γ.

Numerical implementation of (26) or (27) requires computation of reconstructions of
Λf and ΛχXj

inside a region of interest R. In the following let Λ̄f and Λ̄χXj
denote these

reconstructions, rather than the functions Λf and ΛχXj
themselves. It is also assumed

that f has the form (24) with sets Xi such that Xi ⊂ R or Xi ∩ R = ∅. This entails no
loss of generality since any set Xi violating this condition can be replaced by the two sets
Xi ∩ R and Xi ∩ Rc. Λ̄χXj

is computed using simulated x-ray data, after ∂Xj has been
found from Λ̄f . In principle, either (26) or (27) can be used, but as discussed above the
method based on (27) is likely to be more accurate. This gives only |cj − ci|, but since
the sign of cj − ci is preserved in Λf , this is all that is needed.

The method consists of the following steps:

1. Compute Λ̄f from local data inside a region of interest R.

2. Determine Xj by finding ∂Xj from Λ̄f .

3. Compute Λ̄χXj
inside the region of interest from simulated x-ray data, using the

same sampling geometry as for the original data.

4. If x ∈ ∂Xj, take the ratio |∇Λ̄f(x)|/|∇Λ̄χXj
(x)| as an estimate for the magnitude

of the density jump. It is advisable to use suitable averages of the gradients over
points near the boundary of Xj instead of the gradient at a single point x. This
reduces effects due to measurement noise.

Following [12], we demonstrate the method with x-ray data from a medical scanner.
Additional applications of this method are reported in [15, 12, 83].

The top left picture of Fig. 2 shows again the global reconstruction of the calibration
object. The region of interest R is indicated by the box. The picture in the upper
right shows the local reconstruction Λ̄f inside the region of interest. The goal is to
determine the density difference between the small hole and its surroundings. Let Xj be
the characteristic function of the hole.

Finding ∂Xj involves edge detection. This is currently done by the user of the method,
who specifies the vertices of a polygon approximating ∂Xj. MATLAB’s image processing
toolbox allows to do this selection conveniently. Our software gives the user the option
to use either the reconstruction Λ̄f itself, an image of |∇Λ̄f |, or the result of a standard
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automatic edge detector, for specifying the polygon. Which image is most convenient dif-
fers from application to application. In [15], where the method was applied to projection
data from a human pelvis, the gradient image was most convenient. Here the result of
the automatic edge detector (MATLAB’s edge command) applied to the reconstruction
Λ̄f is satisfactory, as can be seen from the lower right of Fig. 2.

The top left of Fig. 3 shows an image of |∇Λ̄f | inside the region of interest. The
box indicates the subregion R′ containing the part of the boundary which will be used
to estimate the density jump. Here we average over the whole boundary of the small
hole. MATLAB’s ’imcrop’ command allows convenient selection of R′ by the user. The
corresponding image for |∇Λ̄χXj

| is shown in the top right part of the figure. This re-
construction was computed from simulated x-ray data using the same scanning geometry
as in the reconstruction from real data. Having no specific information on the detectors,
the effect of the positive detector width was modeled by averaging line integrals over the
angular distance between two adjacent detectors.

The following averaging procedure was used to estimate the density difference. Let
M be the maximum of |∇Λ̄f | in R′. Take the average of |∇Λ̄f(x)| over all points x in R′

such that |∇Λ̄f(x)| > tM for some t ∈ (0, 1). The same averaging procedure is applied
to |∇Λ̄χXj

(x)|, with M replaced by the maximum of |∇Λ̄χXj
| in R′. The ratio of the

two averages is the estimate d(t) for the density difference. This estimate depends on the
choice of t. If t is too close to 1, the average is taken over very few points, while a small
t will include points too far from the boundary. So t should be chosen small enough to
have sufficiently many points for averaging, but large enough so that only points close
to the boundary contribute to the averages. The graph in the bottom left of Fig. 3
displays the estimated density differences d(t) for .5 ≤ t ≤ .96. The bottom right shows
the numbers N(t) of points contributing to the averages of |∇Λ̄f | (solid line), and of
|∇Λ̄χXj

| (dotted line). If t ≥ .9 very few points contribute to the average of |∇Λ̄f(x)|.
The corresponding estimates are therefore likely to be unreliable. On the other hand, for
t < .6 points away from the boundary begin to contribute to the average. The binary
images in Fig. 4 show the location of the points considered for the averages in the case
of t = .6, and t = .9, respectively. Hence reasonable estimates for the density difference
are the values of d(t) for .6 ≤ t ≤ .9. These values lie between 1782 and 1898. The global
reconstruction indicates that the true density difference is approximately 1854. Hence
all of the acceptable estimates lie between 96 and 102 per cent of the true value. Since
the x-ray data have been scaled by an unknown factor, the reconstructed values do not
correspond to Hounsfield numbers.

When implementing the method described above a few parameters have to be chosen
judiciously and a few comments on how to do this are in order. If the filtered backpro-
jection algorithm is used the reconstruction Λ̄f will, apart from discretization errors, be
equal to e ∗Λf . The point-spread function e is assumed to be of the form e = er defined
in (47) and (50) below, usually with α = 11.4174; cf. the appendix of [14]. Choosing
the point spread radius r entails the usual tradeoff between stability (larger r) and high
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resolution (smaller r) and will depend on the number of measured line integrals as well
as on the accuracy of these measurements. In the example above r = .0225, which means
that the minimum of the convolution kernel falls on the second detector; cf. [14, §9].

The other important parameter is the spacing h of the grid of points where |∇Λ̄f | ≃
|∇(e ∗ Λf)| is computed. |∇(e ∗ Λf)| varies rapidly near a boundary and h has to be
sufficiently small so that the maximum of the gradient at the gridpoints is close to the
overall maximum. The special case with f the characteristic function of a halfspace seems
to give sufficient guidance for practical purposes. If f is the characteristic function χH

of a halfspace H then both Λf and e ∗ Λf can be computed as follows. For x 6∈ ∂H one
has ([14, Theorem 4.5])

ΛχH(x) = (πd̃(x))−1,

where d̃(x) is the signed distance of x from ∂H, i.e., d̃(x) = d(x, ∂H) for x ∈ H, and
d̃(x) = −d(x, ∂H) for x 6∈ H. Computing e ∗ΛχH involves the Radon transform (3) of e.
Since e is radial, Rθe does not depend on θ. Therefore the subscript θ will be suppressed
and Re(s) viewed as a function of the one variable s. It now follows that

e ∗ ΛχH(x) = HRe(d̃(x)), (28)

where H denotes the Hilbert transform as defined in (11). Observing that for functions
f of one variable Λf(t) = d

dt
Hf(t) gives

|∇(e ∗ ΛχH(x))| = |ΛRe(d̃(x))|. (29)

Inspection of the graph of ΛRe for e as in (50) and α = 11.4174 now yields that the
width of the interval where |ΛRe(t)| > 0.98(maxs∈IR |ΛRe(s)|) is approximately r/20.
Hence a rule of thumb for choosing h would be to set h = r/20.

The method described above can be simplified by making a priori assumptions about
the unknown boundary ∂Xj, so that the polygonal approximations and the reconstruction
from simulated data are avoided. For example, Xj could be assumed to be a halfspace
H. Replacing Λf and ΛχXj

in (26) and (27) by e ∗ Λf and e ∗ ΛχH , and using (28) and
(29) gives the approximate formulas

cj − ci ≃
e ∗ Λf(x)

HRe(d̃(x))
, (30)

|cj − ci| ≃
|∇(e ∗ Λf(x))|
|ΛRe(d̃(x))|

. (31)

These two formulas are the basis of two of the algorithms proposed in [40, 78] for dimen-
sion n = 2, cf. formulas (2.17) and (2.21) in [40]. The derivation in [40, 78] is different
and employs an asymptotic expansion for Λf , where f is smooth except for jumps across
smooth boundaries.
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Another method to compute jumps of a function from essentially local data is pseu-
dolocal tomography [41, 78]. We follow the presentation given in [4] which allows to
understand the numerical implementation of this method in the framework of (30) and
(31).

The starting point for pseudolocal tomography is the two-dimensional inversion for-
mula (14) which we repeat here:

f(x) =
1

4π

∫

S1

H∂Pθf(< x, θ⊥ >)dθ

=
1

4π2

∫ 2π

0

∫

IR

d
ds
Pθf(s)

< x, θ⊥ > −s ds dϕ.

Now truncate the Hilbert transform integral and define

fd(x) =
1

4π2

∫ 2π

0

∫ <x,θ⊥>+d

<x,θ⊥>−d

d
ds
Pθf(s)

< x, θ⊥ > −s ds dϕ. (32)

It was shown in [41] that f−fd is continuous, hence fd has the same jumps as f . Recalling
that Pθf(< x, θ⊥ >) is the integral over the line in direction θ which passes through x,
we see that computation of fd(x) requires only integrals over lines with distance at most
d from x (“pseudo-local” reconstruction.)

In practice one has to use an approximate inversion formula and computes

fd,r(x) = er ∗ fd(x) =
∫ 2π

0

∫

IR
k̃d,r(< x, θ⊥ > −s)Pθf(s) ds dϕ

k̃d,r(t) =
1

4π2

∫ t+d

t−d

d
ds
Pθer(s)

t− s
ds (33)

(34)

where er is a radial function satisfying

er(x) = r−2e1(x/r), e1(x) = 0 for |x| > 1,
∫

IR2
e1 dx = 1.

Note that k̃d,r(t) = 0 for |t| > d+r, i.e., computation of fd,r(x) requires integrals over
lines with distance at most d+r from x. Furthermore, limd→∞ k̃d,r(t) = (4π)−1H∂Pθer(t).
Hence (19) gives that limd→∞ fd,r(x) = er ∗ f(x). Indeed, the convolution kernel kd,r can
be obtained from the kernel k in (20) by letting m = 0 and truncating the Hilbert
transform integral. The relation fd,r = er ∗ fd was shown in [41].

It turns out that for small d (i.e., local data), fd is significantly different from zero
only in a narrow region near a boundary (cf. [41, Fig. 3]), and that the convolution with
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the point spread function er alters these values so much that the jumps cannot just be
simply read off the reconstructed image fd,r. We need an algorithm to obtain information
about the jumps of f . The methods developed by Katsevich and Ramm [41, 78] can be
understood in the framework developed for Lambda tomography. According to (30) and
(31) we have for x close to Γ

cj − ci ≃ E ∗ Λf(x)

HRE(d̃(x))
(35)

|cj − ci| ≃ |∇E ∗ Λf(x)|
|ΛRE(d̃(x))|

(36)

The task now is to find Ed,r such that Ed,r ∗ Λf = fd,r = er ∗ fd.

Proposition 6.4 ([78, 4]) Define Ed,r by

PθEd,r = (Pθer) ∗Md

with

Md(s) = − 1

π
ln(|s/d|)χ[−d,d](s).

Then
fd,r(x) = Ed,r ∗ Λf(x).

With this result (35) and (36) give

cj − ci ≃ fd,r(x)

HREd,r(d̃(x))
(37)

|cj − ci| ≃ |∇fd,r(x)|
|ΛREd,r(d̃(x))|

(38)

and we can apply the same algorithms for recovering the jumps as in Lambda tomography.
Some remarks are in order.

1. Note that because Ed,r is radial, HREd,r(0) = 0, so fd,r(x) ≃ 0 for x ∈ Γ. This
makes it difficult to use the relation (37) in practice, since finding d̃(x) is not easy,
cf. the algorithm given [41] and further discussed in [4]; see also [17]. However,
since |∇fd,r| is maximal for x ∈ Γ one can find the points x ∈ Γ by looking for the
local maxima of |∇fd,r| and then estimate the jump by

|cj − ci| ≃
|∇fd,r(x)|
|ΛREd,r(0)| , x ∈ Γ.

This approach has essentially been used in [78] for pseudolocal tomography and in
[40] for Lambda tomography.
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2. The property that fd has the same jumps as f is not used in the algorithm.

3. Ed,r(x) = 0 for |x| > d+ r. Hence our derivation of the algorithm is only justified
for d + r sufficiently small. In practice the method seems to work also for much
larger values of d+ r.

Another method which can be used for region of interest tomography is the wavelet-
based multiresolution local tomography of [80]. It illustrates the possible uses of wavelets
to ’localize’ the x-ray transform, or, more precisely, to separate the features which are well
determined by local data from those who are not. For readers unfamiliar with wavelets
we have collected some basic facts in Appendix A.

Consider a (two-dimensional) multiresolution analysis of nested subspaces Vj, j ∈ ZZ

of L2(IR
2). We assume a dilation matrix M = 2I (cf. Definition 8.2 below), where I is

the identity matrix, and use the notation

fj,k(x) = 2f(2jx− k), j ∈ ZZ, k ∈ Γ = ZZ
2, x ∈ IR2,

cf. (60). Let Φ be the scaling function and Ψµ, µ = 1, 2, 3 the associated wavelets. Since
the Φj+1,k, k ∈ ZZ

2 are a Riesz basis of the subspace Vj+1, a function f ∈ Vj+1 can be
written as

f(x) =
∑

k∈ZZ
2

Ãj+1,kΦj+1,k(x).

The so-called approximation coefficients Ãj,k are given by

Ãj,k =< f, Φ̃j,k >

where <,> denotes the inner product in L2 and Φ̃ is the biorthogonal scaling function
(cf. Definition 8.4). Alternatively we can use the relation Vj+1 = Vj +Wj and obtain the
expansion

f(x) =
∑

k∈ZZ
2

Ãj,kΦj,k(x) +
3∑

µ=1

∑

k∈ZZ
2

D̃µ
j,kΨ

µ
j,k(x).

We can interpret the first sum as an approximation to f in Vj ⊂ Vj+1, i.e., at a lower
resolution. The second sum supplies the missing detail information. Therefore the coef-
ficients

D̃µ
j,k =< f, Ψ̃µ

j,k >

are called detail coefficients. The Fast Wavelet Transform and its inverse (see Theorem
8.6) allow efficient computation of the Ãj,k and D̃µ

j,k, k ∈ ZZ
2 from the Ãj+1,k, k ∈ ZZ

2,
and vice versa.

We now observe that the approximation and detail coefficients can be computed
directly from the x-ray data. Let f∨(x) = f(−x). Then

Ãj,k =< f, Φ̃j,k >= (f ∗ (Φ̃j,0)
∨)(2−jk) (39)
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Similarly,

D̃µ
j,k =< f, ψ̃µ

j,k >= (f ∗ (Ψ̃µ
j,0)

∨)(2−jk) (40)

Hence we can use the approximate inversion formula (19) with e(x) = (φ̃j,0)
∨(x) and

reconstruction on the grid x = 2−jk, k ∈ ZZ
2, to obtain the approximation coefficients di-

rectly from the x-ray data. For the detail coefficients we let e = (Ψ̃µ
j,0)

∨. Alternatively one

could first compute the approximation coefficients Ãj+1,k by letting e(x) = (φ̃j+1,0)
∨(x)

and choosing the finer grid x = 2−j−1k, k ∈ ZZ
2, and then use the Fast Wavelet Transform

to obtain the approximation and detail coefficients at level j. Since the additional com-
putational burden of applying the Fast Wavelet Transform is negligible compared to the
effort required for the reconstruction from the x-ray data, this alternative method seems
preferable, since only one point-spread function and corresponding convolution kernel
need to be used. However, if not all coefficients on level j are needed, the first method
will be more efficient.

The next question is how this approach allows to ‘localize’ the x-ray transform, i.e.,
to separate features which are determined by local data from those which are not. It
was observed in [68] that the detail coefficients for sufficiently large j should be well
determined by local data, if the wavelets Ψµ have vanishing moments. Let us see why.

Definition 6.5 A function f of n variables has vanishing moments of order up to N, if
∫

IRn
xαf(x)dx = 0

for all multiindices α = (α1, . . . , αn) with |α| =
∑
αi ≤ N . Recall that the αi are non-

negative integers and that xα = xα1

1 x
α2

2 . . . xαn
n .

The nonlocality in the approximate inversion formula comes from the convolution kernel
k in (20) in case of m = 0. In two dimensions this is caused by the presence of the Hilbert
transform in the formula k = (4π)−1ΛPθe = (4π)−1H∂Pθe. The key observation now is
that the Hilbert transform of a function with vanishing moments decays fast.

Lemma 6.6 ([80, p. 1418]) Let f(t) ∈ L2(IR) vanish for |t| > A and have vanishing
moments of order up to N . Then, for |s| > A,

|Hf(s)| ≤ 1

π|s− A|N+2

∫ A

−A
|f(t)tN+1|dt

It is well known how to construct wavelets with vanishing moments, and it turns out

that the functions ∂Pθ(Ψ̃
µ
j,0)

∨ inherit the vanishing moments from the Ψ̃µ. Therefore

the convolution kernels k = (4π)−1H∂Pθ(Ψ̃
µ
j,0)

∨ will decay rapidly outside the support of

Pθ(Ψ̃
µ
j,0)

∨.

So we see that the detail coefficients for large j, when Ψ̃µ
j,0 has small support, are well

determined by local data. This is intuitively plausible since these coefficients contain
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high-frequency information, and we know already from Lambda tomography that high-
frequency information is well-determined. So the nonlocality shows its greatest impact
in the approximation coefficients. Since the scaling function satisfies

∫
Φ̃(x)dx = 1, its

zero order moment does not vanish. One could still choose Φ̃ so that the moments of
order 1 through N vanish. It is shown in [80, p. 1419] that in such a case the resulting
convolution kernel k satisfies

|k(s)| = O(s−2) +O(s−N−3).

It seems that this does not achieve much, since we cannot remove the leading O(s−2)
term. Nevertheless, the authors of [80] found that some scaling functions having van-
ishing moments lead to convolution kernels with sufficiently rapid decay for practical
purposes. These scaling functions where found from one-dimensional scaling functions
by the method of Definition 8.8. In their reconstructions the authors of [80] also extrap-
olated the missing data by constant values, thus reducing cupping artifacts. While it
is suggested in [80] to first compute the approximation and detail coefficients at level j
and then use an inverse fast wavelet transform to obtain the approximation coefficients
at level j + 1, numerical tests in [87] indicated that the simpler approach of directly
computing the approximation coefficients at level j + 1 yields equivalent results. We
observe that this can be done without using wavelet theory, namely just by specifying

the particular point spread function e = (Φ̃j+1,0)
∨ in (19).
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7 Sampling the 2D x-ray transform

We first consider the parallel-beam geometry in two dimensions. Our analysis of sampling
and resolution will use techniques from Fourier analysis. These require both the domain of
Pf as well as the sampling sets to have a group structure. In 2D we parameterize θ ∈ S1

by θ = (cosϕ, sinϕ), and let θ⊥ = (− sinϕ, cosϕ). We write Pf(ϕ, s) for Pf(θ, sθ⊥) and
consider Pf to be a function on the group T× IR, where T denotes the circle group. We
take the interval [0, 2π) with addition modulo 2π as a model for T.

Recall that for fixed ϕ, the values of Pf(ϕ, s) for different s correspond to integrals
over a collection of parallel lines. We first consider the case where Pf is measured at
points

(ϕj, sjl), j = 0, . . . , P − 1, l ∈ ZZ.

Since for each angle ϕj we measure integrals over a collection of parallel lines l(ϕj, sjl),
such an arrangement is called a parallel-beam geometry. We would like the set of points
(ϕj, sjl) to be a discrete subgroup of T × IR, and for practical reasons we require that
more than one measurement is taken for each occurring angle ϕj. We call a sampling set
which satisfies these requirements an admissible sampling lattice (ASL). There are several
ways to parameterize such lattices [11, 13, 16]. Here we use the parametrization given in
[16]. If L is an ASL, then there are d > 0 and integers N,P , such that 0 ≤ N < P and

L = L(d,N, P ) = {(ϕj, sjl) : ϕj = 2πj/P, sjl = d(l + jN/P ), j = 0, . . . , P − 1; l ∈ ZZ} .
(41)

We see that P is the number of angles (views). For each view angle ϕj the values sjl,
l ∈ ZZ, are equispaced with spacing d, hence d is the detector spacing. The parameter N
characterizes an angle dependent shift of the detector array. We also see that there are
P different lattices for given parameters d and P .

The most important lattices are the standard lattice

LS = {(ϕj, sl) : ϕj = 2πj/P, sl = d l, j = 0, . . . , P − 1, l ∈ ZZ}

which is obtained by letting N = 0, and the interlaced lattice

LI = {(ϕj, sjl) : ϕj = 2πj/P, sjl = d(l + j/2), j = 0, . . . , P − 1, l ∈ ZZ} .

where P is even and N = P/2. We see that for the standard lattice the detector positions
sl do not change with the angle of view. For the interlaced lattice the detector array is
shifted by one-half of a detector spacing when going from one angle of view to the next.

In practice one chooses P = 2p for both lattices, and for the interlaced lattice one
lets p be even. Then, because of the symmetry relation

Pf(ϕ, s) = Pf(ϕ+ π,−s), (42)
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only the angles ϕj ∈ [0, π) need to be measured. It can be shown that among all
admissible lattices the standard and interlaced lattices are the only ones which fully
exploit this symmetry [16].

We now describe the implementation of the filtered backprojection algorithm, which
is based on discretizing the approximate inversion formula (19) with the trapezoidal rule.
In two dimensions (19) reads

e ∗ Λmf(x) = (Λme) ∗ f(x)

=
∫ 2π

0

∫

IR
k(< x, θ⊥ > −s)Pf(ϕ, s)ds dϕ, (43)

k(s) =
1

4π
Λm+1Pθe(s). (44)

We assume that we have sampled Pf on an admissible lattice. Discretizing (43) with the
trapezoidal rule gives

e ∗ f(x) ≃ 2π

P

P−1∑

j=0

Qj(< x, θ⊥j >),

Qj(t) = d
∑

l

k(t− sjl)Pf(ϕj, sjl),

with ϕj, sjl as in (41), and θ⊥j = (− sinϕj, cosϕj). We assume that f is supported in
the unit disk. Hence the sum in the discrete convolution is finite. The reconstruction
is usually computed for values of x on a rectangular grid xm1m2

= (m1/M1,m2/M2),
|mi| ≤ Mi. Since computing the discrete convolution Qj(< x, θ⊥j >) for each occurring
value of < x, θ⊥j > would take too long, one first computes Qj(iH), |i| ≤ 1/H, and then
obtains an approximation IHQj(< x, θ⊥j >) for Qj(< x, θ⊥j >) by linear interpolation
with stepsize H. We assume that

H = d/(N ′m), with 0 < m,N ′ ∈ ZZ, and N ′N/P ∈ ZZ. (45)

This gives H = d/m for the standard lattice (N ′ = 1) and H = d/(2m) for the interlaced
lattice (N ′ = 2). Then the effect of interpolating the convolution is the same as replacing
the kernel k with the piecewise linear function IHk which interpolates k at the points
Hl, l ∈ ZZ; see, e.g., [11, p.84]. Hence the algorithm computes the function

fR(x) =
2π

P

P−1∑

j=0

IHQj(< x, θ⊥j >)

=
2πd

P

P−1∑

j=0

∑

l∈ZZ

IHk
(
< x, θ⊥j > −sjl

)
Pf (ϕj, sjl) . (46)
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If e is not radial, then k and IHk will depend on θ, which is not explicitly reflected in our
notation. MATLAB source code implementing (46) for the standard lattice is provided
for illustrative purposes in Appendix B.

In practice one chooses a basic point spread function e1 and then controls the resolu-
tion by using a scaled version

e(x) = er(x) = r−2e1(x/r). (47)

The corresponding kernels scale as

kr(s) = r−2−mk1(s/r). (48)

Examples for point spread functions and kernels are as follows. A popular choice for
global tomography (m = 0) is the Shepp-Logan kernel (cf. [62, p. 111])

k1(s) =
1

2π3

(π/2) − s sin s

(π/2)2 − s2
. (49)

This kernel is bandlimited with bandwidth 1, i.e., the Fourier transform

k̂1(σ) =
1

2
(2π)−3/2|σ|sin(πσ)

πσ
χ[−1,1](σ)

vanishes for |σ| > 1. It follows that the scaled kernel kr(s) = r−2k1(s/r) is bandlimited
with bandwidth b = 1/r, and the same is true for the corresponding point-spread function
er and hence for er ∗ f(x).

Since the kernel (49) does not have compact support, it is not useful for local tomog-
raphy. There we start with a point spread function

e1(x) =

{
C(1 − |x|2)α+1/2 for |x| < 1
0 for |x| ≥ 1

(50)

C = Γ(α+ 5/2)/(πΓ(α+ 3/2)),

cf. [14, p. 482]. The corresponding kernel for computing Λf (i.e., m = 1) is given by

K1(s) =
−1

4π

d2

ds2
Pθe1(s) =

2Γ(α+ 5/2)√
πΓ(α+ 1)

(1 − s2)α−1(1 − (2α+ 1)s2), |s| < 1,

and K1(s) = 0 for |s| ≥ 1. Here we used that in one dimension Λ2 = −d2/ds2. Now the
kernel is no longer bandlimited, but has compact support. The scaled kernels Kr(s) =
r−3K1(s/r) vanish for |s| > r. The kernel for global tomography generated by the point
spread function (50) has a complicated analytic expression but a quickly convergent series
expansion [88].

Discretization of (22) yields the filtered backprojection algorithm for the fan-beam
sampling geometry. Recall that f is supported in the unit disk. Let R > 1, a =
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R(cosα, sinα), θ = −(cos(α−β), sin(α−β)), and x−a = −|x−a|(cos(α−γ), sin(α−γ)).
Writing Df(α, β) for Daf(θ), (22) becomes

er ∗ Λmf(x) = R
∫ 2π

0

∫ π/2

−π/2
Df(α, β) cos(β)kr(|x− a| sin(γ − β))dβdα. (51)

In order to evaluate the inner integral efficiently, a ‘homogeneous approximation’ [46] is
needed. It follows from (20) and (48) that

kr(|x− a| sin(γ − β)) = |x− a|−2−mkc(sin(γ − β)), c = r/|x− a|.

The approximation consists in replacing c = r/|x − a| by a constant independent of x
and a. This gives

er ∗ Λmf(x) ≃ R
∫ 2π

0
|x− a|−2−m

∫ π/2

−π/2
Df(α, β) cos(β)kc(sin(γ − β))dβdα. (52)

From here we can proceed as before by discretizing with the trapezoidal rule and inserting
an interpolation step. The standard sampling lattice for the fan-beam geometry has the
form

LSF = {(αj, βl) : αj = 2πj/p, βl = l arcsin(1/R)/q, j = 0, . . . , p− 1, l = −q, . . . , q − 1}.
(53)

The reconstruction of Λ−1f is not unstable, so convolution with er is not needed. One
can directly discretize the formula

Λ−1f(x) = (R/4π)
∫ 2π

0
|x− a|−1Df(α, γ) cos γ dα, (54)

which comes from letting eb → δ in (51).
In order to further analyze the parallel-beam algorithm we use Shannon sampling

theory. We begin with some definitions. We define the Fourier transform of a function g
with domain T × IR by

ĝ(k, σ) =
1

2π

∫ 2π

0

∫

IR
g(ϕ, s)e−i(kϕ+σs) ds dϕ, (k, σ) ∈ ZZ × IR.

The corresponding inverse Fourier transform is given by

G̃(ϕ, s) =
1

2π

∫

ZZ×IR
G(ζ)ei<z,ζ> dζ, z = (ϕ, s)

=
1

2π

∑

k∈ZZ

∫

IR
G(k, σ)e−i(kϕ+σs) dσ. (55)
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The reciprocal lattice L⊥ ⊂ ZZ × IR is defined as

L⊥(d,N, P ) =

(
P −N
0 2π/d

)
ZZ

2.

For g ∈ C∞
0 (T × IR), L = L(d,N, P ) an ASL, K ⊂ ZZ × IR compact define

Sg(z) =
d

P

∑

y∈L

g(y)χ̃K(z − y), z ∈ T × IR,

where χ̃K is the inverse Fourier transform of the characteristic function of K. Sg may
be viewed as an approximation of g computed from sampled values of g on the lattice L.
The following classical sampling theorem gives an error estimate for this approximation:

Theorem 7.1 Let g ∈ C∞
0 (T × IR), L an ASL and K be a compact subset of ZZ × IR

such that the translates K + η, η ∈ L⊥ are disjoint. Then

|g(z) − Sg(z)| ≤ π−1
∫

(ZZ×IR)\K
|ĝ(ζ)|dζ.

This result is an adapted version of the multidimensional sampling theorem of Pe-
tersen and Middleton [69]. For a proof see, e.g., [62, p. 62] or [11, Theorem 2.2].

If supp(ĝ) ⊆ K, then g = Sg, i.e., g can be recovered exactly from its samples on the
lattice L.

In order for Sg to be close to g, the set K should be such that ĝ is concentrated in
K. The ’sampling condition’ that the translates K + η, η ∈ L⊥ be disjoint requires the
reciprocal lattice L⊥ to be sufficiently sparse, and therefore the sampling lattice L to be
sufficiently dense.

A suitable set K for sampling the 2D x-ray transform was given by Natterer [62]
based on results by Lindgren and Rattey [81]:

Theorem 7.2 [62, p. 71] For b > 0 and 0 < ϑ < 1 let

K0(ϑ, b) =
{
(k, σ) ∈ ZZ × IR : |σ| < b, |k| < ϑ−1 max(|σ|, (1 − ϑ)b)

}
. (56)

Let f ∈ C∞
0 (Ω). Then

∫

(ZZ×IR)\K0

|P̂ f(ζ)| dζ ≤ 8

π2ϑ

∫

|ξ|>b
|f̂(ξ)|dξ + ‖ f ‖L1

η(ϑ, b), (57)

where η(ϑ, b) decreases exponentially with b, satisfying an estimate

0 ≤ η(ϑ, b) ≤ C(ϑ)e−λ(ϑ)b

with constants C(ϑ), λ(ϑ) > 0.
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Usually the parameter ϑ is chosen close to 1. The parameter b plays the role of a
cut-off frequency. If |f̂(ξ)| is sufficiently small for |ξ| > b then the right-hand side of (57)
will be small. In this case Theorem 7.1 imposes the condition that the sampling lattice L
be such that the translated sets K0(ϑ, b) + η, η ∈ L⊥ are disjoint. In terms of the lattice
parameters d,N and P these conditions are as follows:

For the standard lattice N = 0, and the reciprocal lattice L⊥ equals

L⊥ = {(Pk1, 2πk2/d), k1, k2 ∈ ZZ}.

For reasons of efficiency as discussed above we let P = 2p be even. The translated sets
K0(ϑ, b) + η, η ∈ L⊥ are disjoint if and only if

d < π/b, p > b/ϑ, P = 2p. (58)

For the interlaced lattice we again let K = K0(ϑ, b) as in (56). For this lattice
P = 2p and N = P/2 = p. We always let p be even, so that because of the symmetry
relation (42) only the angles ϕj ∈ [0, π) need to be measured. The reciprocal lattice is
L⊥ = {(p(2k1 − k2), 2πk2/d), k1, k2 ∈ ZZ}. It turns out [62, 11] that the sets K0(ϑ, b)+ η,
η ∈ L⊥ are disjoint if either the conditions (58) are satisfied, or if

π

b
< d ≤ 2π

b
, p > max

(
2π

ϑd
,
(2 − ϑ)b

ϑ

)
, p even , P = 2p. (59)

We see that the interlaced lattice allows for a maximal detector spacing of d = 2π/b
which is twice as large as the maximum allowed for standard lattice, with only a moderate
increase in p. Sampling conditions for a general admissible sampling lattice have been
given in [13]. We see that both (58) and (59) require p to be greater than the cut-off
frequency b, which corresponds to condition b) in Remark 3.4 on avoiding the effects of
non-uniqueness.

It remains to investigate if the theoretically superior resolution of the interlaced lattice
can be realized in practice. In principle there are two obvious approaches: One could
first interpolate the missing data to a denser lattice and then use any reconstruction
algorithm. This approach has been successfully tried in [10], but we will not discuss
it here. The second approach would be to reconstruct directly from interlaced data.
It turns out that the filtered backprojection algorithm is very suitable for this purpose
[44, 11, 16]. We have the following error estimate, which extends the results of [44] and
[11].

Theorem 7.3 ([16]) Let e be radial and sufficiently smooth, f ∈ C∞
0 (IR2) be supported

in the unit disk and the sets K0(ϑ, b) + η, η ∈ L⊥ be disjoint. Then

fR(x) = GH ∗ e ∗ Λmf(x) +
4∑

i=1

Ei(x),
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ĜH(ξ) = (2π)−1sinc2(H|ξ|/2)χ1(|ξ|/b)

|E1(x)| ≤ c ‖ k̂ ‖∞
∫

|ξ|>b
|f̂(ξ)| dξ

|E2(x)| ≤ c ‖ f ‖∞
∫

|σ|>b
|k̂(σ)| dσ

|E3(x)| ≤ (2π)3/2 sup
θ

∫ b

−b

(
1 − sinc2(Hσ/2)

)
|k̂(σ)|

∑

l∈ZZ

∣∣∣∣∣f̂
((

σ +
2πl

d

)
θ

)∣∣∣∣∣ dσ

|E4(x)| ≤ c ‖ f ‖∞‖ k̂ ‖∞ η(ϑ, b)

Here sinc(x) = sin(x)/x. The proof ([16]) is somewhat technical and will not be given
here. However, it is worthwhile to note that apart from the interpolation step this is an
estimate for the error of numerical integration by the trapezoidal rule. The estimate for
this error is based on the Poisson summation formula for T× IR. This approach was first
applied in the present context by Kruse [44].

We will discuss the origin and importance of the four error terms. The error E1 is
the so-called aliasing error stemming from the fact that f is not bandlimited, since it has
compact support. If the cut-off frequency b is chosen sufficiently large, E1 will be small.
The sampling conditions then require that the number of data available is commensurate
with b. The error E2 is present when k is not bandlimited with bandwidth b. In global
tomography, i.e., when m = 0, one can chose e and k to be b-bandlimited, so that E2

vanishes. In local tomography one wishes k to have compact support, so k cannot be
bandlimited.

The error E3 is caused by the interpolation step and usually not a concern when
using the standard lattice. This can be explained as follows ([11]): Consider the common
parameter choice d = H = π/b. Since f̂(ξ) is assumed to be small for |ξ| > b, only the
term with l = 0 in the sum will be significant, i.e., we have for |σ| ≤ b

∑

l∈ZZ

∣∣∣f̂((σ + 2πl/d)θ)
∣∣∣ =

∑

l∈ZZ

∣∣∣f̂((σ + 2bl)θ)
∣∣∣ ≃ |f̂(σθ)|.

Usually the density function f is non-negative so that |f̂(σθ)| has a sharply peaked
maximum at σ = 0 and is very small for |σ| close to b. In such a case the error E2 will
be small since the factor 1 − sinc2(Hσ/2) is small exactly where |f̂(σθ)| is large.

The error E3 is of much greater concern when the interlaced lattice is used. Consider
the choice of parameters d = 2π/b, H = π/b. Now the sum over l in the estimate for E3

may have 3 significant terms for |σ| < b:
∑

l∈ZZ

∣∣∣f̂((σ + 2πl/d)θ)
∣∣∣ =

∑

l∈ZZ

|f̂((σ + bl)θ)| ≃ |f̂((σ − b)θ)| + |f̂(σθ)| + |f̂((σ + b)θ)|.
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As discussed before the contribution of the term f̂(σθ) is largely cancelled by the factor
(1 − sinc2(Hσ/2)). However, this is not the case for the other two terms. E.g., let σ be
close to b. Then, assuming again that f̂ is large near the origin, |f̂((σ−b)θ)| will be large
and is not attenuated by the factor (1− sinc2(Hσ/2)) which will be close to 1. Therefore
we expect considerable reconstruction errors for this choice of parameters. That this is
indeed the case has been demonstrated for global tomography in [44, 11]. Hence when
using the interlaced lattice one should choose H ≪ b, so that (1 − sinc2(Hσ/2)) is
small for |σ| < b. Typical choices in practice are H = π/(16b) or smaller. Choosing
H < π/b has also a cosmetic side effect. If a b-bandlimited convolution kernel is used
whose Fourier transform has a jump discontinuity at |σ| = b (e.g., a scaled version of
the Shepp-Logan kernel (49)), then ringing artifacts are caused by this discontinuity. In
case of the standard lattice with the parameter choice d = H = π/b these artifacts are
practically removed by the additional smoothing from the interpolation. For smaller H
this effect is lost. In this case the Fourier transform of k should taper off continuously to
zero if smooth images are desired [11].

Another effect of the interpolation is the additional filtering with GH . Since this
alters only the higher frequencies, it is usually not a concern. In any case, the effect can
be eliminated by choosing very small H.

The last error E4 decreases exponentially with b, as indicated by the notation η(ϑ, b).
Explicit estimates are as follows [16]. Let

β =
(
1 − ϑ2|x|2

)3/2
.

For the standard lattice we have

|E4(x)| ≤ c ‖ f ‖∞‖ k̂ ‖∞ b
e−βb/ϑ

1 − e−β
.

For the interlaced lattice we let b′ = (1 − ϑ)b/ϑ, and obtain with β as above

|E4(x)| ≤ c ‖ f ‖∞‖ k̂ ‖∞ bϑe−βb′
(

1 + b′

1 − e−β
+

e−β

(1 − e−β)2

)
.

In both cases the error decays exponetially with b, but in case of ϑ|x| close to 1, when β
is close to zero, the above estimates indicate that the error should be larger in case of the
interlaced lattice due to the term involving (1 − e−β)−2. This effect has been observed
in [11]. It causes a thin ring artifact in the region |x| ≃ 1, i.e., at the boundary of the
reconstruction region. It can be eliminated by choosing a smaller value for ϑ, i.e., by
increasing the number of views p, cf. (58), (59).

Numerical experiments for both global and local tomography, with simulated as well
as real data [44, 11, 10, 12, 16] show that the higher efficiency of the interlaced lattice can
at least be partly realized in practice. However, there are also some drawbacks. There is a
somewhat reduced stability because of inaccurate convolutions. In case of the interlaced
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lattice the stepsize d = 2π/b is not small enough to allow accurate computation of the
convolutions. Because of the truly two-dimensional nature of the numerical integration,
these errors cancel out during the discrete backprojection step. The sensitivity with
regard to the interpolation stepsize H can be understood as coming from a disturbance
of these cancellations by the additional interpolation. A second drawback is a requirement
that the sampling condition with respect to the number of views P has to be strictly
observed. The aliasing caused by violating this condition is usually quite moderate in
case of the standard lattice but much more severe for the interlaced lattice. This can be
easily seen from the pattern in which the translated sets K0 + η begin to overlap when
the sampling condition for p is violated. Hence the interlaced lattice seems to be most
useful when the detector spacing is the main factor limiting resolution.

Good reconstructions from the interlaced lattice can also be obtained by using the di-
rect algebraic reconstruction algorithm [43], or by increasing the amount of data through
interpolation according to the sampling theorem [10]. Results for the fan beam geometry
can be found in [63, 64]. As we have seen, the interpolation step can introduce significant
errors in certain cases. It was recently shown [64] that the interpolation can be avoided
by chosing the points x where the reconstruction is computed on a polar grid rather than
on a rectangular grid, and interchanging the order of the two summations. This algo-
rithm should work well for the interlaced lattice [100] and is particularly beneficial in case
of the fan-beam sampling geometry [64], since the method also avoids the homogeneous
approximation, whose influence on the reconstruction is difficult to estimate.

8 Appendix A: Some basic facts about wavelets

A brief introduction will be given to the area of multi-dimensional biorthogonal wavelets.
The following discussion is taken from [87] and is based on the presentation in [96] for
multi-dimensional orthonormal wavelets. For more details on wavelets and filter banks,
the reader is referred to the literature, e.g., [7] or [95].

Definition 8.1 A lattice Γ is a discrete subgroup of Rn given by integral linear combi-
nations of a vector space basis {v1, ..., vn} of Rn.

Definition 8.2 Let Γ be a lattice and M be an n× n matrix such that
i) MΓ ⊂ Γ
ii) all eigenvalues λ of M satisfy |λ| > 1.
M is called the dilation matrix. Let m = |det(M)|.
A multiresolution analysis with scaling function φ,

∫
φ(t)dt = 1, is a sequence of

subspaces Vj of L2(R
n), j ∈ Z, satisfying:

1. Vj ⊂ Vj+1,
⋂
Vj = {0} and

⋃
Vj = L2(Rn).

2. f(t) ∈ Vj ⇐⇒ f(Mt) ∈ Vj+1.
3. f(t) ∈ V0 ⇐⇒ f(t− k) ∈ V0, k ∈ Γ.
4. {φ(t− k), k ∈ Γ} is a Riesz basis of V0.
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Note: for notation purposes, the following convention will be used:

fj,k(t) = mj/2f(M jt− k), k ∈ Γ, j ∈ Z (60)

It follows from the definition of a multiresolution analysis that {φj,k(t), k ∈ Γ} is a Riesz
basis of Vj.

Definition 8.3 Consider a multiresolution analysis with lattice Γ and dilation matrix
M . For j ∈ Z, let W0 be such that V1 is the direct sum of V0 and W0. Assume there are
ψ1, ..., ψm−1 ∈ W0 such that
{ψµ

0,k, µ = 1, ...,m− 1, k ∈ Γ } is a Riesz basis of W0. The ψµ are called wavelets.

For j ∈ Z, let Wj be the subspace with Riesz basis
{Ψµ

j,k, k ∈ Γ, µ = 1, ...,m− 1}. It follows that Vj+1 = Vj ⊕Wj, a direct sum but not nec-
essarily orthogonal.

Definition 8.4 Let Vj, Ṽj be two multiresolution analyses corresponding to the same
lattice Γ and dilation matrix M . Let φ, ψµ, µ = 1, ...,m− 1, be the scaling function and
wavelets corresponding to Vj. Let φ̃, ψ̃µ, µ = 1, ...,m − 1, be the scaling function and
wavelets corresponding to Ṽj. The multiresolution analyses are called biorthogonal if
the following conditions hold for j, j′ ∈ Z, µ, µ′ = 1, ...,m− 1, and k, k′ ∈ Γ

i) < ψµ
j,k, ψ̃

µ′

j′,k′ >= δ(j, j′)δ(µ, µ′)δ(k, k′)

ii) < ψ̃µ
j,k, φj,k′ >=< φ̃j,k, ψ

µ
j,k′ >= 0

iii) < φj,k, φ̃j,k′ >= δ(k, k′)

For n = 1, M = 2, Γ = Z, and φ = φ̃, the multiresolution analysis becomes the
familiar one-dimensional, orthonormal case.

Since φ ∈ V0 ⊂ V1, and {φ1,k, k ∈ Γ} is a basis for V1, there are coefficients F0(k),
k ∈ Γ such that

φ(t) = m1/2
∑

k∈Γ

F0(k)φ1,k(t)

¿From condition iii) above, it follows that F0(k) = m−1/2 < φ, φ̃1,k >. Similarly, since

φ̃ ∈ Ṽ0 ⊂ Ṽ1, and {φ̃1,k, k ∈ Γ} is a basis for Ṽ1,

φ̃(t) = m1/2
∑

k∈Γ

H0(k)φ̃1,k(t)

where H0(k) = m−1/2 < φ̃, φ1,k >. The above equations are called dilation equations.

Similarly, the wavelets ψµ, ψ̃µ must satisfy so-called wavelet equations:

ψµ(t) = m1/2
∑

k∈Γ

Fµ(k)φ1,k(t)
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ψ̃µ(t) = m1/2
∑

k∈Γ

Hµ(k)φ̃1,k(t)

where µ = 1, ...,m− 1, Fµ(k) = m−1/2 < ψµ, φ̃1,k > and Hµ(k) = m−1/2 < ψ̃µ, φ1,k >.
The following lemma and theorems show how to decompose a function f into its

wavelet coefficients and how to reconstruct f if its wavelet coefficients are known.

Lemma 8.5 For j ∈ Z and µ = 1, ...,m− 1,

φj,l(t) = m1/2
∑

k∈Γ

F0(k)φj+1,Ml+k(t) (61)

φ̃j,l(t) = m1/2
∑

k∈Γ

H0(k)φ̃j+1,Ml+k(t) (62)

ψµ
j,l(t) = m1/2

∑

k∈Γ

Fµ(k)φj+1,Ml+k(t) (63)

ψ̃µ
j,l(t) = m1/2

∑

k∈Γ

Hµ(k)φ̃j+1,Ml+k(t) (64)

Proof: Follows directly from the dilation and wavelet equations. 2

Theorem 8.6 (Fast Wavelet Transform) Let j ∈ Z and f ∈ Vj+1. For k ∈ Γ and
µ = 1, ...,m− 1 define the approximation coefficients as

Ãj,k =< f, φ̃j,k >= (f ∗ (φ̃j,0)
∨)(M−jk) (65)

and the detail coefficients as

D̃µ
j,k =< f, ψ̃µ

j,k >= (f ∗ (ψ̃µ
j,0)

∨)(M−jk) (66)

Then
Ãj,k = m1/2

∑

l∈Γ

H0(l −Mk)Ãj+1,l (67)

and
D̃µ

j,k = m1/2
∑

l∈Γ

Hµ(l −Mk)Ãj+1,l (68)

Proof: Consider the following expansion of f :

f(t) =
∑

l∈Γ

Ãj+1,lφj+1,l(t) (69)

For Ãj,k, take an inner product of (69) with φ̃j,k. Use (62) and biorthogonality to get
(67).
For D̃µ

j,k, take an inner product of (69) with ψ̃µ
j,k. Use (64) and biorthogonality to get

(68). 2
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Theorem 8.7 (Inverse Fast Wavelet Transform) Under the hypothesis of Theorem
8.6

Ãj+1,l = m1/2
∑

k∈Γ

(
F0(l −Mk)Ãj,k +

m−1∑

µ=1

Fµ(l −Mk)D̃µ
j,k

)
(70)

Proof: Consider the following expansions of f

f(t) =
∑

k∈Γ

Ãj+1,kφj+1,k(t)

=
∑

k∈Γ

Ãj,kφj,k(t) +
m−1∑

µ=1

∑

k∈Γ

D̃µ
j,kψ

µ
j,k(t) (71)

The second expansion comes from writing f ∈ Vj+1 = Vj ⊕Wj as a sum of elements of

Vj and Wj. To get Ãj+1,l, take an inner product of (71) with φ̃j+1,l. Use (61), (63) and
biorthogonality to get (70). 2

An easy way to obtain wavelets in Rn is to use a tensor product construction with the
wavelets in R. We will look specifically at the two-dimensional case. Define the lattice
as Γ = Z2, and the dilation matrix M = 2I, where I denotes the identity matrix. Since
|detM | = 4 = m, one can expect 3 wavelets and 1 scaling function. Let the spaces Vj,
Wj be the chosen one-dimensional multiresolution analysis with scaling function φ, and
wavelet ψ. The coefficients for the dilation and wavelet equation are Fµ(k), µ = 0, 1.
Constructing the two-dimensional scaling function and wavelets by taking products of
the one-dimensional functions leads to the following definition.

Definition 8.8 From a one-dimensional scaling function φ(x) and its corresponding
wavelet ψ(x), two-dimensional separable wavelets are defined for (x, y) ∈ IR2,

Φ(x, y) = φ(x)φ(y)

Ψ1(x, y) = φ(x)ψ(y)

Ψ2(x, y) = ψ(x)φ(y)

Ψ3(x, y) = ψ(x)ψ(y)

(72)

Consider a biorthogonal pair of one-dimensional multiresolution analyses. Recall for
separable, two-dimensional wavelets, M = 2I, m = 4 and Γ = Z2. Let Vj and Wj be
the multiresolution analysis with scaling function φ, wavelet ψ, and coefficients F0, F1

for the dilation and wavelet equations. Let Ṽj and W̃j be the multiresolution analysis
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with scaling function φ̃ wavelet ψ̃ and coefficients H0, H1 for the dilation and wavelet
equations.

We want to rewrite the fast wavelet transform and inverse fast wavelet transform for
the case of two-dimensional separable wavelets. Let Fµ(k), µ = 0, 1, 2, 3 be the coefficients
in the dilation and wavelet equations for the separable wavelets. It is easy to verify that

F0(k) = F0(k1)F0(k2)

F1(k) = F0(k1)F1(k2)

F2(k) = F1(k1)F0(k2)

F3(k) = F1(k1)F1(k2)

where k = (k1, k2). Similarly for the Hµ(k), µ = 0, 1, 2, 3. Thus, equation (67) becomes:

Ãj,k = 2
∑

l∈Γ

H0(l − 2k)Ãj+1,l (73)

and equation (68) becomes

D̃µ
j,k = 2

∑

l∈Γ

Hµ(l − 2k)Ãj+1,l, for µ = 1, 2, 3 (74)

The inverse wavelet transform, equation (70), becomes:

Ãj+1,n = m1/2
∑

k∈Γ

(
F0(n−Mk)Ãj,k +

3∑

µ=1

Fµ(n−Mk)D̃µ
j,k

)

= 2
∑

k1,k2∈Z

(
F0(n1 − 2k1)F0(n2 − 2k2)Ãj,k + F0(n1 − 2k1)F1(n2 − 2k2)D̃

1
j,k

+F1(n1 − 2k1)F0(n2 − 2k2)D̃
2
j,k + F1(n1 − 2k1)F1(n2 − 2k2)D̃

3
j,k

)
(75)

Recall that the approximation coefficients are a convolution of f with φ̃j,0: Ãj,k =

(f ∗ (φ̃j,0)
∨)(M−jk). We would like to consider, for sufficiently large j, the approximation

coefficients as an approximation for f at a particular point. Notice that for M = 2I,
M jx = 2jx, and m = 2n. From Real Analysis, the following lemma holds.

Lemma 8.9 Let f be continuous, g ∈ L1(Rn) with
∫
gdx = 1, g is bounded and has

compact support. Then for all x ∈ Rn

f(x) = lim
j→∞

2jn
∫
f(x+ y)g(2jy)dy = lim

j→∞
2j/2f ∗ (gj,0)

∨(x) (76)
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Proof: Let t = 2−j. Then we have a special case of Theorem 8.15, page 235, in [20]. 2

Thus, for j sufficiently large, we get an approximation for f :

2j/2f ∗ (φ̃j,0)
∨(2−jk) ≈ f(2−jk)

or, with n = 2
2j/2Ãj,k ≈ f(2−jk)

9 Appendix B: Matlab source code

Below we give a few MATLAB M-files which implement the parallel-beam filtered back-
projection algorithm for the standard lattice followed by a simple implementation of the
Feldkamp-Davis-Kress algorithm. This source code is provided for illustrative purposes
only and comes without warranties of any kind. For the filtered backprojection algo-
rithm, the main file fbp.m is supplemented by three function M-files. Rad.m computes
line integrals for a mathematical phantom consisting of ellipses, slkernel.m computes the
discrete Shepp-Logan convolution kernel (cf. (49)), and window3.m allows to view the
reconstructed image. It is automatically called at the end of the reconstruction. However,
with the example phantom (the well-known Shepp-Logan phantom)given in fbp.m the
picture shown does not display the most interesting details. It is better to call window3
again with the parameters window3(-0.07,0.07,roi,P).

%fbp.m

%Parallel-beam filtered backprojection algorithm

% for the standard lattice

% Last revision: August 29, 2001

%specify input parameters here

p=200; %number of view angles between 0 and pi

q=64; %q=1/d, d = detector spacing

MX=128; MY = 128; %matrix dimensions

roi=[-1 1 -1 1]; %roi=[xmin xmax ymin ymax]

%region of interest where

%reconstruction is computed

circle = 1; % If circle = 1 image computed only inside

% circle inscribed in roi.

%Specify parameters of ellipses for mathematical phantom.

% xe = vector of x-coordinates of centers
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% ye = vector of y-coordinates of centers

% ae = vector of first half axes

% be = vector of second half axes

% alpha = vector of rotation angles (degrees)

% rho = vector of densities

xe=[0 0 0.22 -0.22 0 0 0 -0.08 0 0.06 0.5538];

ye=[0 -0.0184 0 0 0.35 0.1 -0.1 -0.605 -0.605 -0.605 -0.3858];

ae=[0.69 0.6624 0.11 0.16 0.21 0.046 0.046 0.046 0.023 0.023 0.0333];

be=[0.92 0.874 0.31 0.41 0.25 0.046 0.046 0.023 0.023 0.046 0.206];

alpha=[0 0 -18 18 0 0 0 0 0 0 -18];

rho= [1 -0.98 -0.02 -0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03];

%end of input section

b=pi*q; rps=1/b;

alpha = alpha*pi/180;

if MX > 1

hx = (roi(2)-roi(1))/(MX-1);

xrange = roi(1) + hx*[0:MX-1];

else

hx = 0; xrange = roi(1);

end

if MY > 1

hy = (roi(4)-roi(3))/(MY-1);

yrange = flipud((roi(3) + hy*[0:MY-1])’);

else

hx = 0; yrange = roi(3);

end

center = [(roi(1)+roi(2)), (roi(3)+roi(4))]/2;

x1 = ones(MY,1)*xrange; %x-coordinate matrix

x2 = yrange*ones(1,MX); %y-coordinate matrix

if circle == 1

re = min([roi(2)-roi(1),roi(4)-roi(3)])/2;

chi = ((x1-center(1)).^2 + (x2-center(2)).^2 <= re^2);

%chi = characteristic function of roi;

else

chi = isfinite(x1);

end
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x1 = x1(chi); x2 = x2(chi);

P = zeros(MY,MX);Pchi = P(chi);

h = 1/q;

s = h*[-q:q-1];

bs = [-2*q:2*q-1]/(q*rps);

wb = slkernel(bs)/(rps^2); %compute discrete convolution kernel.

for j = 1:p

j

phi = (pi*(j-1)/p);

theta = [cos(phi);sin(phi)];

RF = Rad(theta,phi,s,xe,ye,ae,be,alpha,rho); %compute line integrals

% convolution

C = conv(RF,wb);

Q = h*C(2*q+1:4*q); Q(2*q+1)=0;

% interpolation and backprojection

Q = [real(Q)’; 0];

t = theta(1)*x1 + theta(2)*x2;

k1 = floor(t/h);

u = (t/h-k1);

k = max(1,k1+q+1); k = min(k,2*q);

Pupdate = ((1-u).*Q(k)+u.*Q(k+1));

Pchi=Pchi+ Pupdate;

end % j-loop

P(chi) = Pchi*(2*pi/p);

pmin = min(min(P));

pmax = max(max(P));

window3(pmin,pmax,roi,P); % view the computed image

% --- Cut here for Rad.m

function [RF] = Rad(theta,phi,s,x,y,u,v,alpha,rho)
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% This function computes the Radon transform of ellipses

% centered at (x,y) with major axis u, minor axis v,

% rotated through angle alpha, with weight rho.

RF = zeros(size(s));

for mu = 1:max(size(x))

a = (u(mu)*cos(phi-alpha(mu)))^2+(v(mu)*sin(phi-alpha(mu)))^2;

test = a-(s-[x(mu);y(mu)]’*theta).^2;

ind = test>0;

RF(ind) = RF(ind)+rho(mu)*(2*u(mu)*v(mu)*sqrt(test(ind)))/a;

end % mu-loop

% --- Cut here for slkernel.m

function u = slkernel(t)

u = zeros(size(t));

i1 = abs(abs(t)-pi/2)<=1.e-6;

u(i1) = ones(size(u(i1)))/pi;

t1 = t(abs(abs(t)-pi/2)>1.e-6);

v = (pi/2 - t1.*sin(t1))./((pi/2)^2 - t1.^2);

u(abs(abs(t)-pi/2)>1.e-6) = v;

u = u/(2*pi^3);

% --- Cut here for window3.m

function pic1 = window3(mi,ma,roi,pic);

%function pic1 = window3(mi,ma,roi,pic);

% displays image pic with coordinates given by roi

% roi = [xmin xmax ymin ymax]

x = [roi(1), roi(2)]; y = [roi(3), roi(4)];

colors = 128; co = colors-1;

pic1 = pic - mi*ones(size(pic));

pic1 = (co/(ma-mi))*pic1;

P = (pic1 >= 0);

pic1 = pic1.*P;

P = (pic1 <= co);
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pic1 = pic1.*P + co*(ones(size(pic1)) - P);

colormap(gray(colors));

image(x,fliplr(y),flipud(pic1));

axis(’square’);

Code for the Feldkamp-Davis-Kress Algorithm

%fdk.m

%Feldkamp-Davis-Kress Algorithm

%for reconstruction on one user defined plane

%specify input parameters here

p=20%number of view angles between 0 and 2*pi

q=64 %h=1/q = detector spacing

R = 2.868 % Radius of source circle

MX=128; MY = 128; %matrix dimensions

%%%% Setting the reconstruction plane

% The equation of the plane is <x,nv> = sp

% nv = unit normal vector

% Provide orthonormal unit vecors w1, w2 orthog. to nv.

% Then a point on the plane can be written as

% x = sp*nv + x1*w1 + x2*w2

nv = [0; 0; 1];

sp = 0.5;

w1 = [1;0;0];

w2 = [0;1;0];

roi=[-1 1 -1 1]; %roi=[xmin xmax ymin ymax]

%region of interest where

%reconstruction is computed

circle = 0; % If circle = 1 image computed only inside

% circle inscribed in roi.

% Parameters for mathematical phantom

% centobj - centers of ellipsoids

% axes - length of semiaxis

% rho - densities

% OV - OV(3j-2:3j,1:3) = orthogonal matrix V for j-th object
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centobj = [0. 0. .5];

axes = [.5 .3 .1];

density = [1]; beta = pi/4;

OV =eye(3); OV(2:3,2:3) = [cos(beta) -sin(beta); sin(beta) cos(beta)];

mexp=zeros(size(density));

%end of input section

ymax = R/sqrt(R^2-1);

h = ymax/q;

b=pi/h; rps=1/b;

if MX > 1

hx = (roi(2)-roi(1))/(MX-1);

xrange = roi(1) + hx*[0:MX-1];

else

hx = 0; xrange = roi(1);

end

if MY > 1

hy = (roi(4)-roi(3))/(MY-1);

yrange = flipud((roi(3) + hy*[0:MY-1])’);

else

hx = 0; yrange = roi(3);

end

center = [(roi(1)+roi(2)), (roi(3)+roi(4))]/2;

x1 = ones(MY,1)*xrange; %x-coordinate matrix

x2 = yrange*ones(1,MX); %y-coordinate matrix

if circle == 1

re = min([roi(2)-roi(1),roi(4)-roi(3)])/2;

chi = ((x1-center(1)).^2 + (x2-center(2)).^2 <= re^2);

%chi = characteristic function of roi;

else

chi = isfinite(x1);

end

x1 = x1(chi); x2 = x2(chi);
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x3 = sp*nv(3) + w1(3)*x1 + w2(3)*x2;

P = zeros(MY,MX);Pchi = P(chi);

y = h*[-q:q-1];

%ry = 1./sqrt(R.^2 + y.^2);

%s = -R*y.*ry;

bs = b*h*[-2*q:2*q-1];

wb = slkernel(bs)/(rps^2); %compute discrete convolution kernel.

theta = zeros(3,max(size(y)));

for j = 1:p

j

alphaj = (2*pi*(j-1)/p);

om = [cos(alphaj);sin(alphaj);0];

a = R*om;

Q = zeros(2*q+1,2*q+1);

% Q = zeros(2*q,2*q);

q1 = 2*q+1;

for l = 1:2*q %compute line integrals and convolutions

zl = -ymax + h*(l-1);

theta(1,:) = -om(2)*y - R*om(1);

theta(2,:) = om(1)*y - R*om(2);

theta(3,:) = zl;

ss = sqrt(sum(theta.^2));

theta(1,:) = theta(1,:)./ss;

theta(2,:) = theta(2,:)./ss;

theta(3,:) = theta(3,:)./ss;

Df = Divray(a,theta,centobj,axes,OV,mexp,density);

% maxdat(l) = max(max(Df));

Df = Df./sqrt(R^2 + zl^2 + y.^2);

% convolution

C = conv(Df,wb);

Q(l,1:2*q) = h*C(2*q+1:4*q); %Q(l,(2*q+1))=0;

end

% maxj = max(max(maxdat))

maxQ = max(max(Q))

% interpolation and backprojection

45



u = om’*[w1, w2, nv];

xom = u(1)*x1 + u(2)*x2 + u(3)*sp;

up = [-om(2), om(1), 0]*[w1, w2, nv];

xomp = up(1)*x1 + up(2)*x2 + up(3)*sp;

% Q = [real(Q)’; 0];

rxw = R - xom;

t = (R*xomp)./rxw;

zx = R*x3./rxw;

flz = floor(zx/h);

l0 = max(1,flz+q+1);l0 = min(l0,2*q);

l01 = min(l0+1,2*q);

k1 = floor(t/h);

u = (t/h-k1);

k = max(1,k1+q+1); k = min(k,2*q);

tmp1 = ((1-u).*Q(l0+q1*(k-1))+u.*Q(l0+q1*k));

tmp2 = ((1-u).*Q(l01+q1*(k-1))+u.*Q(l01+q1*k));

v = zx/h-flz;

Pupdate = (1-v).*tmp1 + v.*tmp2;

maxup = max(max(abs(Pupdate)))

Pchi=Pchi+ Pupdate./(rxw.^2);

end % j-loop

P(chi) = Pchi*((R^3)*2*pi/p);

pmin = min(min(P));

pmax = max(max(P));

window3(pmin,pmax,roi,P); % view the computed image

% --- Cut here for Divray.m

function Df = Divray(a,theta,center,axes,OV,mexp,density)

% Integrals over lines through point z in directions theta

% Cf. problem 9 in Appendix C.

% a = source position

% theta: columns of theta are directions of rays

% center: rows of center are transposed of center points

% axes: rows of axes contain length of principlal axes
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% OV: OV(3j-2:3j,1:3) is orthonornmal matrix for j-th object

% mexp: vector with exponents (mexp = 0 for ellipsoids)

N = max(size(mexp)); % Number of objects in phantom

Df = zeros(size(theta(1,:)));

for j = 1:N

z = a - center(j,:)’;

A = diag(1./axes(3*j-2:3*j))*OV(3*j-2:3*j,:);

Ath = A*theta;

Az = A*z;

dot = Az’*Ath;

naz2 = Az’*Az;

nath2 = sum(Ath.^2);

S = naz2 - (dot.^2)./nath2;

m = mexp(j);

cm = (2^(2*m+1))*(gamma(m+1)^2)/gamma(2*m+2);

ind = find(S < 1); Sind = S(ind);

tmp = density(j)*cm*((1-Sind).^(m + 0.5))./sqrt(nath2(ind));

Df(ind) = Df(ind) + tmp;

end

47



10 Appendix C: Some exercises

Problem 1: Let f(x) be the characteristic function of an ellipse with center (x0, y0),
half-axes of length a and b, respectively, such that the axis of length 2a makes an angle
ψ with the x-axis when measured counterclockwise starting from the x-axis. Compute
the x-ray transform Pf(θ, s). Parameterize the unit vector θ with its polar angle ϕ, i.e.,
θ = (cosϕ, sinϕ).

Problem 2: Compute the Fourier transform of the characteristic function of the unit
disk in IR2. Hint: Use polar coordinates and formula (3.16) in [62, p. 197].

Problem 3: Use the MATLAB code for the filtered backprojection algorithm (with the
Shepp Logan phantom) for the following experiments.

a) Run the program for the following values of p and q, leaving the other parameters
unchanged: q = 16, p = 50; q = 32, p = 100; q = 64, p = 200; q = 128, p = 400. For each
case plot a crossection along the horizontal line of pixels closest to the line y = −0.605
which passes through the centers of the three small ellipses. Compare the resolution for
the various parameter choices.

b) Fix the parameter b in the program at the value 64π. Theory suggests that the choice
q = 64, p = 200 is a good one. Compare the images for the following choices of p and
q, again leaving the other parameters unchanged. q = 128, p = 200 ; q = 64, p = 200 ;
q = 32, p = 200 ; q = 16, p = 200 ; q = 64, p = 400 ; q = 64, p = 100 ; q = 64, p = 50 ;
q = 64, p = 20 ; q = 64, p = 10 . Summarize your findings about the influence of chosing
larger or smaller values of p or q than the ones suggested by theory.

Problem 4: Modify the filtered backprojection program so that it reconstructs the
function P#Pf . Compute an image of P#Pf for the Shepp-Logan phantom with p =
200, q = 64.

Problem 5: A fundamental question for image reconstruction is if the data uniquely
determine the original image.

a) Convince yourself that the x-ray transform is a linear operator, i.e., P (αf) = αPf
and P (f + g) = Pf + Pg. Show that for linear operators the question of uniqueness is
equivalent to the question if there are nontrivial null-functions. I.e., Pf = Pg implies
f = g, if and only if Pf ≡ 0 implies f ≡ 0.

b) While one can show that the data Pf(θ, s) for all s and infinitely many directions θ
uniquely determine the function f , it was already known to the pioneers of tomography
that this is not the case if Pf(θ, s) is known for all s but for only finitely many directions
θ. For example, in his 1963 paper Representation of a Function by Its Line Integrals, with
Some Radiological Applications (Journal of Applied Physics, Vol. 34 (1963), pp. 2722-
2727), A.M. Cormack, who later shared the Nobel prize in medicine for his contributions
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to tomography, claims that if the function f(x) vanishes outside the unit disk and inside
the unit disk is given by f(x) = A cos(nψ), n > 0, where ψ is the polar angle of x, then
the line integrals of f are zero along all lines perpendicular to the directions with polar
angle ϕ = (2m + 1)π/(2n), m = 0, . . . , 2n − 1. Show that Cormack’s claim is correct.
You may use that for Bessel functions of the first kind Jk(x) = J−k(−x) = (−1)kJk(−x).
c) What do you think may be the implications of the existence of such null functions (or
“ghosts”) for medical imaging?

Problem 6: a) Modify the filtered backprojection program so that it reconstructs from
fan-beam data. Test it for the Shepp-Logan phantom with p = 200, q = 64, MX =
MY = 128, R = 2.868 and c = π ∗ q/ arcsin(1/R).

b) Modify the program so that it can read the projection data from a file, using the fread
command. Request from the author the data file pelvis.ctd. It contains real data from a
hospital scanner. The data are stored in integer*2 format and correspond to a fan-beam
geometry with p = 360, q = 256, and R = 2.868. The angle β in the data is incremented
in reverse order compared to the lecture. Reconstruct an image (the best you can get)
from these data.

Problem 7: Modify the filtered backprojection program so that it reconstructs from fan-
beam data with detectors on a line. Test it for the Shepp-Logan phantom with p = 200,
q = 64, MX = MY = 128, R = 2.868 and b = π ∗ q.
Problem 8: Consider a crude method for so-called region-of-interest tomography. a)
Modify the parallel-beam reconstruction program so that the data outside the circle
inscribed in a square given by the parameter roi are set to zero. Test your program with
the Shepp-Logan phantom and roi=[−.2, .2,−.8,−.4]. (Set the parameter circle equal to
1.) Discuss the quality of the resulting image and compare with the reconstruction from
complete data.

b) Perform the same experiment as in part a), only do not set the data to zero outside
the region of interest (ROI) but set them to a constant equal to the nearest line integral
intersecting the circle inscribed in the ROI.

Problem 9: a) Consider the family of functions

f(x) =
(
1− ‖ x ‖2

)m

+
, x ∈ IR3, m > −1.

(Note that the case m = 0 gives the characteristic function of the unit ball. The larger
m, the smoother the function becomes.) Compute the transform

Df(z, θ) =
∫
f(z + tθ) dt, z ∈ IR3, θ ∈ S2
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for these functions. You may use the formula

∫ 1

−1
(1 − u2)m du = 22m+1 (Γ(m+ 1))2

Γ(2m+ 2)

(cf. Gradshteyn-Ryzhik, p. 949, section 8.380, Formula 9). You will encounter the
projection of z unto the subspace orthogonal to θ which is denoted by Eθz and given by
Eθz = z− < z, θ > θ.

b) Show that for g(x) = f(x − x0), we have Dg(z, θ) = Df(z − x0, θ), and for h(x) =
f(Ax) with A a non-singular matrix,

Dh(z, θ) = ‖ Aθ ‖−1 Df(Az, ω), ω =
Aθ

‖ Aθ ‖ .

The M-file Divray.m provided in Appendix B implements this transform for the functions
of part a).

Problem 10: Use the source code for the FDK algorithm provided in Appendix B
and familiarize yourself with its use. Input the parameters for a phantom consisting of
one ellipsoid with center at (0.2, 0.3, 0.1) and half-axes of lengths 0.4, 0.2, 0.3 along the

directions (1, 1, 0)/
√

(2), (−1, 1, 0)/
√

(2) and (0, 0, 1), respectively. In the code the rows
of the orthonormal matrix OV indicate the directions of the principal axes. Produce
reconstructions along the planes y = 0.3, z = 0.1, and x+ y + z = 0.6, respectively. Use
values p = 20 and q = 64 and indicate for each case the orthonormal vectors n,w1, w2
which you are using. Observe which boundaries are well reconstructed and which are
blurred.
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Figure 1: Top left: Global reconstruction of density f(x) of calibration object. Top
right: Reconstruction of Λf . Bottom left: Reconstruction of Λ−1f . Bottom right:
Reconstruction of Lf = Λf + µΛ−1f , µ = 46.
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Figure 2: Top left: Global reconstruction of density f(x) of calibration object. Box
indicates region of interest R. Top right: Local reconstruction Λ̄f inside R. Bottom
right: Result of automatic edge detector applied to the image of Λ̄f shown in top right.
Pixels where an edge is detected are white.
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Figure 3: Top left: Image of |∇Λ̄f | inside R, f being the density function of the calibra-
tion object. Box indicates region R′. Top right: Image of |∇Λ̄χXj

| inside R. Box indicates
region R′. Bottom left: Graph of estimated density difference d(t) for 0.5 ≤ d(t) ≤ 0.95.
Bottom right: Number N(t) of points contributing to the averages of |∇Λ̄f | (solid line),
and of |∇Λ̄χXj

| (dotted line).
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t = 0.9:  orig. data t = 0.9:  sim. data

t = 0.6:  orig. data t = 0.6:  sim. data

Figure 4: Left half: White points indicate where |∇Λ̄f(x)| > tmaxy∈R′ |∇Λ̄f(y)| for
t = 0.6 (top left) and t = 0.9 (bottom left). Right half: White points indicate where
|∇Λ̄χXj

(x)| > tmaxy∈R′ |∇Λ̄χXj
(y)| for t = 0.6 (top right) and t = 0.9 (bottom right).
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