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Abstract

We study seven dimensional manifolds of fixed cohomology type with integer coeffi-
cients: H0 ∼= H2 ∼= H5 ∼= H7 ∼= Z, H4 ∼= Zr, H1 = H3 = H6 = 0, simply called
manifolds of type r, where Zr, is a cyclic group of order r generated by the square of the
generator of H2. Such manifolds include the Eschenburg spaces, the Witten manifolds
and the generalized Witten manifolds. Most spaces from these three families admit a
Riemannian metric of positive sectional curvature or an Einstein metric of positive Ricci
curvature. In 1991 M. Kreck and S. Stolz introduced three invariants to classify manifolds
M of type r up to homeomorphism and diffeomorphism. In this article, we show that for
spin manifolds of type r we can replace two of the homeomorphism invariants by the first
Pontrjagin class and the self-linking number of the manifolds. As the formulas of the two
latter invariants are in general much easier to compute, this simplifies the classification of
these manifolds up to homeomorphism significantly.

Keywords: Characteristic classes, Homeomorphism classification, Diffeomorphism clas-
sification
MSC: 55R15, 55R40, 57R20

1. INTRODUCTION

Manifolds of type r have played an important role in various different areas of dif-
ferential geometry. We will describe their role in the areas of positive sectional cur-
vature, positive Ricci curvature and Einstein manifolds. The question of finding new
examples of compact simply connected homogeneous and inhomogeneous spaces admit-
ting a Riemannian metric with positive sectional curvature has been interesting to ge-
ometers since the 1960s. Besides the compact rank one symmetric spaces which always
have positive sectional curvature, there are very few known examples, for details see
[5],[26],[2],[12],[28],[9],[10],[4]. Here, we focus on Witten manifolds and Eschenburg
spaces. An infinite family of Witten manifolds was found by E. Witten [28] in 1981.
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These spaces are homogeneous 7-manifolds admitting Einstein metrics of positive Ricci
curvature. There is also a notion of generalized Witten manifolds but it is not known
whether they admit Einstein metrics. In 1982 J. H. Eschenburg [9] introduced a new con-
struction of spaces, later called biquotients, which are a generalization of homogeneous
spaces. Biquotients are inhomogeneous in general. In [9] Eschenburg also described
a generalization of an infinite family of homogeneous spaces admitting a Riemannian
metric of positive sectional curvature, the so-called Aloff-Wallach spaces [2]. This new
infinite family consists of compact simply connected 7-manifolds, now called Eschenburg
spaces, which are biquotients and include a subfamily admitting a Riemannian metric of
positive sectional curvature.

The topology of biquotients has been studied extensively. In this article, we will focus
on the topology of the Eschenburg spaces and the generalized Witten manifolds. Both
families have the same cohomology ring structure:

H0 ∼= H2 ∼= H5 ∼= H7 ∼= Z, H4 ∼= Zr, H1 = H3 = H6 = 0,

where Zr is a cyclic group of order r ≥ 1, and u2 is a generator ofH4 if u is a generator of
H2. Manifolds satisfying this condition will be called a manifolds of type r. The topology
of manifolds of type r is discussed in [13],[14],[1],[17],[18],[19],[20],[11],[7]. In 1988,
M. Kreck and S. Stolz [13] introduced new invariants, now called Kreck-Stolz invariants,
and gave a classification of manifolds of type r up to homeomorphism and diffeomor-
phism. We state all theorems in the orientation preserving case; for the corresponding
theorems in the orientation reversing case the linking form and the Kreck-Stolz invariants
change signs.

Classification Theorem I ([14],[15]). Let M and M ′ be two smooth manifolds of type r
which are both spin or both nonspin. Then M is (orientation preserving) diffeomorphic
(homeomorphic) to M ′ if and only if si(M) = si(M

′) ∈ Q/Z (si(M) = si(M
′) ∈ Q/Z)

for i = 1, 2, 3.

M. Kreck and S. Stolz used their classification theorem to classify all Witten manifolds,
see [13], as well as the Aloff-Wallach spaces up to homeomorphism and diffeomorphism,
see [14]. In the process, they found the first homeomorphic but not diffeomorphic Ein-
stein manifolds admitting positive sectional curvature. In 1997, L. Astey, E. Micha and
G. Pastor [1] used Classification Theorem I to classify a particular subfamily of Eschen-
burg spaces up to homeomorphism and diffeomorphism. In 1997 and 1998, B. Kruggel
[18],[19] obtained various homotopy classifications. We will use the following homotopy
classification which can be expressed as follows:

Classification Theorem II ([19]). Let M and M ′ be two smooth spin manifolds of type
odd r with generators uM and uM ′ ofH2(M ;Z) andH2(M ′;Z), respectively. LetL(uM

2, uM
2)

denote the self-linking number of M .
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• If π4(M) = π4(M
′) = 0, M and M ′ are (orientation preserving) homotopy

equivalent if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), 2r · s2(M) = 2r · s2(M ′) .

• If π4(M) ∼= π4(M
′) ∼= Z2, M and M ′ are (orientation preserving) homotopy

equivalent if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), r · s2(M) = r · s2(M ′) .

In [18], B. Kruggel classified all generalized Aloff-Wallach spaces and generalized
Witten manifolds with odd order of the fourth cohomology group up to homotopy. Using
his Classification Theorem II, he classified all Eschenburg spaces up to homotopy. In
2005, generalized Witten manifolds were classified by C. Escher [11] up to homeomor-
phism and diffeomorphism. During the same year, B. Kruggel’s paper [20] was published
based on an earlier preprint in which a new version of the homeomorphism and diffeomor-
phism classification of the Eschenburg spaces was stated without proof. A generalization
of this theorem is the main purpose of our article. Moreover, B. Kruggel gave a method to
compute the Kreck-Stolz invariants si for almost all Eschenburg spaces, namely for those
Eschenburg spaces satisfying condition (C). Two years later, in 2007 T. Chinburg, C. Es-
cher and W. Ziller [7] used B. Kruggel’s construction and a program written in Maple
and C code to classify all Eschenburg spaces satisfying condition (C) up to homotopy,
homeomorphism, and diffeomorphism.

The main purpose of the present paper is to give a general simplification of the home-
omorphism and diffeomorphism classification of most manifolds of type r. This classifi-
cation theorem is divided into two cases: the spin case and the nonspin case:

Theorem A. Suppose that M and M ′ are smooth spin manifolds of type odd r with
isomorphic fourth homotopy groups. Let uM ∈ H2(M ;Z) and uM ′ ∈ H2(M ′;Z) be both
generators.

• M is (orientation preserving) diffeomorphic to M ′ if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), s1(M) = s1(M
′), s2(M) = s2(M

′) .

• M is (orientation preserving) homeomorphic to M ′ if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), p1(M) = p1(M
′), s2(M) = s2(M

′) .

Theorem B. Suppose that M and M ′ are smooth nonspin manifolds of type r. Let uM ∈
H2(M ;Z) and uM ′ ∈ H2(M ′;Z) be both generators.

• M is (orientation preserving) diffeomorphic to M ′ if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), s1(M) = s1(M
′), s2(M) = s2(M

′) .

• M is (orientation preserving) homeomorphic to M ′ if and only if

L(uM
2, uM

2) = L(uM ′
2, uM ′

2), s1(M) = s1(M
′), s2(M) = s2(M

′) .
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All of the above invariants are briefly described as follows. Firstly, the Kreck-Stolz
invariants si were defined in [13] via a bounding manifold of a manifold of type r. They
are elements in Q/Z. Also, in [14] a generalized definition of the Kreck-Stolz invariants
were given without their explicit formulas. The generalized formulas will be computed
in Section 2.2 and can be expressed in terms of a bounding manifold W with boundary
∂W = M of type r.

Secondly, L(uM
2, uM

2), where uM ∈ H2(M ;Z) is a generator, is the self-linking
number of M . It is an element in Q/Z and can be computed by using the description of
the linking form L defined in [3].

Finally, we show in Section 3 that there exists a relation between the characteristic
number z4 defined on a bounding manifold W and the self-linking number defined on its
boundary M . This relation is an important ingredient in the proof of the above classifica-
tion theorems.

The proof of Theorems A and B will be given in Section 4. Moreover, combining the
formulas of the Kreck-Stolz invariants as derived in [20] and [7] with Theorem A yields
a complete picture of the classification of the Eschenburg spaces. This is described in
Section 5.

This work is based upon the second author’s doctoral dissertation at Oregon State Uni-
versity. It is a pleasure to thank Stephan Stolz for helpful information regarding the self-
linking number.

2. DEFINITIONS OF LINKING FORM AND KRECK-STOLZ INVARIANTS

Throughout the article we useH i(M) andHi(M) to denote cohomology and homology
groups with integer coefficients.

2.1. Linking form. The linking form of an oriented n-manifold is a bilinear map on the
torsion subgroups of Hp(M) and Hq(M) with values in Q/Z:

Tor(Hp(M))× Tor(Hq(M)) −→ Q/Z,
where p+ q = n+ 1. The following description of the linking form is based on [3].

Remark 2.1. In [3], Barden defined the linking form in terms of homology. However,
we derive an equivalent definition in terms of cohomology using the Poincaré duality
isomorphism.

Let M be an n-manifold having an orientation µ ∈ Hn(M) so that µ _ gives the
duality isomorphism:

µ _ : Hk(M) −→ Hn−k(M).

Let a ∈ Hp(M) and b ∈ Hq(M) be torsion elements where p+q = n+1. Then µ _ a is
an element in Hq−1(M). Note that since a is torsion, so is µ _ a. Let β be the Bockstein
homomorphism which is associated to the short exact sequence:

0 −→ Z i−→ Q j−→ Q/Z −→ 0.
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Consider the associated long exact sequence:

· · · −→ Hq−1(M ;Q)
j∗−→ Hq−1(M ;Q/Z)

β−→ Hq(M ;Z)
i∗−→ Hq(M ;Q) −→ · · · .

Suppose that there exist c1 and c2 in Hq−1(M ;Q/Z) such that β(c1) = β(c2) = b. The
existence of c1 and c2 follows from the fact that b is a torsion element. Now c1−c2 = j∗(d)
for some d ∈ Hq−1(M ;Q) by exactness. Then

〈c1, µ _ a〉 − 〈c2, µ _ a〉 = 〈j∗(d), µ _ a〉 = j 〈d, µ _ a〉 .

Here 〈ϕ, α〉 represents evaluation of a cohomology class ϕ at a homology class α. Since
µ _ a is a torsion element, the above difference is zero. This implies well-definedness
of 〈β−1(b), µ _ a〉 ∈ Q/Z, which is equal to 〈a ^ β−1(b), µ〉 ∈ Q/Z, by the canonical
relation between the cup and cap products. This yields the following definition.

Definition 2.2. Let M be an n-manifold with an orientation µ, and a ∈ Hp(M), b ∈
Hq(M) be torsion elements where p+ q = n+ 1. Then the linking number of a with b is

L(a, b) :=
〈
a ^ β−1(b), µ

〉
∈ Q/Z,

where β is the Bockstein homomorphism associated to a short exact sequence:

0 −→ Z −→ Q −→ Q/Z −→ 0.

The analogue of Lemma D in [3] using the cohomological definition of the linking form
can be described as follows:

Proposition 2.3. With the above notations,
• L is a non-singular bilinear form on the torsion subgroups ofHp(M) andHq(M).
• L(a, b)+(−1)(p−1)(q−1)L(b, a) = 0 where a and b are torsion elements of Hp(M)

and Hq(M), respectively.

Now consider a smooth manifold M of type r and a generator u ∈ H2(M). Since
H4(M) ∼= Zr, u2 is torsion. By Definition 2.2, there exists the linking number of u2 with
itself:

L(u2, u2) =
〈
u2 ^ β−1(u2), [M ]

〉
,

where β is the Bockstein homomorphism associated to a short exact sequence:

0 −→ Z −→ Q −→ Q/Z −→ 0.

In this situation, β : H3(M ;Q/Z) −→ H4(M ;Z). This gives rise to the following defi-
nition:

Definition 2.4. For a smooth manifold M of type r with a generator u of H2(M),

L(u2, u2) =
〈
u2 ^ β−1(u2), [M ]

〉
∈ Q/Z

is called the self-linking number of u2 ∈ H4(M).



6

2.2. Kreck-Stolz invariants. In [13], M. Kreck and S. Stolz defined new invariants
si(M), i = 1, 2, 3 for a closed 7-manifold M with H4(M ;Q) = 0 together with a
class u ∈ H2(M) such that w2(M) = 0 (spin case) or w2(M) = u mod 2 (nonspin
case). Here we consider a smooth manifold M of type r and u a generator of H2(M). In
this case, w2(M) = u mod 2 if M is nonspin and as always trivial if M is spin. Also,
H4(M ;Q) = 0 since H4(M) ∼= Zr. Therefore, a smooth manifold of type r satisfies
the Kreck-Stolz conditions, and hence we can use the invariants. The construction of the
Kreck-Stolz invariants can be described as follows.

Definition 2.5. LetM be a closed 7-manifold with a class u ∈ H2(M) such thatw2(M) =
0 (spin case) or w2(M) = u mod 2 (nonspin case). (M,u) is the boundary of a pair
(W, z) if W is an 8-manifold with ∂W = M , and z ∈ H2(W ) restricts to u on the
boundary such that w2(W ) = 0 (spin case) or w2(W ) = z mod 2 (nonspin case).

M. Kreck and S. Stolz showed the existence of a bounding pair (W, z) of (M,u), see
[14] for the proof.

Now let M be a closed 7-manifold with H4(M ;Q) = 0 together with a class u ∈
H2(M) such that w2(M) = 0 (spin case) or w2(M) = u mod 2 (nonspin case). Then
there exists a bounding pair (W, z). For such a pair (W, z), one defines characteristic
numbers Si(W, z) ∈ Q as follows:

S1(W, z) :=
〈
ed/2Â(W ), [W,M ]

〉
,

S2(W, z) :=
〈

ch(λ(z)− 1)ed/2Â(W ), [W,M ]
〉
,

S3(W, z) :=
〈

ch(λ2(z)− 1)ed/2Â(W ), [W,M ]
〉
,

where
• d = 0 in the spin case, d = z in the nonspin case.
• λ(z) is the complex line bundle over W with first Chern class c1(W ) = z.
• ch is the Chern character, i.e. for a line bundle V , ch(V ) = exp(c1(V )).
• Â(W ) is the Â-polynomial of W .
• [W,M ] is the relative fundamental class of a pair (W,M).

Here 〈ϕ, α〉 represents the evaluation of a cohomology class ϕ at a homology class α.
In particular, ch(λ(z) − 1) and ch(λ2(z) − 1) represent exp(z) − 1 and exp(2z) − 1,
respectively, and the first few terms of the Â-polynomial are

Â0 = 1, Â1 = − p1
23 · 3

, and Â2 =
−4p2 + 7p1

2

27 · 32 · 5
.

Note that the cohomology classes

ed/2Â(W ), ch(λ(z)− 1)ed/2Â(W ), and ch(λ2(z)− 1)ed/2Â(W )

are elements in H8(W ) which can be viewed as elements in H8(W ;Q). However, they
can not be evaluated on the relative fundamental class [W,M ]. In order to make sense
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of the above definition, we need some explanation. First, ch(λ(z) − 1)ed/2Â(W ) and
ch(λ2(z) − 1)ed/2Â(W ) are rational linear combinations of z2p1(W ) and z4. Consider
the long exact sequence for the pair (W,M) with rational coefficients:

· · · −→ H4(W,M ;Q)
j∗−→ H4(W ;Q)

i∗−→ H4(M ;Q) −→ · · · .

Then j∗ : H4(W,M ;Q) −→ H4(W ;Q) is surjective sinceH4(M ;Q) = 0. Hence, z2 can
be regarded as an element in H4(W,M ;Q) under the pullback (j∗)−1. Therefore, the cup
products z2p1(W ) and z4 should be interpreted as (j∗)−1(z2) ^ p1(W ) and (j∗)−1(z2) ^
z2, and hence as elements in H8(W,M ;Q). They can then be evaluated on the relative
fundamental class [W,M ]. Since ed/2Â(W ) involves the term p2(W ), the same argument
can not be used. It is not possible to regard p2(W ) as an element in H8(W,M ;Q). How-
ever, we can use the Hirzebruch signature theorem to eliminate p2(W ), and ed/2Â(W )
eventually is a rational linear combination of p12(W ), z2p1(W ), z4, and sign(W ), the
signature of W . Similarly, p12(W ) can be regarded as (j∗)−1(p1(W )) ^ p1(W ).

Now one can write down the explicit formulas for Si as follows:
Spin Case:

S1(W, z) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21,

S2(W, z) = − 1

24 · 3
z2p1 +

1

23 · 3
z4,

S3(W, z) = − 1

22 · 3
z2p1 +

2

3
z4,

Nonspin Case:

S1(W, z) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21 −

1

26 · 3
z2p1 +

1

27 · 3
z4,

S2(W, z) = − 1

23 · 3
z2p1 +

5

23 · 3
z4,

S3(W, z) = − 1

23
z2p1 +

13

23
z4,

where
• sign(W ) is the signature of W .
• z2p1 := 〈(j∗)−1(z2) ^ p1(W ), [W,M ]〉.
• z4 := 〈(j∗)−1(z2) ^ z2, [W,M ]〉.
• p21 := 〈(j∗)−1(p1(W )) ^ p1(W ), [W,M ]〉.

Here j∗ : H4(W,M ;Q) −→ H4(W ;Q) is the canonical homomorphism. Note that
the signature of W is always an integer. It is defined to be the number of positive
diagonal entries minus the number of negative ones of the diagonal symmetric matrix
[〈ai ^ aj, [W ]〉] for some basis {a1, ...ar} for H4(W ;Q), see [23] for details.

To obtain the invariants for the boundary M of W , we need the following proposition.
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Proposition 2.6. [14, 15] Let S(W, z) = (S1(W, z), S2(W, z), S3(W, z)) ∈ Q3. Then

{S(W, z) |W is a closed smooth manifold, w2(W ) = 0} ∼= Z⊕ Z⊕ Z,
{S(W, z) |W is a closed smooth manifold, w2(W ) = z mod 2} ∼= Z⊕ Z⊕ Z,

{S(W, z) |W is a closed topological manifold, w2(W ) = 0} ∼= (
1

28
Z)⊕ Z⊕ Z,

{S(W, z) |W is a closed topological manifold, w2(W ) = z mod 2} ∼= (
1

28
Z)⊕ Z⊕ Z.

Using this proposition and the fact that

Si(W, z) = Si(∂W, z|∂W ) + Si(W − ∂W, z|W−∂W )

one obtains the following:
Smooth case:
Si(W, z) mod Z depend only on the boundary of (W, z), and one defines

si(M,u) := Si(W, z) mod Z ∈ Q/Z.

Topological case:
Let

S1(W, z) = 28 · S1(W, z), S2(W, z) = S2(W, z), S3(W, z) = S3(W, z).

Then we define
si(M,u) := Si(W, z) mod Z ∈ Q/Z.

Since u is a element in H2(M) such that w2(M) = 0 (spin case) or w2(M) = u mod
2 (nonspin case), it turns out that these si(M,u) and si(M,u) do not change when we
replace u by −u. Therefore, if M is a manifold of type r with a generator u ∈ H2(M),
one has well-defined invariants si(M) and si(M) ∈ Q/Z for i = 1, 2, 3, called Kreck-
Stolz invariants. Note that si is a generalization of the Eells-Kuiper invariant defined in
[8].

In some situations we may not be able to find an explicit pair (W, z) with the required
properties. This means that we may not always be able to find an explicit bounding spin
manifold W if the boundary M is spin. In this case we modify the invariants as follows.
Let M be a closed 7-manifold with H4(M ;Q) = 0 together with a class u ∈ H2(M) as
above, W an 8-manifold with ∂W = M , z, c ∈ H2(W ) such that z|M = u, c|M = 0,
and w2(W ) = c mod 2 (spin case) or w2(W ) = z + c mod 2 (nonspin case). We define
characteristic numbers:

S1(W, z, c) :=
〈
e(c+d)/2Â(W ), [W,M ]

〉
,

S2(W, z, c) :=
〈

ch(λ(z)− 1)e(c+d)/2Â(W ), [W,M ]
〉
,

S3(W, z, c) :=
〈

ch(λ2(z)− 1)e(c+d)/2Â(W ), [W,M ]
〉
,
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where d = 0 in the spin case and d = z in the nonspin case. With the same argument,
these characteristic numbers for closed manifolds depend only on (M,u), in particular
we can define si(M,u) = Si(W, z, c) mod Z, si(M,u) = Si(W, z, c) mod Z, and call
them generalized Kreck-Stolz invariants.

Remark 2.7. If M is spin, the bounding manifold could be spin or nonspin. On the other
hand, there cannot be any spin structure on W if M is nonspin since any spin structure
on a compact manifold with boundary induces a spin structure on its boundary, see for
example Proposition 2.15 in [21].

As before, the below proposition is the result of deriving the characteristic numbers in
the above definition in terms of the signature of W and suitable characteristic numbers.

Proposition 2.8. Let M be a closed 7-manifold with H4(M ;Q) = 0 together with a
class u ∈ H2(M) such that w2(M) = 0 (spin case) or w2(M) = u mod 2 (nonspin
case). Suppose that W is an 8-manifold with ∂W = M , z, c ∈ H2(W ) such that z|M =
u, c|M = 0, and w2(W ) = c mod 2 (spin case) or w2(W ) = z + c mod 2 (nonspin case).
The following are the explicit formulas of Si.

Spin Case:

S1(W, z, c) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21 −

1

26 · 3
c2p1 +

1

27 · 3
c4,

S2(W, z, c) = − 1

24 · 3
((zc+ z2)p1 − (zc3 + 3z2c2 + 4z3c+ 2z4)),

S3(W, z, c) = − 1

23 · 3
((zc+ 2z2)p1 − (zc3 + 6z2c2 + 16z3c+ 16z4)),

Nonspin Case:

S1(W, z, c) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21 −

1

26 · 3
(c2 + 2zc+ z2)p1

+
1

27 · 3
(c4 + 4zc3 + 6z2c2 + 4z3c+ z4),

S2(W, z, c) = − 1

24 · 3
((zc+ 2z2)p1 − (zc3 + 6z2c2 + 13z3c+ 10z4)),

S3(W, z, c) = − 1

23 · 3
((zc+ 3z2)p1 − (zc3 + 9z2c2 + 31z3c+ 39z4)),

where p1, z
2, c2, zc can be regarded as elements in H4(W,M ;Q) under the pullback

(j∗)−1 and the above classes p21, c
2p1, c

4, zcp1, etc. are abbreviations for the charac-
teristic numbers

p21 :=
〈
(j∗)−1(p1(W )) ^ p1(W ), [W,M ]

〉
,

zcp1 :=
〈
(j∗)−1(zc) ^ p1(W ), [W,M ]

〉
, etc. .
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Proof. As the calculations are very similar, we will only show how to obtain the above
S1(W, z, c) for the spin case and S3(W, z, c) for the nonspin case. First, we can see that

e(c+d)/2Â = (1 +
c

2
+
c2

8
+
c3

48
+

c4

384
+ ...)(Â0 + Â1 + Â2 + ...),

for the spin case, and

ch(λ2(z)− 1)e(c+d)/2Â = ch(λ2(z)− 1)e(z+c)/2Â

= (2z + 2z2 +
4z3

3
+

2z4

3
+ ...)(1 +

z

2
+
z2

8
+
z3

48
+ ...)

(1 +
c

2
+
c2

8
+
c3

48
+ ...)(Â0 + Â1 + ...)

= (2z + 3z2 +
31z3

12
+

39z4

24
+ ...)(1 +

c

2
+
c2

8
+
c3

48
+ ...)

(Â0 + Â1 + ...),

for the nonspin case. Hence, by the definitions of S1(W, z, c) and S3(W, z, c),

S1(W, z, c) =
c4

384
· Â0(W ) +

c2

8
· Â1(W ) + Â2(W )

=
1

27 · 3
c4 − 1

26 · 3
c2p1 −

4

27 · 32 · 5
p2 +

7

27 · 32 · 5
p21

=
1

27 · 3
c4 − 1

26 · 3
c2p1 −

4

27 · 32 · 5
· (45 · sign(W ) + p21)

7
+

7

27 · 32 · 5
p21

= − 1

25 · 7
sign(W ) +

1

27 · 7
p21 −

1

26 · 3
c2p1 +

1

27 · 3
c4,

for the spin case, and

S3(W, z, c) = (
zc3

24
+

3z2c2

8
+

31z3c

24
+

39z4

24
)Â0(W ) + (zc+ 3z2)Â1(W )

= (
zc3

24
+

3z2c2

8
+

31z3c

24
+

39z4

24
)− (zc+ 3z2)p1

24

= − 1

23 · 3
((zc+ 3z2)p1 − (zc3 + 9z2c2 + 31z3c+ 39z4)),

for the nonspin case. �

3. LINKING FORM, FIRST PONTRJAGIN CLASS, AND CHARACTERISTIC NUMBERS

In this section, we will describe a different approach to the linking number. In partic-
ular, we can obtain the linking number between two arbitrary elements in Hn(M) of a
(2n − 1)-manifold M by computing an appropriate characteristic number of a bounding
compact oriented 2n-manifold W . We will show that

L(u2, u2) = z4(W ) mod Z,
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where L(u2, u2) is the self-linking number of a manifold M of type r with a bounding
pair (W, z). Note that this fact was stated in [13] without proof. Moreover, we will see
a relation between the first Pontrjagin class, the linking form, and some characteristic
numbers.

Let W be compact oriented 2n-manifold with boundary M . Let a, b ∈ Hn(M ;Z) be
torsion elements such that a = ā|∂W and b = b̄|∂W for some ā, b̄ ∈ Hn(W ;Z). Consider
the following commutative diagram of two long exact sequences for a pair (W,M) with
Z,Q - coefficients:

Hn(W,M ;Z) Hn(W ;Z) Hn(M ;Z)

Hn(W,M ;Q) Hn(W ;Q) Hn(M ;Q)

-

?

-
f

?

i∗

?

g

-
j∗

-h

Since a is torsion, h(i∗(ā)) = g(f(ā)) = g(a) = 0. Similarly, h(i∗(b̄)) = 0. Then
there exist x, y ∈ Hn(W,M ;Q) such that j∗(x) = i∗(ā) and j∗(y) = i∗(b̄), where j∗ :
Hn(W,M ;Q) −→ Hn(W ;Q) and i∗ : Hn(W ;Z) −→ Hn(W ;Q). First, we define a
relation l : Tor(Hn(M ;Z))× Tor(Hn(M ;Z)) −→ Q as follows:

Definition 3.1. With the above notations, let

l : Tor(Hn(M ;Z))× Tor(Hn(M ;Z)) −→ Q
be the relation defined by l(a, b) = (−1)n 〈x ^ y, [W,M ]〉 , where [W,M ] is the relative
fundamental class of the pair (W,M).

Note that

l(a, b) =

{
〈x ^ y, [W,M ]〉 if dimension of a is even,
−〈x ^ y, [W,M ]〉 if dimension of a is odd,

and l is not well-defined in general. However, after reducing mod Z, we show that

l̃(a, b) := l(a, b) mod Z ∈ Q/Z

is independent of the choice of ā, b̄, x, and y. That is, l̃(a, b) is well defined. In particular,
we will see that it is indeed the same as the linking form:

L(a, b) =
〈
a ^ β−1(b), [M ]

〉
∈ Q/Z,

where β : Hn−1(M ;Q/Z) −→ Hn(M ;Z) is the Bockstein homomorphism which is
associated to the short exact sequence: 0 −→ Z −→ Q −→ Q/Z −→ 0.

We notice that the following equation

〈x ^ y, [W,M ]〉 =
〈
(j∗)−1(i∗(ā)) ^ y, [W,M ]

〉
= 〈i∗(ā) ^ y, [W,M ]〉
= 〈ā ^ y, [W,M ]〉 ∈ Q
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implies that l(a, b) is independent of x. Similarly, it is independent of y as well. To show
independence of the choice of ā and b̄, it is convenient to use the following commutative
diagram:

...
...

...
...

Hn−1(M ;Z) Hn(W,M ;Z) Hn(W ;Z) Hn(M ;Z)

Hn−1(M ;Q) Hn(W,M ;Q) Hn(W ;Q) Hn(M ;Q)

Hn−1(M ;Q/Z) Hn(W,M ;Q/Z) Hn(W ;Q/Z) Hn(M ;Q/Z)

Hn(M ;Z) Hn+1(W,M ;Z) Hn+1(W ;Z) Hn+1(M ;Z)

...
...

...
...

? ? ? ?
-

?

-k

?

p

-
f

?

i∗

?

g

-

?

-
j∗

?

q

-h

? ?
-δ

?

β

-

?

-

? ?
-

?

-

?

-

? ?

where the horizontal and vertical lines come from the long exact sequences for the pair
(W,M) with various coefficients and the ones for various spaces associated to the short
exact sequence: 0 −→ Z −→ Q −→ Q/Z −→ 0, respectively. Suppose that b is the
image of b̄1 and b̄2 under the map f . Then b̄1 − b̄2 ∈ Ker(f) = Im(k). So, we have

y1 − y2 = (j∗)−1(i∗(b̄1))− (j∗)−1(i∗(b̄2)) = (j∗)−1(i∗(b̄1 − b̄2)) ∈ Im(p),

and hence ȳ1 = ȳ2 ∈ Hn(W,M ;Q/Z), where q(y1) = ȳ1 and q(y2) = ȳ2. This implies
that

〈ā ^ ȳ1, [W,M ]〉 = 〈ā ^ ȳ2, [W,M ]〉 ∈ Q/Z.
Hence, l̃(a, b) is independent of the choice of b̄. Similarly, it is independent of ā. There-
fore, l̃(a, b) depends only on a, b. Now it remains to show that

l̃(a, b) = L(a, b).

Here L(a, b) is the linking number of a with b. By the commutative diagram above,
the construction of ȳ implies that there is an element ŷ ∈ Hn−1(M ;Q/Z) that maps to
ȳ under the boundary map: δ : Hn−1(M ;Q/Z) −→ Hn(W,M ;Q/Z), and ŷ maps to
b under the Bockstein homomorphism: β : Hn−1(M ;Q/Z) −→ Hn(M ;Z). That is,
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δ(ŷ) = ȳ and β(ŷ) = b. By exactness and a = ā|∂W , δ(a) is trivial. Using the definition
of a coboundary δ and its relation to the cup product, we have

δ(a ^ ŷ) = (−1)n(ā ^ δ(ŷ)).

Hence,

l̃(a, b) = l(a, b) mod Z
= (−1)n 〈ā ^ y, [W,M ]〉 mod Z
= (−1)n 〈ā ^ ȳ, [W,M ]〉 mod Z
= 〈(−1)n(ā ^ δ(ŷ)), [W,M ]〉 mod Z
= 〈δ(a ^ ŷ), [W,M ]〉 mod Z
= 〈a ^ ŷ, [M ]〉 mod Z
=
〈
a ^ β−1(b), [M ]

〉
mod Z ∈ Q/Z.

This gives rise to the following proposition:

Proposition 3.2. Let W be compact oriented 2n-manifold with boundary M and a, b ∈
Hn(M ;Z) torsion elements such that a = ā|∂W and b = b̄|∂W for some ā, b̄ ∈ Hn(W ;Z).
Then

L(a, b) = l(a, b) mod Z ∈ Q/Z,
where L(a, b) is the linking number of a with b and l is defined as above.

Now let M be a smooth manifold of type r with u a generator of H2(M) and (W, z)
a bounding pair of (M,u) in the sense of Definition 2.5. Using the same argument as
above, we observe that

z4 =
〈
(j∗)−1(z2) ^ z2, [W,M ]

〉
= l(u2, u2).

Moreover, if the first Pontrjagin class of W , p1(W ), restricts to p1(M) on the boundary,
then we obtain the equations:

z2p1 =
〈
(j∗)−1(z2) ^ p1(W ), [W,M ]

〉
= l(u2, p1(M)),

and
p21 =

〈
(j∗)−1(p1(W )) ^ p1(W ), [W,M ]

〉
= l(p1(M), p1(M)).

Therefore, these equations imply the following corollary:

Corollary 3.3. For a manifold M of type r with a generator u of H2(M) and a bounding
pair (W, z) of (M,u), the self-linking number is

L(u2, u2) = z4 mod Z.
In particular, if p1(W ) restricts to p1(M) on the boundary, the following linking numbers
hold:

L(u2, p1(M)) = z2p1 mod Z,
and

L(p1(M), p1(M)) = p21 mod Z.
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4. HOMEOMORPHISM AND DIFFEOMORPHISM CLASSIFICATION

The classification of manifolds of type r up to homeomorphism and diffeomorphism
was originally provided by M. Kreck and S. Stolz [13] in 1988. In 1997 and 1998, B.
Kruggel [18],[19] obtained various homotopy classifications for particular subfamilies of
manifolds of type r. In this section, we will prove the main result of the present paper.
This result is divided into two cases: the spin case and the nonspin case.

4.1. Spin Case. Let M be a smooth spin manifold of type r, u a generator of H2(M),
and (W, z) a bounding pair. The following are the Kreck-Stolz invariants for the spin
case:

s1(M) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21 mod Z,

s2(M) = − 1

24 · 3
z2p1 +

1

23 · 3
z4 mod Z,

s3(M) = − 1

22 · 3
z2p1 +

2

3
z4 mod Z.

In order to obtain a new version of the classification theorem, we need appropriate
bounding manifolds W and W ′ of M and M ′ so that we can compare the terms z2p1, z4,
p21, and the signature. Fortunately, the construction of the bounding manifolds in Theorem
2.1 [19] perfectly works in this situation. But we have to start with two spin manifolds
that are homotopy equivalent. Hence a special version of our classification theorem can
be stated as follows:

Theorem 4.1. Let M and M ′ be two smooth spin manifolds of type r. Then

• M is (orientation preserving) diffeomorphic to M ′ if and only if M is (orientation
preserving) homotopy equivalent to M ′ and s1(M) = s1(M

′), s2(M) = s2(M
′).

• M is (orientation preserving) homeomorphic toM ′ if and only ifM is (orientation
preserving) homotopy equivalent toM ′ and p1(M) = p1(M

′), s2(M) = s2(M
′).

Using Classification Theorem II as described in Section 1 for spin manifolds of type
odd r, one can replace the homotopy equivalence statement by the self-linking number
and s2. Hence, combining this fact with Classification Theorem I in Section 1 gives the
desired classification of Theorem A. Note that this proof only works for smooth spin
manifolds of odd type.

Before proving Theorem 4.1 we will describe the construction of bounding manifolds
of two (orientation preserving) homotopy equivalent spin manifolds as given in [19], and
state some general results.

Let M and M ′ be two smooth spin manifolds of type r. Suppose they are (orientation
preserving) homotopy equivalent, let h : M ′ −→ M be a homotopy equivalence and
uM a generator of H2(M). The construction is done in the PL category. Note that every
smooth manifold admits a PL structure by Whitehead’s theorem on triangulations [27].
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By the existence of a bounding pair, there exists a pair (W, zw) such that W is a PL 8-
manifold with a spin structure, M is its boundary, and zw ∈ H2(W ) restricts to uM on
the boundary. Let BPL be the classifying space for piecewise linear vector bundles and
BPL 〈4〉 its 3-connected cover. ThenBPL 〈4〉 classifies PL bundles with a spin structure
and is equivalent to BSpin in low dimensions. By surgery theory [6] and [22], we can
assume that the induced map W −→ BS1 ×BSpin given by zw and the spin structure is
a 4-connected. Define

Q := W ∪hM ′ × I,

where (x, 0) ∈ M ′ × {0} is identified with h(x) ∈ M ⊂ W and M ′ is considered
as M ′ × {1}, a subspace of Q. Section 2.4 in [16] shows that (Q,M ′) is a Poincaré
pair. By construction, W and Q are homotopy equivalent. Let ν : Q −→ BSG be the
Spivak normal bundle whereBSG is the classifying space of oriented spherical fibrations.
Consider M ′ as a PL manifold. The restriction of ν has a lift to BSPL, the classifying
space of oriented PL bundles. Then there is a commutative diagram:

M ′ BSPL

Q BSG

-
νM′

? ?
-ν

The existence of a PL structure onQ depends on obstructions which lie in the cohomology
groups:

H i+1(Q,M ′; πi(G/PL)) ∼= H i+1(Q,M ′)⊗ πi(G/PL)

since H∗(Q,M ′) is free abelian. One knows that πi(G/PL) is trivial for odd integers i.
Also, since W −→ BS1 × BSpin is a 4-connected, πi(W ) = 0 for i = 1, 2, 3. Using
the Hurewicz theorem and the universal coefficient theorem, H i(W ) = Hi(W ) = 0 for
i = 1, 2, 3. By Lefschetz duality, H i+1(Q,M ′) = H i+1(W,M ′) = H8−i−1(W ) = 0 for
even integers i. Therefore, all obstructions vanish. This implies that there exists a lift:
νQ : Q −→ BSPL of ν relative to M ′. By the usual transversality arguments and the
process of surgery [22], there is a 4-connected degree one normal map:

f : (W ′,M ′) −→ (Q,M ′)

relative toM ′ and the difference of the signatures ofW ′ andQ is divisible by 8, whereW ′

is a bounding PL 8-manifold of M ′ with the canonical spin structure. Let zQ ∈ H2(Q) be
a generator. Then H2(W ′) ∼= H2(Q) ∼= Z has a generator zW ′ = f ∗(zQ) with zW ′ |M ′ =
uM ′ , a generator of H2(M ′). Define the first Pontrjagin class of Q as p1(Q) := p1(−νQ).
Hence, we have p1(W ′) = f ∗(p1(Q)). Now consider the long exact sequences for the
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pairs (W,M), (Q,M ′), and (W ′,M ′):

... H4(W,M) H4(W ) H4(M) ...

... H4(Q,M ′) H4(Q) H4(M ′) ...

... H4(W ′,M ′) H4(W ′) H4(M ′) ...

- -
j∗

?
∼=

-i
∗

?
∼=

-

?
∼=

- -
j∗

?
f∗

-i
∗

?
f∗

-

?
f∗

- -
j∗

-i
∗

-

There exist elements vW ∈ H4(W,M), vQ ∈ H4(Q,M ′), and vW ′ ∈ H4(W ′,M ′) such
that

j∗(vW ) = r · zW 2, j∗(vQ) = r · zQ2, and j∗(vW ′) = r · zW ′2

since these image elements are trivial in H4(M) ∼= H4(M ′) ∼= Zr. Similarly, there exist
elements uW ∈ H4(W,M), uQ ∈ H4(Q,M ′), and uW ′ ∈ H4(W ′,M ′) such that

j∗(uW ) = r · p1(W ), j∗(uQ) = r · p1(Q), and j∗(uW ′) = r · p1(W ′).

This construction yields the following lemma:

Lemma 4.2. Suppose that M and M ′ are (orientation preserving) homotopy equivalent
smooth spin manifolds of type r. With the above notations, the following hold:

r · zW 2p1(W ) = r · zW ′2p1(W ′) mod 24 and r · zW 4 = r · zW ′4 ∈ Z.
Moreover, if p1(M) = p1(M

′) ∈ Zr, then r · p12(W ) = r · p12(W ′) ∈ Z.
Proof. By the construction of Q, the restriction of the PL bundle, induced by νQ over Q,
to W is fiber homotopy equivalent to the PL bundle induced by the classifying map νW :
W −→ BSPL over W . It follows by [24] that p1(W ) = p1(Q) ∈ H4(W ;Z24), after
the canonical identification of H4(W ) and H4(Q). This also implies that vWp1(W ) =
vQp1(Q) mod 24, and vW zW

2 = vQzQ
2 ∈ Z, since vW and vQ are identical. The

properties of a degree one normal map f show that vQp1(Q) = vW ′p1(W
′) ∈ Z, and

vQzQ
2 = vW ′zW ′

2 ∈ Z. Hence,

r · zW 2p1(W ) =
〈
(j∗)−1(r · zW 2) ^ p1(W ), [W,M ]

〉
= vWp1(W ) = vQp1(Q) mod 24 = vW ′p1(W

′) mod 24

=
〈
(j∗)−1(r · zW ′2) ^ p1(W

′), [W ′,M ′]
〉

mod 24

= r · zW ′2p1(W ′) mod 24,

and

r · zW 4 =
〈
(j∗)−1(r · zW 2) ^ zW

2, [W,M ]
〉

= vW zW
2 = vQzQ

2 = vW ′zW ′
2

=
〈
(j∗)−1(r · zW ′2) ^ zW ′

2, [W ′,M ′]
〉

= r · zW ′4 ∈ Z.
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Now we will show the last statement. The definition of p1(Q) implies that

p1(Q)|M ′ = i∗(p1(Q)) = p1(−νQ|M ′) = p1(−νM ′) = p1(M
′).

This is equivalent to say that the first Pontrjagin class p1(Q) restricts to p1(M ′) on M ′.
Since (W,M) and (Q,M ′) are homotopy equivalent, p1(W ) restricts to p1(M) on the
boundary M as well. With the same argument as above, if p1(M) = p1(M

′) under the
identification H4(M) ∼= H4(M ′), then

r · p12(W ) =
〈
(j∗)−1(r · p1(W )) ^ p1(W ), [W,M ]

〉
= uWp1(W ) = uQp1(Q) = uW ′p1(W

′)

=
〈
(j∗)−1(r · p1(W ′)) ^ p1(W

′), [W ′,M ′]
〉

= r · p12(W ′) ∈ Z.
�

Applying this lemma introduces homotopy invariants 2r · s2(M) and r · s3(M) for a
smooth spin manifold of type r as in the following corollary. Note that the first invariant
was proved by B. Kruggel [19], and we can use the similar argument for the second one.

Corollary 4.3. IfM is a smooth spin manifold of the type r, then 2r ·s2(M) and r ·s3(M)
are (oriented) homotopy invariants.

Proof. Let M and M ′ be (orientation preserving) homotopy equivalent smooth spin man-
ifolds of the same type. By the above construction, we have (M,uM) and (M ′, uM ′) are
the boundary of the pairs (W, zW ) and (W ′, zW ′) such that

r · zW 2p1(W ) = r · zW ′2p1(W ′) mod 24 and r · zW 4 = r · zW ′4 ∈ Z.
These two equations imply that

2r · s2(M) = 2r · S2(W, zW )

= − r

23 · 3
· zW 2p1(W ) +

r

22 · 3
· zW 4

= − r

23 · 3
· zW ′2p1(W ′) +

r

22 · 3
· zW ′4

= 2r · S2(W
′, zW ′)

= 2r · s2(M ′) ∈ Q/Z,
and similarly

r · s3(M) = − r

22 · 3
· zW 2p1(W ) +

2r

3
· zW 4

= − r

22 · 3
· zW ′2p1(W ′) +

2r

3
· zW ′4

= r · s3(M ′) ∈ Q/Z.
�
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For any smooth spin manifold of type r, combining the above lemma and Corollary 3.3
determines its self-linking number as follows:

Corollary 4.4. Suppose thatM is a smooth spin manifold of type r and uM is a generator
of H2(M). Then the self-linking number of M can be written as

L(uM
2, uM

2) =
N

r
∈ Q/Z,

where N is some integer.

Proof. With the previous manifold W , we have r · zW 4 ∈ Z, and so zW 4 is some integer
over r. By Corollary 3.3, L(uM

2, uM
2) = zW

4 mod Z. We are done. �

Now we are ready to prove Theorem 4.1 which gives rise to one of the main classifica-
tions in this article.

(=⇒) This follows from the homeomorphism and diffeomorphism classification, Clas-
sification Theorem I, and the fact that the first Pontrjagin class is a homeomorphism in-
variant, see [25].
(⇐=) Using the above notations, the pairs (W, zW ) and (W ′, zW ′) are bounding manifolds
of (M,uM) and (M ′, uM ′). First, suppose that M and M ′ are (orientation preserving)
homotopy equivalent and s2(M) = s2(M

′) ∈ Q/Z. By Lemma 4.2, we have the fact that
r · zW 4 = r · zW ′4 ∈ Z which is equivalent to the equation: zW 4 = zW ′

4 ∈ Q. By the
assumption that s2(M) = s2(M

′) ∈ Q/Z, we have

− 1

24 · 3
zW

2p1(W ) +
1

23 · 3
zW

4 = − 1

24 · 3
zW ′

2p1(W
′) +

1

23 · 3
zW ′

4

as elements in Q/Z. This implies that

zW
2p1(W ) = zW ′

2p1(W
′) mod (24 · 3).

Therefore,

s3(M) = − 1

22 · 3
zW

2p1(W ) +
2

3
zW

4

= − 1

22 · 3
zW ′

2p1(W
′) +

2

3
zW ′

4

= s3(M
′) ∈ Q/Z.

Now the condition s1(M) = s1(M
′) ∈ Q/Z gives the complete proof for the diffeo-

morphism case. For the homeomorphism case, we need to assume further that p1(M) =
p1(M

′) ∈ Zr. Using Lemma 4.2, it follows that

r · p12(W ) = r · p12(W ′) ∈ Z

which is equivalent to the equation:

p1
2(W ) = p1

2(W ′) ∈ Q.
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By the process of surgery [22], the construction of the normal map f and the PL manifold
W ′ yields that

sign(W ) = sign(Q) = sign(W ′) mod 8,

where the first equation holds because W and Q are homotopy equivalent. Therefore,

28 · s1(M) = − 1

23
sign(W ) +

1

25
p1

2(W )

= − 1

23
sign(W ′) +

1

25
p1

2(W ′)

= 28 · s1(M ′) ∈ Q/Z.
Thus, we finish the proof of the homeomorphism case.

4.2. Nonspin Case. LetM be a nonspin manifold of type r together with a generator u ∈
H2(M). The existence of a bounding pair ensures that there exists a nonspin bounding
pair (W, z). The Kreck-Stolz invariants can be described as follows:

S1(W, z) = − 1

25 · 7
sign(W ) +

1

27 · 7
p21 −

1

26 · 3
z2p1 +

1

27 · 3
z4,

S2(W, z) = − 1

23 · 3
z2p1 +

5

23 · 3
z4,

S3(W, z) = − 1

23
z2p1 +

13

23
z4.

Note that it is not possible to construct a bounding manifold W of M with a spin
structure since then the spin structure onW would induce a spin structure on its boundary,
see see Proposition II. 2.15 in [21]. Recall that the spin structure of the bounding manifold
was an essential ingredient in the proof for the spin case. Hence, the same method can
not be applied to obtain the diffeomorphism and homeomorphism classification in the
nonspin case. However, we can use the fact that L(u2, u2) = z4 ∈ Q/Z and an elementary
calculation to show that s2 and the self-linking number determine s3. We note that this
elementary argument can not be used for the spin case.

Lemma 4.5. IfM is a smooth nonspin manifolds of type r and u is a generator ofH2(M).
Then

s3(M) = 3s2(M) + L(u2, u2).

Proof. Let (W, z) be a bounding pair of (M,u). Then

s3(M) = − 1

23
z2p1 +

13

23
z4 = − 1

23
z2p1 +

5

23
z4 + z4

= 3(− 1

23 · 3
z2p1 +

5

23 · 3
z4) + z4 = 3s2(M) + z4 ∈ Q/Z.

By Corollary 3.3, we know that L(u2, u2) and z4 are the same in Q/Z. Hence,

s3(M) = 3s2(M) + L(u2, u2).

�
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Applying Lemma 4.5 to the homeomorphism and diffeomorphism classification, Clas-
sification Theorem I, we can replace s3 by the self-linking number which completes the
proof of Theorem B.

5. A COMPLETE PICTURE OF ESCHENBURG CLASSIFICATION

The Eschenburg space Ek,l, where k := (k1, k2, k3), l := (l1, l2, l3) ∈ Z3 satisfying
k1 + k2 + k3 = l1 + l2 + l3 and the gcd condition:

gcd(k1 − l1, k2 − l2) = 1, gcd(k1 − l1, k3 − l2) = 1,

gcd(k2 − l1, k1 − l2) = 1, gcd(k2 − l1, k3 − l2) = 1,

gcd(k3 − l1, k1 − l2) = 1, gcd(k1 − l1, k2 − l2) = 1,

is defined to be the quotient of a two-sided action of S1 on SU(3), Ek,l := SU(3)/S1,
where the S1-action can be described as follows: S1 × SU(3) −→ SU(3),

(z, A) 7−→ ρk(z)Aρl(z
−1).

where ρk(z) = diag(zk1 , zk2 , zk3), ρl(z−1) = diag(z−l1 , z−l2 , z−l3) and diag : S1 × S1 ×
S1 −→ U(3) is the embedding defined by

(z, v, w) 7→

z 0 0
0 v 0
0 0 w

 .

Since the Eschenburg spaces are spin manifolds of odd type with trivial fourth homotopy
group, they are classified by Classification Theorem A. Hence, the following classification
theorem claimed by B. Kruggel in [20] is now proven.

Theorem 5.1. Let Ek,l and Ek′,l′ be two Eschenburg spaces with the same order of the
fourth cohomology group. Let u ∈ H2(Ek,l) and u′ ∈ H2(Ek′,l′) be both generators.
Then

• Ek,l is (orientation preserving) diffeomorphic to Ek′,l′ if and only if

L(u2, u2) = L(u′2, u′2), s1(Ek,l) = s1(Ek′,l′), s2(Ek,l) = s2(Ek′,l′) .

• Ek,l is (orientation preserving) homeomorphic to Ek′,l′ if and only if

L(u2, u2) = L(u′2, u′2), p1(Ek,l) = p1(Ek′,l′), s2(Ek,l) = s2(Ek′,l′) .

In [20], the above invariants of those Eschenburg spaces satisfying condition (C) are
computed. A pair (k, l) satisfies condition (C) if the matrix

(ki − lj) =

 k1 − l1 k1 − l2 k1 − l3
k2 − l1 k2 − l2 k2 − l3
k3 − l1 k3 − l2 k3 − l3


contains a row or a column whose entries are pairwise relatively prime. However, B.
Kruggel did not know whether or not this condition holds for all Eschenburg spaces.
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Unfortunately, from [7], we know that condition (C) is not always satisfied. The home-
omorphism and diffeomorphism classification of the Eschenburg spaces not satisfying
condition (C) is still an open problem. The following is a complete picture of the classifi-
cation of the Eschenburg spaces satisfying condition (C).

Theorem 5.2. For the Eschenburg spaces Ek,l satisfying condition (C), the following is a
complete set of invariants:

• For (orientation preserving) diffeomorphism type,
– |r(k, l)| ∈ Z,
– s(k, l)/r(k, l) ∈ Q/Z,
– s1(k, l) ∈ Q/Z,
– s2(k, l) ∈ Q/Z.

• For (orientation preserving) homeomorphism type,
– |r(k, l)| ∈ Z,
– s(k, l)/r(k, l) ∈ Q/Z,
– p1(k, l)/r(k, l) ∈ Q/Z,
– s2(k, l) ∈ Q/Z.

Here

r(k, l) =σ2(k1, k2, k3)− σ2(l1, l2, l3),
s(k, l) =σ3(k1, k2, k3)− σ3(l1, l2, l3),
p1(k, l) =2σ1(k)2 − 6σ2(k),

s1(k, l) =
4 · |r(k, l)(k1 − l1)(k2 − l1)(k3 − l1)| − (q(k, l))2

27 · 7 · r(k, l)(k1 − l1)(k2 − l1)(k3 − l1)
− s1(L(k1 − l1; k2 − l1, k3 − l1, k2 − l2, k3 − l2))
− s1(L(k2 − l1; k1 − l1, k3 − l1, k1 − l2, k3 − l2))
− s1(L(k3 − l1; k1 − l1, k2 − l1, k1 − l2, k2 − l2)),

s2(k, l) =
q(k, l)− 2

24 · 3 · r(k, l)(k1 − l1)(k2 − l1)(k3 − l1)
− s2(L(k1 − l1; k2 − l1, k3 − l1, k2 − l2, k3 − l2))
− s2(L(k2 − l1; k1 − l1, k3 − l1, k1 − l2, k3 − l2))
− s2(L(k3 − l1; k1 − l1, k2 − l1, k1 − l2, k2 − l2)),



22

where σi is the i-th elementary symmetric function and

q(k, l) =(k1 − l1)2 + (k2 − l1)2 + (k3 − l1)2 + (k1 − l2)2

+ (k2 − l2)2 + (k3 − l2)2 − (l1 − l2)2,

s1(L(p; p1, p2, p3, p4)) =
1

25 · 7 · p

|p|−1∑
k=1

4∏
j=i

cot(kπpj/p)

+
1

24 · p

|p|−1∑
k=1

4∏
j=i

csc(kπpj/p),

s2(L(p; p1, p2, p3, p4)) =
1

24 · p

|p|−1∑
k=1

(e
2πik
|p| − 1)

4∏
j=i

csc(kπpj/p).
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