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Abstract.

We show two specific uniqueness properties of a fixed minimal isometric immersion
from S3 into S6. This particular immersion has been extensively studied. We give

the first uniqueness results within the full class of all minimal isometric immersion

from S3(1) into S6( 1

4
).

Introduction

Since the 1960’s minimal isometric immersions of Riemannian manifolds into
round spheres have been extensively studied ( [C], [DW1], [DW2], [L], [T]). Natu-
rally arising questions were: What are necessary and sufficient conditions for the
existence of such immersions? Exactly which manifolds admit such immersions?
Do these immersions have any kind of uniqueness properties? The first two ques-
tions both deal with existence only, for answers, see [E1], [E2], [DZ]. This paper
addresses the last question, whose answer provides more insight into the struc-
ture of the moduli space of all minimal isometric immersions. In fact, we show
two specific uniqueness properties of a fixed minimal isometric immersion from S3

into S6. This particular immersion has been extensively studied; the only known
uniqueness results restrict the class of admissible immersions considerably. Our
results are the first ones to address uniqueness properties within the full class of all
minimal isometric immersion from S3 into S6.

A necessary and sufficient condition for the minimality of such immersions was
given by by T. Takahashi [T] who observed that if Φ: M → SN (r) ⊂ RN+1 is a
minimal isometric immersion, then all components of Φ must be eigenfunctions of
the Laplace operator on M with respect to the same eigenvalue. And conversely if
Φ is an isometric immersion such that all the components are eigenfunctions of the
Laplace operator for the same eigenvalue, then Φ is a minimal isometric immersion
into a round sphere.

Takahashi also observed that if M is an isotropy irreducible Riemannian homo-
geneous space, i.e., if the isotropy group of a point acts irreducibly on the tangent
space, then an orthonormal basis of each eigenspace automatically gives rise to
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a minimal isometric immersion into a round sphere. We call these the standard
minimal immersions.

When M = Sn(1), there is a sequence of standard minimal isometric immer-
sions, one for each nonzero eigenvalue. For the first such eigenvalue one ob-
tains the standard embedding into Rn+1, for the second eigenvalue an immersion

into S
n(n+3)

2 −1

(

√

n
2(n+1)

)

, which gives rise to the Veronese embedding of RP n.

For odd-numbered eigenvalues the images are all embedded spheres and for even-
numbered eigenvalues the images are all embedded real projective spaces.

The first uniqueness result was obtained by E. Calabi [C] who showed that
every minimal isometric immersion of S2(1) into SN (r) is congruent to one of these
standard eigenspace immersions. Here two immersions are called congruent if they
differ by an isometry of the ambient space, in this case by an element of O(N +1) ,
the isometry group of SN (r) . However, M. DoCarmo and N. Wallach [DW2]
showed that in higher dimensions there are in general many minimal isometric
immersions of Sn(1) into SN (r) and that they are parametrized by a compact
convex body in a finite dimensional vector space. A recent development is the
finding of the exact dimension of this convex body by G. Toth [To1]. For further
references on this matter, see [DW1], [DW2], [L], [T].

In this paper we will focus on a particular immersion which arose in the following
way. In 1971 a question was posed by DoCarmo and Wallach [DW2, Remark 1.6].
For a given n, what is the smallest dimension N for which there exist minimal
isometric immersions of Sn(1) into SN (r) which are not totally geodesic? In this
question one can also specify the radius r of the target sphere or equivalently fix
the eigenvalue one wants to consider. A lower bound for N was given by J. D.
Moore [Mr] who showed that no such immersions exist if N ≤ 2n− 1. In [DW2] it

was suggested that the probable answer is N = n(n+3)
2 − 1, which is achieved by

the Veronese embedding. That this is false, at least for n = 3, was first observed by
N. Ejiri [Ej] who showed that there exists a minimal isometric immersion of S3(1)
into S6( 1

4
) which is not totally geodesic.

For n = 3 , the Ejiri immersion is optimal in that it maps to the smallest
target sphere possible. Our goal is to prove specific uniqueness properties of this
immersion within the full class of minimal isometric immersions. Previous work
addresses uniqueness only by restricting the class of immersions. The following is
a condensed survey of known results. Ejiri showed that the immersion is totally
real with respect to the natural almost complex structure on S6. His construction
is not explicit, as it uses the fundamental theorem for isometric immersions to
prove existence. In [Ma1] Mashimo constructed this immersion more explicitly as
an SU(2)-equivariant immersion. In [Ma2] he shows that it is also an orbit of
a subgroup of the exceptional Lie group G2 acting on S6 and proves that every
totally real immersion of S3(1) into S6( 1

4
) is congruent to this example. In [DVV]

it was observed that the immersion is a 24-fold cover of its image. D. DeTurck and
W. Ziller [DZ] were able to identify the image as the tetrahedral manifold S3/T ∗.
Here T ∗ denotes the binary tetrahedral group, the double cover of the group of
symmetries of the tetrahedron. They also described the immersion explicitly as
follows.
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F̃ : S3(1) ↪→S6(
1

4
)

(z, w, z̄, w̄) 7→ [

√
6

4
(z̄ w̄5 − z̄5w̄ ),

5

4
z z̄ w̄4 − 1

4
w w̄5 +

5

4
w z̄4 w̄ − 1

4
z z̄5 ,

√
10

2
z2 z̄ w̄3 −

√
10

4
z w w̄4 +

√
10

4
z w z̄4 −

√
10

2
w2 z̄3 w̄ ,

−
√

15

4
ı (z3 z̄ w̄2 − z w2 z̄3) +

√
15

4
ı (z2 w w̄3 − w3 z̄2 w̄) ] .

Here ı stands for the standard square root of −1 . One easily shows that this
isometrically immerses S3(1) into S6( 1

4) ⊂ C3 ⊕ R = R7 and hence is a minimal
isometric immersion by the above mentioned Takahashi result. The map is invariant
under α(z, w) = (ı z,−ı w) , β(z, w) = (−w, z) and γ(z, w) = ( 1

2
(1+ı) (z−w), 1

2
(1−

ı) (z +w)). Then α, β, and γ generate a group of order 24 isomorphic to the binary
tetrahedral group T ∗ and D. DeTurck and W. Ziller show that the immersion defines
an embedding of S3/T ∗ into S6( 1

4 ).
They also prove that this immersion is unique within the class of SU(2)− equi-

variant minimal isometric immersions of S3(1) into S6(r) . They conjectured that
it is possible to remove the equivariance condition and to turn this into a global
uniqueness result. The purpose of this paper is to show that this is in fact impossible
in the case of infinitesimal uniqueness.

Theorem 1. The fixed minimal isometric immersion F̃ : S3(1) ↪→ S6( 1
4
) as

described above is not infinitesimally rigid within the class of all degree 6 minimal
isometric immersions.

Here we use the same notation as in [To2] which will be explained in the following
section. We also prove a weaker uniqueness property of this immersion.

Theorem 2. The fixed minimal isometric immersion F̃ : S3(1) ↪→ S6( 1
4
) as

described above is linearly rigid within the class of all degree 6 minimal isometric
immersions.

The author acknowledges the support of the National Science Foundation and
thanks Todd Coffey for excellent programming assistance.

1. Geometric Preliminaries

Let M be an n-dimensional compact Riemannian manifold and SN (r) a sphere
of dimension N and radius r .

A fundamental result of T. Takahashi [T] is the following theorem:

Theorem (Takahashi). Let M be an n-dimensional compact Riemannian man-
ifold and f : M → RN an isometric immersion. Then f is a minimal isometric
immersion into a round sphere if and only if all components of f are eigenfunctions
of the Laplace operator on M with respect to the same eigenvalue.
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Therefore the main idea in constructing minimal isometric immersions of a man-
ifold M into a sphere is to find eigenvalues of the Laplacian on M of sufficiently
high multiplicity in order to provide the coordinate functions of the immersions.

Another result of Takahashi [T] is that all isotropy irreducible homogeneous
Riemannian manifolds, i.e. manifolds M = G/H whose isotropy group H acts
irreducibly on the tangent space, do admit such immersions. To see this we con-
sider the eigenspace Eλ to a fixed eigenvalue λ 6= 0. On Eλ we have the inner
product induced by that of L2(M) and the group G acts on Eλ by isometries. Let
{φ1, . . . , φN} be an orthonormal basis of Eλ and let φ = (φ1, . . . , φN ) : M → RN .
Then

∑

dφ2
i on the one hand can be regarded as the inner product on Eλ and on

the other hand as the metric on M which is the pull back of the standard metric
on RN under φ . In the first interpretation it is clear that

∑

dφ2
i must be invariant

under the action of G and hence the metric
∑

dφ2
i on M must be also. But then

∑

dφ2
i must be a multiple of the given metric on M as both are invariant under

the irreducible action of the isotropy group H. This multiple cannot be zero as
the functions φi are not constant. Therefore, after multiplying the metric on M
by a constant, φ : M → RN is an isometric immersion, which by our first stated
theorem by Takahashi [T] gives rise to a minimal isometric immersion into a sphere.
This immersion is called the standard minimal immersion of degree g if λ is the gth
nonzero eigenvalue. We call two immersions congruent if they differ by an isometry
of the ambient space. Note that a different choice of orthonormal basis for Eλ gives
rise to a congruent immersion.

An example of such a homogeneous Riemannian manifold is the n-dimensional
sphere, realized as the homogeneous space SO(n + 1)/SO(n). The eigenfunctions
of Sn(1) are simply the restrictions of harmonic homogeneous polynomials on Rn+1

to Sn(1). All the harmonic homogeneous polynomials of degree g restrict to eigen-
functions on Sn with the same eigenvalue λg = g (g + n− 1) and the dimension of
this eigenspace is equal to Ng = (2g + n− 1)(g + n− 2)!/ (g!(n− 1)!).

In [DW2] the space of all minimal isometric immersions of Sn(1) into SN (r) was
examined in detail, and it was shown that for n > 2 there are many minimal iso-
metric immersions besides the standard ones. If we fix r =

√

n/λg, or equivalently
fix the degree g of the harmonic homogeneous polynomials, then these minimal
isometric immersions (up to congruence of the ambient space) are parametrized by
a compact convex body in a finite dimensional vector space, which we will now
describe. Let φ0 : Sn(1) −→ SNg−1(

√

n/λg) be the standard minimal isometric
immersion of degree g. Then any other isometric immersion φ of degree g is given
by A ◦ φ0 where A is an Ng × Ng matrix. We can write A = R ◦ P where R is
orthogonal and P symmetric and positive semi-definite. Hence A ◦ φ0 is congruent
to P ◦ φ0 and one can show that P ◦ φ0 is an isometric immersion if and only if
P 2 − Id is orthogonal to Sym2((φ0)∗(TSn)) ⊂ Sym2RNg . Here TSn denotes the
tangent bundle of Sn . If we let Wg be the vector space of all symmetric matrices
orthogonal to Sym2((φ0)∗(TSn)) and Bg = {S ∈ Wg|S + Id ≥ 0}, then in fact
P ◦ φ0 is an isometric immersion if and only if P 2 − Id ∈ Bg . One can show that
S ∈ Wg implies tr(S) = 0. It follows that the eigenvalues of elements in Bg are
bounded and hence Bg is a compact convex body which parametrizes all congruence
classes of minimal isometric immersions of degree g. An explicit parametrization is
given by S ∈ Bg −→

√
S + Id ◦ φ0.
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In [DW2] it is shown that for n = 2 and any g and for g = 2, 3 and any n the
space Bg is a point, i.e. any such minimal isometric immersion is congruent to the
standard one, φ0. For any other value of n and g they show that dim(Bg) ≥ 18 and
that the dimension of Bg grows very quickly with n or g. Only recently Toth [To1]
determined the exact dimension of Bg by showing that the lower estimate given by
DoCarmo and Wallach was sharp.

In this work we will be concerned with the case of M = S3 , whose eigenfunc-
tions are harmonic homogeneous polynomials in four real variables. The isometry
condition translates into the following system of partial differential equations :

N
∑

k=1

∂fk

∂xi

∂fk

∂xj

= δij (
4

∑

l=1

x2
l )

g−1 + C xi xj (
4

∑

l=1

x2
l )

g−2 (1.0)

Here the fk denote the components of f : S3(1) ↪→ SN−1(r) , g stands for the

degree of the polynomials used and C is the constant C =
3g2

g (g + 2)
− 1 .

A slightly different system of differential equations was used by N. Wallach [Wa].
He assumed the target sphere to have radius 1. For an explanation of equations
(1.0), see [E1].

In this setting it is more natural to translate the system (1.0) of four real variables
into a system of two complex variables. To do so we will set z = x1 + ı x2 , w =
x3 + ı x4 and

∂f

∂x1
=

∂f

∂z
+

∂f

∂z̄
;

∂f

∂x2
=

1

ı
(
∂f

∂z
− ∂f

∂z̄
)

∂f

∂x3
=

∂f

∂w
+

∂f

∂w̄
;

∂f

∂x4
=

1

ı
(
∂f

∂w
− ∂f

∂w̄
)

M f = 4 (
∂2f

∂z∂z̄
+

∂2f

∂w∂w̄
)

Using these rules we obtain the following six equations:

N+1
∑

k=1

(
∂fk

∂z
)2 =

C

4
(z z̄ + w w̄)g−2 z̄2 (1.1)

N+1
∑

k=1

(
∂fk

∂w
)2 =

C

4
(z z̄ + w w̄)g−2 w̄2 (1.2)

N+1
∑

k=1

∂fk

∂z

∂fk

∂z̄
=

1

2
(zz̄ + ww̄)g−1 +

C

4
(zz̄ + ww̄)g−2zz̄ (1.3)

N+1
∑

k=1

∂fk

∂w

∂fk

∂w̄
=

1

2
(zz̄ + ww̄)g−1 +

C

4
(zz̄ + ww̄)g−2ww̄ (1.4)

N+1
∑

k=1

∂fk

∂z

∂fk

∂w
=

C

4
(zz̄ + ww̄)g−2 z̄ w̄ (1.5)
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N+1
∑

k=1

∂fk

∂z̄

∂fk

∂w
=

C

4
(zz̄ + ww̄)g−2zw̄ (1.6)

Each of these equations is a polynomial equation which we can solve by equating
coefficients. We thus obtain a set of quadratic equations in the coefficients of the
polynomials.

Following [To2] we now explain the various rigidity properties of a minimal iso-
metric immersion.

Definition 1.7. A minimal isometric immersion f : Mn ↪→ Sm is said to be
rigid if whenever f ′ : Mn ↪→ Sm is another minimal isometric immersion then
f ′ = A ◦ f for some A ∈ O(m + 1) .

Remark. Note that immersions which differ by a precomposition with an isome-
try of the domain may lead to non-congruent immersions. For M = Sn(1) , the
above notion of rigidity is consistent with the definition of the moduli space Bg

by DoCarmo and Wallach. In this case, rigidity of f amongst degree g minimal
isometric immersions implies that the codimension m - stratum within Bg collapses
to a point. Here the codimension m - stratum is the set of congruence classes of
degree g minimal isometric immersions from Sn(1) to Sm(rg) .

There is also a weaker notion of rigidity.

Definition 1.8. An isometric immersion f : Mn ↪→ Sm is said to be linearly
rigid if whenever there exists A ∈M(m + 1, R) such that

(1) Image(A ◦ f̂) ⊂ Sm and

(2) A ◦ f̂ : Mn ↪→ Rm+1 is an isometric immersion,

then A ∈ O(m + 1) . Here f̂ denotes the corresponding map into Rm+1 .

Note that if f is a minimal isometric immersion, then rigidity of f implies linear
rigidity. Also by Takahashi’s theorem, (2) implies (1) for minimal isometric immer-

sions. Hence to show that the fixed immersion F̃ is linearly rigid, we show that
(2) of Definition 1.8 is satisfied.

We will now discuss a third notion of rigidity, namely infinitesimal rigidity. Let
f : Mn ↪→ Sm be a minimal isometric immersion. Then one can show [To2, III.1.19]
that if t → ft , t ∈ R is a variation of f through minimal isometric immersions

then the vector field v =
∂ft

∂t
|t=0 is a Jacobi field along f . In fact [To2] shows that

this is true for general harmonic maps f : Mn ↪→ Sm . A natural example of such
a variation is given by the action of the isometry group SO(m+1) , i.e. ft = φt ◦f
where (φt)t∈R ⊂ SO(m+1) is a one-parameter subgroup. When derived from such
an “orthogonal” variation, the Jacobi field v along f has two properties. First, v is
projectable, i.e. for x , y ∈ M, f(x) = f(y) implies vx = vy . This follows from the
fact that

v =
∂ft

∂t
|t=0 = φ̇t ◦ f = X ◦ f
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where X ∈ SO(m + 1) is the Killing vector field on Sm induced by (φt)t∈R ⊂
SO(m + 1) . Second, the generalized divergence

divfv = trace (< f∗,∇v >) ∈ C∞(M)

must vanish. Here < , > denotes the inner product on M and ∇ the associated
connection. To show this, one uses the property that for a Killing vector field X
the derivation AX = LX−∇X is skew-symmetric with respect to the metric < , > .

Going back to the general case of f : Mn ↪→ Sm being a minimal isometric
immersion we define K(f) to be the vector space of all divergence free Jacobi
fields along f , i.e.

Definition 1.9.

(1) Let K(f) be the set {v | v is a Jacobi field along f and divfv = 0} .
(2) Denote by PK(f) ⊂ K(f) the linear subspace of projectable elements of

K(f) .

As our manifolds are compact, the vector space K(f) will be finite dimensional.
From the above argument in the case of the variation being given by actions of the
isometry group SO(m + 1) , we obtain SO(m + 1) ◦ f ⊆ PK(f) .

Definition 1.10. A harmonic map f : Mn ↪→ Sm is called infinitesimally
rigid if SO(m + 1) ◦ f = PK(f) . If f is not infinitesimally rigid it is called
infinitesimally flexible.

2. Proof of Theorem 1

Let F : S3(1) ↪→ S6( 1
4 ) be an arbitrary minimal isometric immersion of degree

6. Recall that there are (g + 1)2 harmonic polynomials of degree g . Thus each

component F k can be written as F k =
∑49

i=1 ak,i pi with k = 1, · · · , 7 where the

pi form a basis of the eigenspace. In order to study the infinitesimal behavior of F̃
we parametrize F and assign

F k
t ←→ ak,i(t)

∂F k
t

∂t
←→ ∂ak,i(t)

∂t
,

where F0 is the solution we already know, i.e. F0 = F̃ .
Substituting Ft into the partial differential equations for the isometry condition

(1.1) to (1.6) we obtain quadratic equations in the coefficients ak,i(t) . Taking the
partial derivative of this system with respect to t at t = 0 then leads to a linear
system of equations. Our first goal is to compute the dimension of this linear
system.

Definition 2.1. Denote by L the solution space of the linear system obtained by
taking the derivative with respect to t at t = 0 of the system of quadratic equations
in ak,i(t) associated to the parametrized isometry condition (1.1) to (1.6).
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Proposition 2.2. The vector space L is 22-dimensional.

Proof. As in [E1] and [E2] we pick a basis for the vector space of harmonic homo-
geneous polynomials of degree 6 in two complex variables. With this basis we can
describe the components of the function F as:

F k
t = ak,1(t) w̄6 + ak,2(t) z̄ w̄5 + ak,3(t) z̄2 w̄4 + ak,4(t) z̄3 w̄3 + ak,5(t) z̄4 w̄2+

ak,6(t) z̄5 w̄ + ak,7(t) z̄6 + ak,8(t) (w w̄5 − 5 z z̄ w̄4)+

ak,9(t) (w z̄ w̄4 − 2 z z̄2 w̄3) + ak,10(t) (w z̄2 w̄3 − z z̄3 w̄2)+

ak,11(t) (w z̄3 w̄2 − 1

2
z z̄4 w̄) + ak,12(t) (w z̄4 w̄ − 1

5
z z̄5)+

ak,13(t) w z̄5 + ak,14(t) (w2 w̄4 − 8 z w z̄ w̄3 + 6 z2 z̄2 w̄2)+

ak,15(t) (w2 z̄ w̄3 − 3 z w z̄2 w̄2 + z2 z̄3 w̄)+

ak,16(t) (w2 z̄2 w̄2 − 4

3
z w z̄3 w̄ +

1

6
z2 z̄4) + ak,17(t) (w2 z̄3 w̄ − 1

2
z w z̄4)+

ak,18(t) w2 z̄4 + ak,19(t) (w3 w̄3 − 9 z w2 z̄ w̄2 + 9 z2 w z̄2 w̄ − z3 z̄3)+

ak,20(t) (w3 z̄ w̄2 − 3 z w2 z̄2 w̄ + z2 w z̄3) + ak,21(t) (w3 z̄2 w̄ − z w2 z̄3)+

ak,22(t) w3 z̄3 + ak,23(t) (w4 z̄ w̄ − 2 z w3z̄2) + ak,24(t) w4z̄2 + ak,25(t) w5 z̄+

āk,1(t) w6 + āk,2(t) z w5 + āk,3(t) z2 w4 + āk,4(t) z3 w3 + āk,5(t) z4 w2+

āk,6(t) z5 w + āk,7(t) z6 + āk,8(t) (w5 w̄ − 5 z w4 z̄)+

āk,9(t) (z w4 w̄ − 2 z2 w3 z̄) + āk,10(t) (z2 w3 w̄ − z3 w2 z̄)+

āk,11(t) (z3 w2 w̄ − 1

2
z4 w z̄) + āk,12(t) (z4 w w̄ − 1

5
z5 z̄)+

āk,13(t) z5 w̄ + āk,14(t) (w4 w̄2 − 8 z w3 z̄ w̄ + 6 z2 w2 z̄2)+

āk,15(t) (z w3 w̄2 − 3 z2 w2 z̄ w̄ + z3 w z̄2)+

āk,16(t) (z2 w2 w̄2 − 4

3
z3 w z̄ w̄ +

1

6
z4 z̄2) + āk,17(t) (z3 w w̄2 − 1

2
z4 z̄ w̄)+

āk,18(t) z4 w̄2 + āk,20(t) (z w2 w̄3 − 3 z2 w z̄ w̄2 + z3 z̄2 w̄)+

āk,21(t) (z2 w w̄3 − z3 z̄ w̄2) + āk,22(t) z3 w̄3+

āk,23(t) (z w w̄4 − 2 z2 z̄ w̄3) + āk,24(t) z2 w̄4 + āk,25(t) z w̄5 (2.3)

As a next step we compute the partial derivatives
∂F k

t

∂z
,

∂F k
t

∂w
,

∂F k
t

∂z̄
, and

∂F k
t

∂w̄
and substitute those into the isometry partial differential equations (1.1) to (1.6).
In our case the range of F will be S6( 1

4 ) ⊂ R7 , hence we assume that N+1 = 7 . We
obtain a system of polynomial equations in degree 6 which we solve by coefficient
comparison. As in [E1] and [E2] we obtain a system of quadratic equations in
the coefficients ak,i(t) . This system consists of linear combinations of terms of the

form
∑7

k=1 ak,i(t) ak,j(t) , see [E1] for more details. In fact, in [E1] we used the

corresponding linear system in the variables
∑7

k=1 ak,i ak,j . As this linear system
has real coefficients yet the variables ak,i(t) are complex numbers we obtain the
following condition.
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Condition 1. Let I = {1, · · · , 25} . Then the following hold:
7

∑

k=1

ak,i(t) ak,j(t) =
7

∑

k=1

ak,i(t) ak,j(t) for all i, j ∈ I ,

7
∑

k=1

ak,i(t) ak,j(t) =
7

∑

k=1

ak,i(t) ak,j(t) for all i, j ∈ I .

As the next step we differentiate the system of quadratic equations with respect
to t at t = 0. We obtain a linear system in the a′k,i(0) , as

∑7
k=1 ak,i ak,j transforms

to
7

∑

k=1

a′k,i(0) ak,j(0) +

7
∑

k=1

ak,i(0) a′k,j(0)

and we substitute the values for ak,i(0) as the coefficients of the fixed immersion

F̃ . Using the basis as described above, the coefficients of F̃ are

ak,j(0) = 0 for all j /∈ { 2, 6, 8, 12, 17, 21, 23 } ;

ak,2(0) =











√
6

8 , for k = 1 ;

−
√

6
8

ı , for k = 2 ;

0 , for k 6= 1, 2 ;

and ak,6(0) = −ak,2(0) .

ak,8(0) =











− 1
8 , for k = 3 ;

1
8 ı , for k = 4 ;

0 , for k 6= 3, 4 ;

and ak,12(0) = −5 ak,8(0) .

ak,17(0) =











−
√

10
4 , for k = 5 ;

√
10
4

ı , for k = 6 ;

0 , for k 6= 5, 6 ;

and ak,23(0) = ak,17(0) .

ak,21(0) =

{ √
15
4 ı , for k = 7 ;

0 , for k 6= 7 .

Before we solve this linear system using a mathematical software package (Maple)
we observe the following relation between taking derivatives and complex conjuga-
tion. Let ak,i(t) = Re(ak,i(t)) + ı Im(ak,i(t)) = aR

k,i(t) + ı aI
k,i(t) . Then

∂ak,i(t)

∂t
=

∂aR
k,i(t)

∂t
+ ı

∂aI
k,i(t)

∂t
and

∂ak,i(t)

∂t
=

∂aR
k,i(t)

∂t
− ı

∂aI
k,i(t)

∂t

=
∂(aR

k,i(t)− ı aI
k,i(t))

∂t

=
∂(ak,i(t))

∂t
Hence we obtain a second condition which shows that the operations “complex

conjugation” and “
∂

∂t
|t=0 ” are commutative.
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Condition 2.
∂(ak,i(t))

∂t
|t=0 =

∂ak,i(t)

∂t
|t=0 .

Using these two conditions in solving the linear system, one obtains that the
dimension of the solution space is 22. �

Remarks.

(1) Using the same conditions and successive elimination of variables to reduce
the system, one can also solve this system by hand. As the system of linear
equations is quite large (175 complex variables) this is a lengthy calculation.
The answer is, of course, the same.

(2) Even using mathematical software packages such as Mathematica or Maple
causes some difficulties with this system of equations as both of these pack-
ages cannot handle symbolic complex conjugation. In order to avoid this
problem we identified C with R2 and obtained a system in the real and imag-
inary parts of the original variables. The program and an explicit basis for
the solution space is available at http://www.orst.edu/ escherc.

(3) Note that dim(L) = 22 > dim(SO(7)) = 21 .

For the remainder of the proof of the theorem we use the following proposition
by Toth [To2].

Proposition [To2, Ch. 5, 2.3]. For any harmonic map f : M ↪→ Sn ,
dim(PK(f)) ≥ (n− r

2
) (r + 1) , where r + 1 is the dimension of the linear subspace

spanR(Im(f)) ⊂ R
n+1 . Furthermore equality holds if and only if f is infinitesimally

rigid.

Recall from the previous section (Definition 1.7) that PK(f) is the vector space
of projectable, divergence free Jacobi fields along f . Applying the proposition in
our case (n = 6 , r = 6) we obtain dim(PK(f)) ≥ 21 .

Proposition 2.3. The solution space L is a subspace of the vector space PK(F̃ ) .

Note that this concludes the proof of the theorem: as both L and PK(F̃ ) are

finite dimensional vector spaces, Proposition 2.3 implies dim(PK(F̃ )) ≥ dim(L) =
22 where the last equality follows from Proposition 2.2. But then the above propo-
sition [To2, Ch. 5, 2.3] implies that F̃ cannot be infinitesimally rigid.

Proof of Proposition 2.3.
Recall the definition of the harmonic variation Ft of the fixed minimal isometric

immersion F̃ .

Ft = (

49
∑

j=1

a1,j(t) pj, · · · ,
49
∑

j=1

a7,j(t) pj) .

In the process of computing the dimension of L we formed the vector field v =
∂Ft

∂t
|t=0 . That v is a Jacobi field along F̃ follows directly from [To2, Proposition

III.1.19]. There Toth proves that for a general harmonic map f : M → N between

Riemannian manifolds M and N , the vector field v =
∂ft

∂t
|t=0 formed by a variation
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of f through harmonic maps is a Jacobi field along f . In our case we additionally
require the maps Ft to be isometries. Hence we can describe the solution space L
in the following way.

L = {v =
∂Ft

∂t
|t=0 : Ft as above and Ft an isometry}

= {v =
∂Ft

∂t
|t=0 : Ft as above and Ft is a solution to the partial differential

equations [1.1] to [1.6] associated to the isometry condition.}

Now let v ∈ L . Our goal is to show that v ∈ PK(F̃ ) . We use the following
necessary and sufficient condition for a vector field to belong to K(f) .

Proposition [V.2.5, To2]. Let v be a vector field along f : M → Sn , a harmonic
map. Then

v ∈ K(f)⇐⇒4v̂ = 2 e(f) v̂ ,

where e(f) is the energy density of f and v̂ is the induced vector field v̂ : M →
Rn+1 via the canonical identification ˆ : T (Rn+1)→ Rn+1 .

Note that in our case f has constant energy density, in particular e(f) = λ
2 ∈ R .

Hence in this case the necessary and sufficient condition becomes

v ∈ K(f)⇐⇒4v̂ = λ v̂ .

Therefore each component of v̂ belongs to the eigenspace Vλ corresponding
to the eigenvalue λ if and only if v ∈ K(f) . But the components of v̂ are all
eigenfunctions of the Laplacian on S3 with respect to the same eigenvalue λ . Hence
v ∈ K(F̃ ) . The definition of PK(f) directly implies that if f is an embedding,

then PK(f) = K(f) . Since F̃ is an embedding [DZ], we are done.

This concludes the proof of Proposition 2.3 and hence the proof of the theo-
rem. �

3. Proof of Theorem 2

We need to show that for an arbitrary A ∈M(7, R) such that A ◦ F̃ is an iso-
metric immersion, we have A ·AT = Id . Using S3 ⊂ C2 we obtain as coordinates of
A ◦ F̃ : A ◦ F̃ (z, w, z̄, w̄) = (a11 F̃1 + · · ·a17 F̃7, · · · , a71 F̃1 + · · ·a77 F̃7) where A =

(aij)
7
i,j=1 and the F̃k denote the components of F̃ . This is exactly how we con-

structed a general minimal isometric immersion in [E1,E2] except that we used com-
plex coefficients. To translate to real coefficients, let {p2, p6, p8, p12, p17, p21, p23}
be the basis polynomials as described in (2.3). Then the fixed immersion can be
written as
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F̃ : S3(1) ↪→S6(
1

4
)

(z, w, z̄, w̄) 7→ [

√
6

8
(p2 + p̄2 − p6 − p̄6),

√
6

8ı
(p2 − p̄2 − p6 + p̄6),

− 1

8
(p8 + p̄8) +

5

8
(p12 + p̄12),−

1

8ı
(p8 − p̄8) +

5

8ı
(p12 − p̄12),

−
√

10

4
(p17 + p̄17)−

√
10

8
(p̄23 + p23),

−
√

10

4ı
(p17 − p̄17)−

√
10

8ı
(p̄23 − p23),−

√
15

4
ı (p21 − p̄21) ] .

Composing with an arbitrary matrix









a11 a12 . . . a17

a21 a22 . . . a27
...

...
. . .

...
a71 a72 . . . a77









with real entries we obtain

F̃ : S3(1) ↪→S6(
1

4
)

(z, w, z̄, w̄) 7→ [

√
6

8
(a11 − ı a12) p2 +

√
6

8
(a11 + ı a12) p̄2 +

√
6

8
(−a11 + ı a12) p6

+

√
6

8
(−a11 − ı a12) p̄6 −

1

8
(a13 − ı a14) p8 −

1

8
(a13 + ı a14) p̄8

+
5

8
(a13 − ı a14) p12 +

5

8
(a13 + ı a14) p̄12 −

√
10

4
(a15 − ı a16) p17

−
√

10

4
(a15 + ı a16) p̄17 −

√
10

8
(a15 + ı a16) p23

−
√

10

8
(a15 − ı a16) p̄23 −

√
15

4
ı a17 p21 +

√
15

4
ı a17p̄21 , · · · ,

√
6

8
(a71 − ı a72) p2 +

√
6

8
(a71 + ı a72) p̄2 +

√
6

8
(−a71 + ı a72) p6

+

√
6

8
(−a71 − ı a72) p̄6 −

1

8
(a73 − ı a74) p8 −

1

8
(a73 + ı a74) p̄8

+
5

8
(a73 − ı a74) p12 +

5

8
(a73 + ı a74) p̄12 −

√
10

4
(a75 − ı a76) p17

−
√

10

4
(a75 + ı a76) p̄17 −

√
10

8
(a75 + ı a76) p23

−
√

10

8
(a75 − ı a76) p̄23 −

√
15

4
ı a77 p21 +

√
15

4
ı a77p̄21] .
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Hence the complex coefficients translate to real coefficients in the following way.

uk2 =

√
6

8
(ak1 − ı ak2) ; uk6 =

√
6

8
(−ak1 + ı ak2) ;

uk8 = −1

8
(ak3 − ı ak4) ; uk12 =

5

8
(ak3 − ı ak4) ;

uk17 = −
√

10

4
(ak5 − ı ak6) ; uk23 = −

√
10

8
(ak5 + ı ak6) ;

uk21 = −
√

15

4
ı ak7 ; (3.1)

Using our algorithm for existence, see [E1,E2], for a general immersion with
components Fk =

∑

i∈I uki pi where I = {2, 6, 8, 12, 17, 21, 23} we obtain

7
∑

k=1

uki ukj =

7
∑

k=1

ūki ūkj = 0 for all (i, j) 6= (17, 23), (21, 21) ;

7
∑

k=1

uki ūkj =

7
∑

k=1

ūki ukj = 0 for all (i, j) 6= (2, 6), (8, 12) and i 6= j ;

7
∑

k=1

uk2 ūk2 =
7

∑

k=1

uk6 ūk6 =
3

16
;

7
∑

k=1

uk8 ūk8 =
1

25

7
∑

k=1

uk12 ūk12 =
1

32
;

7
∑

k=1

uk17 ūk17 = 4
7

∑

k=1

uk23 ūk23 =
5

4
;

7
∑

k=1

uk21 ūk21 =
15

16

7
∑

k=1

uk2 ūk6 =
1

5

7
∑

k=1

uk21
2 ;

7
∑

k=1

uk8 ūk12 =
1

6

7
∑

k=1

uk21
2 ;

7
∑

k=1

uk17 uk23 = −2

3

7
∑

k=1

uk21
2 . (3.2)

Translating equations (3.2) into real equations using relations (3.1) yields

7
∑

k=1

aki
2 = 1 for all i = 1 , · · · , 7 ;

7
∑

k=1

aki akj = 0 for all i 6= j .

But this implies that AT · A = Id , hence A ∈ O(7) .
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