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Figure 1: We introduce two shape descriptors, the horizon measure (a, c) and the visible horizon measure (b, d), which describe the respective
likelihood of contours and visible contours in a region in the surface. Red indicates relatively high horizon and visible horizon measures,
while white indicates relatively low measures. The visible horizon measure is always less than the horizon measure.

Abstract

In this paper we seek to answer the following questions: where do
contour lines and visible contour lines (silhouette) tend to occur in
a 3D surface. Our study leads to two novel shape descriptors, the
horizon measure and the visible horizon measure, which we apply
to the visualization of 3D shapes including archeological artifacts.
In addition to introducing the shape descriptors, we also provide
a closed-form formula for the horizon measure based on classical
spherical geometry. To compute the visible horizon measure, which
depends on the exact computation of the surface visibility function,
we instead of provide an image-based approach which can process
a model with high complexity within a few minutes.
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1 Introduction

Line drawing is a fascinating form of art that has inspired many
generations of artists. Recently, there has been much work in us-
ing computers to generate images that simulate line art from a 3D
surface. One of the main challenges is to compute the feature
lines given the shape and viewpoint. There are two classes of ap-
proaches, both of which draw the silhouette as well as additional
lines. In the first approach, the additional lines are view-dependent,
i.e., they change when the viewpoint changes and thus need to be
computed on the fly. Examples include suggestive contours [De-
Carlo et al. 2003] and apparent ridges [Judd et al. 2007]. The sec-
ond approach extracts feature lines that are view-independent, such
as ridge and valley lines [Ohtake et al. 2004], as well as demarcat-
ing curves [Kolomenkin et al. 2008]. Cole et al. [2012] perform
user studies on where artists tend to draw lines given an input 3D
shape.

In this paper, we ask the following fundamental question: where do
contour lines tend to occur in a 3D shape? More precisely, what
is the probability of a point on the surface to be on the contour
(or silhouette) given all possible viewing directions. While contour
lines are view-dependent, this likelihood is view-independent and
can provide insight into the geometric structure of the surface.

In answering this question, we introduce two new shape descriptors.
The first descriptor, the horizon measure, defined on each triangle
in the mesh surface, is the likelihood of the triangle containing part
of the contours over all possible exterior viewing directions. Re-
call that the contours are the boundaries between the forward-facing
part of the surface and the backward-facing part of the surface. Not
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all contours are visible, and the visible part is referred to as the sil-
houette. Our second feature definition, termed visible horizon mea-
sure, is the likelihood of a triangle in the mesh containing part of
visible contours. Note that both the horizon measure and the visible
horizon measure are view-independent. Figure 1 shows the horizon
measure (left) and the visible horizon measure (right) for the Venus
and Buddha models.

In addition, we provide efficient algorithms to compute both mea-
sures. For the horizon measure, we provide an analytical formula
that allows the measure to be computed exactly and quickly. For the
visible horizon measure, we develop an efficient approach based
on the sampling of the space of viewing directions. We have ap-
plied our shape descriptors to the visualization of shapes, including
archeological artifacts.

2 Horizon Measure

In this section we provide details on the horizon measure and the
visible horizon measure. Given a surface M ⊂ R3 and an ortho-
graphic viewing direction w ∈ S2, a point p ∈ M is called a
horizon point with respect to w if w · N(p) = 0, where N(p) is
the unit surface normal at point p. The set of viewing directions for
which p is a horizon point can be denoted by Hp = {w ∈ S2 |
w ·N(p) = 0}, which is a great circle as shown in Figure 2 (left).
Hp is referred to as the horizon viewer set with respect to p.

The concept of the horizon viewer set can be extended to a region
in the surface as follows. Given a surface M ⊂ R3 and a subset
K ⊂ M , the the horizon viewer set for K is HK =

⋃
p∈K Hp, or

equivalently HK = {w ∈ S2 | ∃p ∈ K such that N(p) · w = 0}.

(a) (b)

Figure 2: Left: given a point p in the surface (not shown), the set
of directions in the camera space (the sphere shown) from which
p is considered as a horizon point is a great circle (shown in red)
perpendicular to the normal N(p). Right: he horizon viewer set
(red stripe) for a triangle on surface (whose normal spans the green
triangle in S2).

The area of the horizon view set HK is a descriptor for K. The
larger the area, the more likely K contains contours. We refer to
this area as the absolute horizon measure of K and denote it by
h(K). We define the relative horizon measure, denoted by ĥ(K),
as the ratio between h(K) and the area of K. Furthermore, we
define the horizon measure of a point p ∈ M as limr→0 ĥ(Kp,r)
where Kp,r = {q ∈M | dist(q, p) ≤ r}.

Note that the horizon measure is always non-negative. This is a
sharp contrast to the Gaussian curvature and the mean curvature,
both of which can be negative. In fact, it is interesting to note
the dual relationship between the horizon measure and the absolute
Gaussian curvature at a point. To see this we review the concept of
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Figure 3: This figure compares the horizon measure and the visible
horizon measure with the bunny. Notice that the horizon measure is
usually larger than the visible horizon measure. Moreover, the two
measures tend to agree near ridge lines and disagree near valley
lines and inverted region. For example, while the horizon measure
is nearly constant on the bunny’s ear, the visible horizon measure is
significantly lower inside the ear than outside the ear. In addition,
the horizon measure is high in the crease where the dragon’s tail
touches the body. In contrast, the visible horizon measure is low in
that region. This is due to the fact the visible horizon measure takes
into account the self occlusions.

the Gauss map. The Gauss map for a surface M is Γ : M → S2

such that ∀p ∈M,Γ(p) = N(p).

Given K ⊂ M , the area of the set {N(p) | p ∈ M} measures the
variations of the normal in K. The Gaussian curvature of a point
in M is defined as limr→0

area(Γ(Kp,r))

area(Kp,r)
where Kp,r = {q ∈ M |

dist(q, p) ≤ r}. Note that area(Kp,r) refers to the signed area.
By replacing the area(Γ(Kp,r)) with area(H(Kp,r)) (which is
not signed), we obtain the definition for the horizon measure of p.

Horizon Measure Computation on a Triangle Mesh: In com-
puter graphics, a surface is often represented as a triangle mesh,
with a set of vertices V , a set of edges E and a set of triangles F .
The normal is assumed to be continuous across the surface. This is
achieved by computing the normal at the vertices and linearly in-
terpolating them for the points in the triangles. Under this assump-
tion, we compute the horizon measure per triangle. This requires
the evaluation of the area of the horizon viewer set corresponding
to the triangle. Figure 2 (right) shows a spherical triangle (green)
which corresponds to the normal variation over a triangle4p1p2p3

in a mesh surface. The red region near the equator is the horizon
viewer set for4p1p2p3.

We now return to the horizon measure of a triangle in a mesh. The
horizon measure of a triangle 4U1U2U3 in a mesh surface M is∑3

i=1 arccos(Γ(Ui−1)·Γ(Ui+1))

2π
. The proof is provided in the Ap-

pendix. Figure 1 shows the horizon measure computed on Venus
and Buddha, while Figure 3 shows this for the bunny and the
dragon.
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Figure 4: The visible horizon measure on the bunny computed using five different camera systems. In (a), the cameras were placed at the
vertices of an icosahedron. From (b)-(e), the cameras are placed on the vertices of a mesh obtained by performing Loop subdivision to the
camera system used in the previous case. Notice that the accuracy increases with more cameras. The difference between (d) and (e) is very
small.

3 Visible Horizon Measure

The horizon measure provides information on where contour lines
tend to occur. While this information is important to understand the
structure of a surface, we note that in line drawing not all contour
lines are visible from a given viewpoint. Invisible contour lines are
mostly due to self-occlusions in the surface. When illustrating a
surface, the silhouette, i.e. visible contour lines, are usually drawn.
This immediately brings up the question where in the surface visi-
ble contours are more likely to occur. In this section, we introduce
the notion of the visible horizon measure which encodes this infor-
mation.

Given a surface M ⊂ R3 and an orthographic viewing direction
w ∈ S2, a point p ∈M is called a visible horizon point with respect
to w if p is a horizon point with respect to w and is visible from w.
The set of viewing directions for which p is a visible horizon point
can be denoted byH ′p and is referred to as the visible horizon viewer
set with respect to p.

Similar to the horizon viewer set, the concept of the visible horizon
viewer set can be extended to a region in the surface. Like the hori-
zon measure, the visible horizon measure is always non-negative. It
is worth noting that the visible horizon measure is always less than
or equal to the horizon measure given a region in the surface. This
follows from the fact that the visible horizon viewer set is necessar-
ily a subset of the the horizon viewer set. In addition, the visible
contours seem more likely to appear in convex regions in the sur-
faces. This means that the visible horizon measure tends to agree
with the horizon measure in those regions. Figure 1 compares the
two measures on the Venus model. Notice that the horizon mea-
sure (left) and the visible horizon measure are similar on the ridge
of Venus’s nose. In contrast, the two measures tend to differ sig-
nificantly near concave regions, such as the sides of the nose and
the lip lines. Figure 3 provides additional comparisons between the
two measures with the bunny and dragon models.

Unfortunately, the visible horizon measure depends on the visibil-
ity function, which is a binary relationship between points on the
mesh surfaces and points in the camera space. The visibility func-
tion lacks an analytical formula and can be discontinuous. This in
turn makes the computation of the visible horizon measure more
challenging. To address this issue, we employ the following image-
based sampling approach, inspired by the approach of Zhang and
Turk [2002] to compute the shape descriptor surface visibility that
they introduce.

First, we select a set of evenly-spaced camera positions in the cam-
era space. We only use orthographic cameras that are situated out-
side the bounding box of the input mesh. Under these conditions,
the space of all possible camera locations form a sphere, which we
tessellate into a triangle mesh. Second, from each vertex of the
triangle mesh representing the camera space, we render the mesh
using its silhouette. Unlike line art where the silhouette is rendered
in a color (usually black) different from the background (usually
white), we assign the color of each silhouette edge based on the
triangle containing it. Every triangle is assigned a unique color.
Note that the silhouette edges are extracted based on the method of
Hertzmann and Zorin [2000], in which the dot product between the
surface normal and the rays emanating from the eye is evaluated
at the vertices of the input mesh. This dot product is then used to
extract silhouette edges inside the faces of the triangle mesh. Next,
from the same viewpoint, we scan the image generated from the
previous step and increment the counter of each face in the triangle
mesh whose unique color appears at least once in the aforemen-
tioned image. This indicates that at least some silhouette appears in
such a triangle from this viewpoint. Once all the viewpoints have
been processed, we compute for each triangle its visible horizon
measure. This is approximated by the ratio between the number of
camera positions from which some silhouette appeared inside the
triangle and the total number of cameras.

The accuracy of this method largely depends on the number of cam-
era directions used in the sampling stage. Figure 4 shows this with
five different samplings of the camera space. Notice that the result
converges as more sample camera directions are used. On the other
hand, the more samples, the more computational cost is incurred.
In practice, we have found that for our test models it is sufficient to
use 644 cameras, representing the vertices on an icosahedron sub-
divided three times based on Loop subdivision. This provides a
reasonable tradeoff between the accuracy and computational speed.

Performance: We have applied the horizon measure and visi-
ble horizon measure to a number of well-known data sets, such
as the Stanford Bunny, Happy Buddha, Dragon, and Feline. In
addition, we test our methods on a number of archeological data
sets [Kolomenkin et al. 2008]. The performance data is collected
from a computer with an Intel Xeon E3-1225 3.20 GHz processor,
16 GB of RAM, and an NVIDIA NVS 310 graphics card. The com-
putational cost for each test case is mostly due to the computation
of the visible horizon measure, which is dependent on the number
of faces in the mesh as well as the number of vertices in the mesh
tessellating the camera space. All the test cases require at most two
minutes of computation time, including the archeological models
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Figure 5: The horizon measure computed for a number of archeological artifacts. Note that (a) and (b) are the opposite sides of an ancient
lamp. Also, (d) and (e) compare the horizon measure and visible horizon measure of another ancient lamp artifact.

which can have as many as 350, 000 polygons.

Applications: We have applied our horizon measure and visible
horizon measure to the visualization of archeological artifacts. Fig-
ure 5 shows the rendering using the horizon measure and the visible
horizon measure on a number of archeological shapes [Kolomenkin
et al. 2008]. Notice that the horizon measures can well capture and
present the features in the artifacts. Moreover, the visible horizon
measure tends to produce an abstract-style visualization that mim-
ics art (Figures 1 (b), 3 (1b and 2b), and 5 (e)).

Note that we have focused on orientatble surfaces in this paper. Ex-
tending this work on non-orientable surfaces is an interesting future
direction.
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A Mathematical Background

To facilitate the discussion, we first provide a few useful concepts
and results.
Defintion 1. Given a non-empty subset U ⊂ S2, the co-directional
set of U is defined as Q+

U = {v ∈ S2 | v · w > 0 ∀w ∈ U}.
Similarly, the contra-directional set of U is defined as Q−U = {v ∈
S2 | v · w < 0 ∀w ∈ U}. Finally, the neutral set of U is defined
as Q0

U = {v ∈ S2 | ∃w ∈ U such that v · w = 0}.

Figure 2 (right) illustrates the concept of co-directional set, contra-
directional set, and the neutral set for a spherical triangle (green).
The red band near the equator is the neutral set, which divides the
sphere into two spherical triangles (white), one of which contains
the original spherical triangle (green).

Given a region K ⊂ M ⊂ R3, Q+
Γ(K) consists of viewing di-

rections from which K is entirely backward-facing. Consequently,
we refer to Q+

Γ(K) as the back-facing view set of K. Similarly,
Q−Γ(K) consists of viewing directions from which K is entirely
front-facing. Consequently, we refer to Q−Γ(K) as the front-facing
view set of K. Q0

Γ(K) is precisely the horizon viewer set for K.

We now consider some properties of Q+
U , Q0

U , and Q−U which are
relevant to the computation of the horizon measure.

Lemma 1. Q+
U

⋂
Q−U = ∅. Area(Q+

U ) = Area(Q−U ).

Lemma 2. Q0
U = S2 \ (Q+

U ∪Q
−
U ).

Lemma 3. Given U ⊂ V , Q0
U ⊂ Q0

V . In contrast, Q+
U ⊃ Q

+
V and

Q−U ⊃ Q
−
V .

The proofs to Lemmas 1 through 3 are straightforward from the
definitions of Q+

U , Q0
U , and Q−U . We now consider a spherical line

segment.

Lemma 4. Given v1, v2 ∈ S2, let E = {v1, v2} and E′ =

{ (1−t)v1+tv2
‖(1−t)v1+tv2‖

| t ∈ [0, 1]}. Then Q+
E = Q+

E′ , Q
0
E = Q0

E′ ,
and Q−E = Q−E′ .

Proof. It suffices to show that Q+
E = Q+

E′ . Since E ⊂ E′, we
have Q+

E ⊃ Q+
E′ (Lemma 3). Consequently, we only need to show

Q+
E ⊂ Q+

E′ , i.e., for any w ∈ Q+
E , we must also have w ∈ Q+

E′ .
Since w ∈ Q+

E , w · v1 > 0 and w · v2 > 0. Thus, w · ((1− t)v1 +

tv2) > 0 for any t ∈ [0, 1]. Consequently, w ∈ Q+
E′ .

Figure 6: Given a spherical triangle4V1V2V3 in S2 whose inte-
rior covers the north pole (left), the complement of the neutral set
with respect to 4V1V2V3 consists of two disjoint spherical trian-
gles: the co-directional set 4W1W2W3 and the contra-direction
set 4W′1W′2W′3. The co-directional set is in the northern hemi-
sphere (middle) and contra-directional set is in the southern hemi-
sphere (right).

Lemma 4 can be extended any set of finite points as follows.

Lemma 5. Let E be the set of n points {v1, ..., vn} in S2. Let
E′ = {

∑n
i=1 αivi

‖
∑n

i=1 αivi‖
| αi ∈ [0, 1],

∑N
i=1 αi = 1}. Then Q+

E =

Q+
E′ , Q

0
E = Q0

E′ , and Q−E = Q−E′ .

The proof to Lemma 5 is similar to that of Lemma 4. In essence,
Lemma 5 implies that the co-directional set, the contra-directional
set, and the neutral set of any spherical polygon are the same as
the spherical convex hull of the polygon. Note that any spherical
triangle is convex, i.e., its convex hull is the same as the triangle
itself.

With the above results, we are ready to compute the horizon mea-
sure of a triangle 4u1u2u3 in a mesh M . It is straightforward to
verify that the set of linearly interpolated normals inside 4u1u2u3

form a spherical triangle 4Γ(u1)Γ(u2)Γ(u3). Recall that the
horizon measure of 4u1u2u3 is the area of the horizon viewer
set of 4u1u2u3, or equivalently, the area of the neutral set of
4Γ(u1)Γ(u2)Γ(u3).

Computing the area of neutral set of a spherical triangle 4v1v2v3

(where vi = Γ(ui)) directly is difficult. Instead, we compute the
area of co-directional set of4v1v2v3.

Theorem 1. Given a spherical triangle 4v1v2v3 which encloses
the north pole, Q+

4v1v2v3
is a spherical triangle 4w1w2w3 where

wi =
vi−1×vi+1

‖vi−1×vi+1‖
for i = 1, 2, 3.

Proof. Let vi−1vi+1 be the spherical line segment connecting vi−1

and vi+1. Note that Q+
4v1v2v3

=
⋂3
i=1 Q

+
vi−1vi+1

(Lemma 5 and
the fact that any spherical triangle is convex). Since the bound-
ary of Q+

{vi}
is a great circle in the plane perpendicular to vi for

1 ≤ i ≤ 3, Q+
4v1v2v3

is the spherical triangle bounded by the three
aforementioned great circles. The pairwise intersections among the
three great circles give the three vertices of Q+

4v1v2v3
. It is straight-

forward to verify that the vertices are wi =
vi−1×vi+1

‖vi−1×vi+1‖
.

Figure 6 illustrates the relationship between a spherical triangle
4v1v2v3 and its co-directional and contra-directional sets, both of
which are also spherical triangles.

Theorem 2. Q+

Q+
4v1v2v3

= 4v1v2v3.

Proof. Denote Q+
4v1v2v3

by 4w1w2w3 where wi =
vi−1×vi+1

‖vi−1×vi+1‖

for i = 1, 2, 3 (Theorem 1). Let Q+
4w1w2w3

= 4u1u2u3.

We have u1 = w3×w2
‖w3×w2‖

. Recall that w2 = v1×v3
‖v1×w3‖

and w3 =
v2×v1
‖v2×w1‖

.

A relevant trigonometric identity states that (v1×v3)×(v2×v1) =
kv1 for some constant k. Consequently, u1 = v1. Similarly, u2 =
v2 and u3 = v3.

Theorem 2 states that a spherical triangle 4v1v2v3 is dual
to its co-directional set. This relationship allows us to
compute the area of neutral set of 4v1v2v3 as follows.
Area(Q+

4v1v2v3
) = Area(4w1w2w3). According to Girard’s

Theorem, Area(4w1w2w3) =
∑3
i=1 θi − π where θi is the angle

between wi−1 and wi+1. Due to the duality between4w1w2w3 and
4v1v2v3, it is straightforward to verify that θi = π−arccos(vi−1 ·
vi+1). Consequently, Area(Q+

v1v2v3) = Area(4w1w2w3) =

2π −
∑3
i=1 arccos(vi−1 · vi+1). Therefore, Area(Q0

v1v2v3) =

4π − 2Area(Q+
v1v2v3) = 2

∑3
i=1 arccos(vi−1 · vi+1).


