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Abstract

In light of recent advances in the study of manifolds admitting Riemannian

metrics of positive sectional curvature, the study of certain infinite families of

seven dimensional manifolds has become a matter of interest. We determine

the cohomology ring structures of manifolds belonging to these families. This

particular ring structure indicates the existence of topological invariants distin-

guishing the corresponding homeomorphism and diffeomorphism type. We show

that all families contain representatives of infinitely many homotopy types.
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1. Introduction and background.

Even though Riemannian manifolds admitting positive sectional curvature

have been studied for well over 40 years, there are very few known examples

of such manifolds. In the recent past, after more than a decade of no discov-

eries, a new example was found ([8],[12]). This example belongs to one of two

infinite families of seven dimensional manifolds which are candidates for posi-

tive sectional curvature: it follows from the work of Grove, Verdiani, Wilking

and Ziller that any new examples of simply connected, compact cohomogeneity
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one manifolds admitting positive sectional curvature must belong to one of the

families M or N ([11]).

We now give an overview of the current state of affairs regarding compact,

simply connected manifolds admitting metrics of positive sectional curvature.

The first major event was the classification of positively curved homogeneous

spaces. Carried out between 1961 and 1976, this effort identified the following as

being the only compact, simply connected, positively curved homogenous spaces

besides the spheres and simply connected projective spaces: one infinite family

of seven dimensional manifolds called the Aloff-Wallach spaces and five isolated

examples, one each in dimensions seven, six, twelve, thirteen and twenty-four

(see [4],[19],[1],[3]).

An additional source of examples are the so-called biquotients. A biquo-

tient is the orbit space of a compact Lie group G under the free action of a

closed subgroup H ⊆ G × G. The Eschenburg spaces, an infinite family of

simply connected, seven dimensional biquotients of SU(3) under a two-sided

circle action, have been extensively studied since their introduction in 1982. All

biquotients admit metrics of non-negative sectional curvature, while an infinite

subfamily of Eschenburg spaces also admits strictly positive sectional curvature.

Two years after the discovery of the Eschenburg spaces, a single compact, sim-

ply connected biquotient in dimension six was found to admit positive sectional

curvature ([10]). After this, more than a decade passed without any new dis-

coveries. Then, in 1996, another infinite family of compact, simply connected

positively curved biquotients was produced, this time in dimension thirteen ([2]).

This comprised all known examples of compact, simply connected, positively

curved manifolds prior to 2007, when a member of an infinite family of seven

dimensional cohomogeneity one manifolds was discovered to admit positive sec-

tional curvature ([8],[12]). A smooth manifold M is of cohomogeneity one if

it supports a smooth action by a Lie group G such that the orbit space M/G

is one dimensional. When M is compact and has a finite fundamental group,

M/G is diffeomorphic to a closed interval, and M can be described in terms of

the acting group G and the isotropy groups of the G-action (see Section 2). The
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discovered manifold is truly a new example as it is of different homotopy type

as all known examples.

This article is concerned with four infinite families of compact, simply con-

nected, seven dimensional cohomogeneity one manifolds, arising from the classi-

fication of cohomogeneity one actions on compact, simply connected manifolds

in dimensions five through seven ([15]). For convenience, we recall their isotropy

group descriptions in Table 1 (cf. [11, Table A], [15, Table I]).

Several considerations motivate our interest in these families. First, the pos-

itively curved example of [8] and [12] is a member of the family M. In addition,

it follows from the work of Grove, Wilking and Ziller ([11]) that any new ex-

amples of simply connected, compact, cohomogeneity one manifolds admitting

positive sectional curvature must belong to one of the families M or N, namely

Pk = M(1,1,1+2k,1−2k) , Qk = N(1,1,k,k+1) , R = N(3,1,1,2) are their candidates

for positive sectional curvature. Moreover, the positively curved Eschenburg

spaces correspond to the subfamily {O(p,p+1:2)} ⊆ O ([7],[10],[11]). It is not

known in general, however, whether members of the family O admit metrics of

non-negative sectional curvature. In contrast, all members of the families L, M

and N are known to admit non-negative sectional curvature ([13, Theorem E]).

Furthermore, these families contain several subfamilies that carry 3-Sasakian

structures, namely the Pk , Qk and the Eschenburg spaces E(a,b,c,a+b+c,0,0). Fi-

nally, these four families comprise the full class of seven dimensional primitive

cohomogeneity one manifolds ([15]). A cohomogeneity one manifold is non-

primitive if there is a G-equivariant map M −→ G/L for some proper subgroup

L ⊂ G (see [11]). Otherwise the G-action is called primitive. Any non-primitive

cohomogeneity one manifold is diffeomorphic to the total space of a bundle over

a homogenous space whose fiber is a primitive manifold ([15]). Note that the

classification given in [15] is purely algebraic; the underlying topological struc-

ture of these manifolds is largely unknown. In the following we give a complete

description of the cohomology rings of all four families. Note that manifolds are

assumed to be without boundary unless explicitly stated otherwise. Also un-

less otherwise stated, cohomology groups take their coefficients in the integers.
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Finally, we denote by Zr the cyclic group of order r, and understand Z0 to be

infinite cyclic and Z1 to be trivial.

Theorem 1.1. A compact, simply connected, seven dimensional, primitive co-

homogeneity one manifold M is a member of:

a) the subfamily of L with the parameter p+ odd and p2
+q

2
− − p2

−q
2
+ 6= 0, or:

b) the family N, or:

c) the subfamily of O with |p| and |q| not both equal to one

if and only if the cohomology groups of M are given by:

Hk(M) ∼=


Z k = 0, 2, 5, 7

Zr, r 6= 0, 1 k = 4

0 otherwise.

where r = 1
4 |p

2
+q

2
− − p2

−q
2
+| for M ∈ L, r = |p2

+q
2
− − p2

−q
2
+| for M ∈ N and

r = |p2 − q2| for M ∈ O. Furthermore, the cohomology ring of any of these

manifolds is completely generated (under the cup product) by cohomology group

generators x ∈ H2(M) and y ∈ H5(M).

Theorem 1.2. A compact, simply connected, seven dimensional, primitive co-

homogeneity one manifold M is a member of the subfamily of L with the pa-

rameter p+ even, if and only if the cohomology groups of M are given by:

Hk(M) ∼=



Z k = 0, 2, 7

Z2 k = 3

Zr, r 6= 0, 1 k = 4

Z⊕ Z2 k = 5

0 otherwise.

where r = |p2
+q

2
− − p2

−q
2
+|. Furthermore, if the class x generates H2(M) and y

generates the free part of H5(M), then x2 generates H4(M) and xy generates

H7(M).

Several corollaries follow from Theorem 1.1. The first determines the subfamilies

for which the Kreck-Stolz invariants exist:
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Corollary 1.3. A compact, simply connected, seven dimensional, primitive co-

homogeneity one manifold admits a Kreck-Stolz invariant if and only if:

a) it is a member of the subfamily of L with the parameter p+ odd and p2
+q

2
−−

p2
−q

2
+ 6= 0, or:

b) it is a member of the family N, or:

c) it is a member of the subfamily O with |p| and |q| not both equal to one.

A comparison with the cohomology ring of the Eschenburg spaces yields:

Corollary 1.4. A compact, simply connected, seven dimensional, primitive co-

homogeneity one manifold has the cohomology ring of an Eschenburg space if

and only if:

a) it is any member of the family N or:

b) it is a member of the family O and one of the parameters p or q is even.

By examination of the order of the fourth cohomology group, it is apparent

that:

Corollary 1.5. Every family of compact, simply connected, seven dimensional,

primitive cohomogeneity one manifolds contains representatives of infinitely many

distinct homotopy types.

To outline of the remainder of this article: Section 2 opens with a brief dis-

cussion of the relationship between the isotropy groups of a cohomogeneity one

action and the topology of a manifold, motivating the introduction of double

disk bundles. Table 1 appears, summarizing the isotropy group description of

the four families of manifolds under consideration. Next, two long exact coho-

mology sequences are described. Finally, Lemma 2.2 gives a way of identifying

certain cohomology ring generators for those double disk bundles which fulfill

the stated cohomological conditions.

The proofs of Theorems 1.1 and 1.2 then proceed in tandem. Cohomology

groups are computed in Section 3. The order of the fourth cohomology groups

are expressed in terms of the parameters of the principal isotropy groups of
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the cohomogeneity one actions. Restrictions on the parameters under which the

fourth cohomology groups are guaranteed to be both non-trivial and finite cyclic

are found. In Section 4, cohomology ring generators (under the cup product)

are determined, completing the proofs.

This work is based upon the second author’s doctoral thesis at Oregon State

University. We thank the referee for a careful reading.

2. Computing cohomology for double disk bundles.

When a compact, connected, smooth manifold M has a finite fundamental

group, a cohomogeneity one action by a compact Lie group G induces addi-

tional topological structure which allows for a particularly nice description of

the manifold in terms of the isotropy groups of the G-action. In this case,

M/G is diffeomorphic to a closed interval. The G-orbits over the interval’s

interior points are called principal orbits, while those over the endpoints are

called non-principal. Up to conjugation in G, there are three isotropy groups

of the G-action: a principal isotropy group H and two non-principal isotropy

groups K− and K+. The non-principal orbits are diffeomorphic to G/K±, while

a principal orbit is diffeomorphic to G/H.

In fact, these groups are sufficient to describe such a manifold. A compact,

connected manifold M with finite fundamental group supports a cohomogene-

ity one action by a compact Lie group G if and only if there are closed sub-

groups and inclusions H ⊆ K−,K+ ⊆ G such that K±/H are diffeomorphic

to spheres St±−1. Then M is diffeomorphic to the union of the total spaces

D(G/K±) := G ×K± Dt± of disk bundles equivariantly identified along their

common boundary G×K± St±−1. A principal orbit G/H of the G-action is dif-

feomorphic to the total space G×K± (K±/H) ≈ G×K± St±−1 of the boundary

sphere bundles of the disk bundles. The non-principal orbits G/K± are diffeo-

morphic to the base spaces of the disk bundles, and are identified with the zero

sections in their respective total spaces D(G/K±). For further details, refer to

[6], [13] and [17].
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All members of the families L, M, N and O are compact and simply con-

nected, and all admit a cohomogeneity one action by G = S3 × S3. We regard

S3 as the group of unit quaternions. The parameters p and q of a circle group

{(eipθ, eiqθ)} ⊂ S3×S3 are necessarily relatively prime integers. Table 1 lists the

remaining data needed to describe the manifolds; namely, the isotropy groups

together with restrictions on the parameters that ensure an embedding of the

principal isotropy group H in the non-principal isotropy groups K±. For exam-

ple, in the description of the family L the principal isotropy group H = 〈(i, i)〉 is

the cyclic group of order four generated by the diagonal embedding of the unit

quaternion i (the notation 〈q1, . . . , qn〉 denoting the subgroup generated by the

elements q1, . . . , qn), the non-principal isotropy group K+ = {(ejp+θ, ejq+θ)} ·H

is the group whose elements are products of an element of the circle group

with an element of H, and the congruence of the parameters p−, q− ≡ 1 mod 4

of the non-principal isotropy group K− = {(eip−θ, eiq−θ)} ensures that H is a

subgroup. Note that our notation is consistent with [11, Chapter 13].

The description of a compact, simply connected cohomogeneity one manifold

as the union of two disk bundles is an example of a more general topological

construction, which we call a double disk bundle. This is a quotient space

X = D(B−) ∪ϕ D(B+) where the two spaces D(B±) are the total spaces of

disk bundles over paracompact bases B± and the attaching map ϕ is a home-

omorphism of the boundaries ∂D(B±). In the case of a cohomogeneity one

manifold, the spaces B± are the non-principal orbits G/K±, the boundaries

∂D(G/K−) = ∂D(G/K+) = G/H, and the attaching map ϕ is the identity

map. So for M cohomogeneity one, M = D(G/K−) ∪id D(G/K+). Note that

one can also glue with any G-equivariant map instead of the identity. The num-

ber of manifolds (up to equivariant diffeomorphism) that one obtains in this

fashion is controlled by the Neumann groups, as defined in [18].

2.1. Two long exact cohomology sequences.

The cohomology groups of a double disk bundle X = D(B−) ∪ϕ D(B+)

can be computed in terms of the disk bundles D(B±) → B± using the Mayer-
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Family Isotropy groups H ⊆ K−, K+

restrictions on parameters

L := 〈(i, i)〉 ⊆ {(eip−θ, eiq−θ)}, {(ejp+θ, ejq+θ)} ·H

{L(p−,q−),(p+,q+)} p−, q− ≡ 1 mod 4

M := ∆Q ⊆ {(eip−θ, eiq−θ)} ·H, {(ejp+θ, ejq+θ)} ·H

{M(p−,q−),(p+,q+)} ∆Q the diagonal embedding of 〈1, i, j, k〉;
p±, q± ≡ 1 mod 4

N := 〈(h1, h2), (1,−1)〉 ⊆ {(eip−θ, eiq−θ)} ·H, {(ejp+θ, ejq+θ)} ·H

{N(p−,q−),(p+,q+)} h1, h2 ∈ {i,−i} with signs chosen so that
(h1, h2) lies in {(eip−θ, eiq−θ)};

p− and q± odd, p+ even

O := Zm ⊆ {(eipθ, eiqθ)}, ∆S3 ·H

{O(p,q:m)} either m = 1 (with no restrictions on p or q)
or m = 2 and p is even

Table 1: Isotropy groups description of compact, simply connected, seven dimensional, prim-
itive cohomogeneity one manifolds.

Vietoris sequence or the long exact sequences of the pairs (X,B±). If the attach-

ing map ϕ is the identity map, the Mayer-Vietoris sequence can be modified. In

the case of a cohomogeneity one manifold, this modified sequence relates the co-

homology of the manifold to the cohomology of the principal and non-principal

orbits.

Denote by ∂D(B) the common boundary of the total spaces D(B±) of the

disk bundles. Restricting the projections of the disk bundles to their bound-

aries results in sphere bundles ∂D(B) → B±. Let π± denote these restricted

projections, and define a homomorphism π∗ := π∗− − π∗+. Finally, note that

the deformation retractions of D(B±) onto B± induce isomorphisms of the co-

homology groups. Making the appropriate substitutions in the Mayer-Vietoris

cohomology sequence gives the long exact sequence:

· · · → Hk(X)
ψ−→ Hk(B−)⊕Hk(B+) π∗−→ Hk(∂D(B)) δ−→ Hk+1(X)→ · · · (1)
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where ψ is the composition of the homomorphisms induced by the inclusions of

D(B±) in X with the deformation retractions of D(B±) onto B±. The homo-

morphism δ is the boundary homomorphism of the Mayer-Vietoris sequence (cf.

[13, Sequence 3.4]).

The long exact sequence of the pair (X,B+) can also be modified, assuming

the disk bundle Dt ↪→ D(B−) → B− is orientable; that is, if the structure

group Ot(R) can be reduced to SOt(R). When applied to a cohomogeneity one

manifold, the resulting sequence relates the cohomology of the manifold to the

cohomology of the principal orbits.

Begin with the long exact cohomology sequence of the pair (X,B+). Since

the inclusion B+ ↪→ D(B+) is a homotopy equivalence, the inclusion of pairs

(X,B+) ↪→ (X,D(B+)) induces isomorphisms of the relative cohomology groups

Hk(X,B+) ∼= Hk(X,D(B+)) by the five lemma. By excision, there are isomor-

phisms Hk(X,D(B+)) ∼= Hk(D(B−), ∂D(B)), and orientability of the bundle

D(B−)→ B− guarantees the existence of a Thom isomorphism from Hk−t(B−)

to Hk(D(B−), ∂D(B)). This gives an isomorphism Hk−t(B−) ∼= Hk(X,B+).

Because the bundle projection D(B−) → B− followed by the inclusion

B− ↪→ X is homotopic to the inclusion D(B−) ↪→ X, the composition of the

Thom isomorphism with the inverse of the excision isomorphism is an H∗(X)-

module homomorphism fromHk−t(B−) toHk(X,D(B+)) ([9, Corollary 11.20]).

Since homomorphisms induced on cohomology by topological maps respect cup

products, the group isomorphism from Hk(X,D(B+)) to Hk(X,B+) is also an

H∗(X)-module isomorphism. Thus, there is an H∗(X)-module isomorphism

from Hk−t(B−) to Hk(X,B+). Define J to be the composition of this iso-

morphism with the homomorphism j∗+ from Hk(X,B+) to Hk(X) in the long

exact sequence of the pair (X,B+). Checking the definition of j∗+, one sees

that it is a homomorphism of H∗(X)-modules. Thus, J is an H∗(X)-module

homomorphism. This will be key in identifying cohomology ring generators.

Making the appropriate substitutions in the sequence of the pair (X,B+),
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we have the long exact sequence:

· · · → Hk−t(B−) J−→ Hk(X)
i∗+−→ Hk(B+) δ−→ Hk−t+1(B−)→ · · · (2)

(cf. [14, Sequences 4.1.a, 4.1.b]). An analogous sequence, with the roles of B+

and B− reversed, exists if the bundle D(B+)→ B+ is orientable. Furthermore,

such a sequence exists for any bundle, regardless of orientability, if integral

coefficients are replaced by Z2-coefficients.

If B is a closed orientable submanifold of an orientable manifold M , then it

is known that the normal disk sub-bundle over B in the tangent bundle of M is

an orientable bundle ([5, p.66]). As we shall see, both non-principal orbits for

manifolds in the family O are orientable, while only the orbit G/K− is orientable

for members of L and N. Since the orbits are closed submanifolds of a simply

connected manifold, at least one long exact sequence of this type exists for each

of these manifolds. Note that both non-principal orbits of members of M are

non-orientable (see [11]).

2.2. Two lemmas and a commutative diagram.

We now derive two lemmas from Sequences 1 and 2, and introduce a com-

mutative ladder of long exact sequences. These, together with the sequences,

are the main tools on which we rely in the proofs of Theorems 1.1 and 1.2. Both

lemmas apply to double disk bundles, and require orientability of at least one

of the bundles.

Lemma 2.1 is used in the proofs of Theorems 1.1 and 1.2 to conclude that

the fourth cohomology groups of manifolds in the families L and O are cyclic:

Lemma 2.1. Let X = D(B−) ∪id D(B+) be a double disk bundle where the

bundle Dt ↪→ D(B−) → B− is orientable. For a fixed integer κ, suppose

Hκ−t(B−) is cyclic and both groups Hκ(B±) are trivial. Furthermore, sup-

pose Hκ−1(∂D(B)) is finitely generated and free, and has the same rank as

the free part of Hκ−1(B−) ⊕ Hκ−1(B+). Let r ≥ 0 be the absolute value of

the determinant of the restriction of the homomorphism π∗ to the free part of

Hκ−1(B−)⊕Hκ−1(B+). Then Hκ(X) is the cyclic group of order r.
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Proof. Setting k = κ in Sequence 2, one sees that Hκ(X) must be a cyclic

group. Examination of the section of Sequence 1 for which k = κ − 1 and

k = κ discloses that Hκ(X) is equal to the cokernel of the restriction of π∗ to

the free part of Hκ−1(B−) ⊕Hκ−1(B+). Then the Smith normal form can be

used to relate the determinant of the restriction of π∗ to the order of Hκ(X). �

Lemma 2.2 is used in the proofs of Theorems 1.1 and 1.2 to identify gener-

ators of the cohomology rings:

Lemma 2.2. Let X = D(B−) ∪ϕ D(B+) be a double disk bundle over a con-

nected base, where the disk bundle Dt ↪→ D(B−) → B− is orientable. Suppose

Ht(X) is infinite cyclic, and Ht(B+) is finite cyclic of order n ≥ 1. Let i∗± be

the homomorphisms induced on cohomology by the inclusions of B± in X, and

suppose i∗+ : Ht(X) → Ht(B+) is a surjection. Finally, suppose κ is a fixed

integer, κ > t, such that the following hold:

1. Hκ(X) is a non-trivial cyclic group and Hκ(X)
i∗+−→ Hκ(B+) is the zero

homomorphism.

2. Hκ−t(B−) ∼= Z · γ ⊕ T where T is torsion and the free part is generated

by γ. If Hκ(X) is finite, the orders of elements of T are relatively prime

to the order of Hκ(X).

3. There exists a class α in Hκ−t(X) with image i∗−(α) = sγ+β (for β ∈ T )

such that: if Hκ(X) is free, then |s| = n; otherwise, s is relatively prime

to the order of Hκ(X).

Then the cohomology class x ^ α generates Hκ(X), where x is a generator of

Ht(X).

Proof. Let 1− be the unit of the cohomology ring H∗(B−). Setting k = t in

Sequence 2, and assuming the hypotheses regarding Ht(X) and Ht(B+) hold,

one has a short exact sequence:

0→ H0(B−) ∼= Z J−→ Ht(X) ∼= Z
i∗+−→ Ht(B+) ∼= Zn → 0.
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From this we conclude that the homomorphism J from H0(B−) to Ht(X) is

multiplication by n, and J(1−) = ±nx.

Now, let k = κ in Sequence 2. By Condition 1, the homomorphism from

Hκ(X) to Hκ(B+) is the zero homomorphism, hence by exactness the homomor-

phism J from Hκ−t(B−) ∼= Z ·γ⊕T to Hκ(X) is a surjection. Torsion elements

of Hκ−t(B−) are in the kernel of J (by Condition 2), so J(γ) generates Hκ(X).

We now consider separately the case in which Hκ(X) is infinite cyclic, and

that in which it is finite cyclic. First, suppose Hκ(X) is infinite cyclic. Let

i∗−(α) = ±nγ + β ∈ Hκ−t(B−) where β is torsion, as required by Condition 3.

The homomorphism J maps the torsion element β to zero in Hκ(X), hence:

nJ(γ) = ±J(±nγ)± J(β) = ±J(±nγ + β) = ±J(i∗−(α)) = ±J(1− ^ i∗−(α))

where the negative signs correspond to the case in which i∗−(α) = −nγ + β.

Recall that J is an H∗(X)-module homomorphism, so:

J(1− ^ i∗−(α)) = J(1−) ^ α = ±n(x ^ α).

Since the generator J(γ) is non-trivial in Hκ(X) ∼= Z and n 6= 0, cancellation

implies that x ^ α = ±J(γ); so x ^ α generates Hκ(X).

On the other hand, suppose Hκ(X) is finite cyclic. Let i∗−(α) = sγ + β

where s is relatively prime to the order of Hκ(X), thus satisfying Condition

3. A calculation similar to the one carried out in the previous case shows that

sJ(γ) = ±n(x ^ α). The class J(γ) generates Hκ(X), and the order of Hκ(X)

is relatively prime to s, therefore sJ(γ) = ±n(x ^ α) also generates Hκ(X).

But if a multiple of x ^ α generates a finite cyclic group, then x ^ α itself

must be a generator. �

A useful tool for determining whether Condition 3 of Lemma 2.2 holds is
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the commutative ladder of long exact sequences:

· · ·
j∗− // Hk(X)

i∗− //

i∗+
��

Hk(B−)

��

δ− // Hk+1(X,B−)

∼=
��

j∗− // · · ·

· · · j∗ // Hk(B+) i∗ // Hk(∂D(B)) δ // Hk+1(D(B+), ∂D(B))
j∗ // · · · .

(3)

To construct this diagram, begin with the long exact sequence of the pair

(X,B−), which forms the top row. Consider the commutative ladder of the

long exact sequences of the pairs (X,B−) and (X,D(B−)) induced by the in-

clusion of pairs (X,B−) ↪→ (X,D(B−)). All vertical homomorphisms in this

ladder are isomorphisms; the inclusion of B− in D(B−) is a homotopy equiva-

lence, so the five lemma applies to the relative groups. To complete the diagram,

use the commutative ladder of long exact sequences induced by the inclusion

of pairs (D(B+), ∂D(B)) ↪→ (X,D(B−)). Note that the homomorphism of the

relative cohomology groups induced by this inclusion of pairs is the excision iso-

morphism. This gives a commutative ladder between the long exact sequences

of the pairs (X,B−) and (D(B+), ∂D(B)) in which the vertical homomorphisms

between the relative cohomology groups are isomorphisms. Finally, the inclu-

sion of B+ in D(B+) is a homotopy equivalence, so the cohomology groups of

D(B+) may be replaced with those of B+.

3. Cohomology groups.

In this section, we compute the cohomology groups of members of the fami-

lies L and O. We also recount the cohomology groups of members of the families

M and N, originally found in [11]. We express the order of the fourth cohomol-

ogy groups in terms of the parameters of the principal isotropy groups of the

cohomogeneity one actions, identify restrictions on the parameters guaranteeing

that these groups are both non-trivial and finite, and indicate when they have

odd order.

Observe that all manifolds in question are compact, simply connected and

seven dimensional ([15]). Because they are simply connected, they are ori-
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entable. Easy calculations using Poincaré duality together with the universal

coefficient theorem show that they have infinite cyclic cohomology in dimensions

zero and seven and trivial cohomology in dimensions one and six. It remains to

find the second through fifth cohomology groups.

3.1. Cohomology groups of the family L.

Recall that this family is described by the groups:

H = 〈(i, i)〉 ⊆ K− = {(eip−θ, eiq−θ)},K+ = {(ejp+θ, ejq+θ)} ·H ⊆ G = S3 × S3

where p−, q− and p+, q+ are pairs of relatively prime integers, and p− and

q− are both congruent to 1 modulo 4. This family naturally splits into two

subfamilies, depending on whether p+ is even or odd. The cohomology of the

principal orbit G/H and the non-principal orbit G/K− is the same in both

cases. The principal orbit G/H = S3 × S3/〈(i, i)〉 is homeomorphic to the

product S3× (S3/〈i〉) of the 3-sphere with the lens space S3/〈i〉 ≈ L4(1, 1). An

explicit homeomorphism is given by [q1, q2] 7→ (q1q2
−1, [q2]). The non-principal

orbit G/K− = S3 × S3/{(eip−θ, eiq−θ)} is always homeomorphic to S3 × S2 by

[20, Proposition 2.3]. The orbit G/K+, however, varies depending on the parity

of p+.

Case 1. Suppose p+ is odd. Then the cohomology groups of the non-principal

orbits G/K+ were calculated in [11, Lemma 13.3a], where they were shown to

be:

Hk(G/K+) ∼=


Z k = 0, 3

Z2 k = 2, 5

0 otherwise.

Let L := L(p−,q−),(p+,q+) be a member of the subfamily of L with p+ odd.

We know that H0(L) ∼= H7(L) ∼= Z. The orbit G/K− ≈ S3 × S2 is a closed

orientable submanifold of codimension 2, so the normal disk bundle over G/K−

is an orientable bundle with fiber D2. Setting t = 2, κ = 4, B± = G/K± and

∂D(B) = G/H, it follows from Lemma 2.1 that H4(L) ∼= cokerπ∗ ∼= Zr. Recall

that r is (up to sign) the determinant of the homomorphism π∗ from the rank
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two free abelian group H3(G/K−) ⊕H3(G/K+) ∼= Z ⊕ Z to the rank two free

abelian group H3(G/H) ∼= Z ⊕ Z. Apply Sequences 1 and 2 (taking t = 2) to

find the remaining cohomology groups:

Hk(L) ∼=



Z k = 0, 2, 5, 7

kerπ∗ k = 3

Zr k = 4

0 otherwise.

Observe that H3(L) ∼= kerπ∗ will be trivial if and only if det(π∗) 6= 0.

To find r = |det(π∗)|, we follow the example of [13, Proposition 3.3]. Con-

sider the diagram:

H3(G) ∼= Z⊕ Z H3(G/K◦−)⊕H3(G/K◦+) ∼= Z⊕ Z
τ∗ = τ∗−−τ

∗
+oo

H3(G/H) ∼= Z⊕ Z

η∗

OO

H3(G/K−)⊕H3(G/K+) ∼= Z⊕ Z
π∗ =π∗−−π

∗
+oo

µ∗ =µ∗−×µ
∗
+

OO
(4)

where the homomorphisms τ∗± and η∗ are induced by orbit maps, and µ∗± are

the homomorphisms induced by the maps gK◦± 7→ gK± (which are themselves

induced by the inclusions of the identity components K◦± in K±). In the present

case, K− is connected; hence, K− = K◦− and µ∗− is the identity. And since µ∗+

is an isomorphism by [11, Lemma 13.3a], we have |det(µ∗)| = 1.

We next wish to find |det(η∗)|. Recall that G/H is homeomorphic to S3 ×

(S3/〈i〉). Uniqueness of the universal cover implies that the composition S3 ×

S3 η−→ G/H
≈−→ S3 × (S3/〈i〉) induces a commutative square on cohomology:

H3(S3 × S3) ∼= Z⊕ Z H3(S3 × S3) ∼= Z⊕ Z
∼=oo

H3(G/H) ∼= Z⊕ Z

η∗

OO

H3(S3 × S3/〈i〉) ∼= Z⊕ Z

(idS3×f)∗

OO

∼=oo

(5)

where f is the projection of universal cover of S3/〈i〉 by S3. An argument

involving the Künneth isomorphism shows that there are bases for H3(S3 ×

S3/〈i〉) and H3(S3 × S3) such that (idS3 × f)∗ = idS3
∗ × f∗. The covering

degree deg(f) = ±4 implies that |det(η∗)| = |det(idS3
∗ × f∗)| = 4.
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The determinant of τ∗ follows from [13, Proposition 3.3]. They find a basis

of H3(S3 × S3) with respect to which im τ∗± = 〈(−q2
±, p

2
±)〉. Hence, |det(τ∗)| =

|det(τ∗− − τ∗+)| = |p2
+q

2
− − p2

−q
2
+|. We conclude that the absolute value of the

determinant of π∗ is |det(π∗)| = |det(η∗−1)||det(τ∗)||det(µ∗)| = 1
4 |p

2
+q

2
−−p2

−q
2
+|.

In this family, the parameters p+ and q+ are odd and p−, q− ≡ 1 mod 4. If

we set p+ = 2k+ 1, q+ = 2l+ 1, p− = 4m+ 1 and q− = 4n+ 1 for some integers

k, l,m and n, we see that the parity of r = 1
4 |p

2
+q

2
−−p2

−q
2
+| agrees with the parity

of k(k+ 1)− l(l+ 1), which must be even. It follows that H4(L) ∼= Zr is a non-

trivial cyclic group of even order. Thus, H3(L) is the trivial group and H4(L)

is a non-trivial finite cyclic group of even order if and only if |p2
+q

2
−−p2

−q
2
+| 6= 0.

Case 2. On the other hand, suppose p+ is even. Let K ′ = {(ejp+θ, ejq+θ)} ·

〈(1,−1), (i, i)〉 be a subgroup of S3 × S3. Because p+ is even, the inclusion of

K+ = {(ejp+θ, ejq+θ)}·〈(i, i)〉 in K ′ as a subgroup induces a continuous bijection

from the compact space G/K+ to the Hausdorff space G/K ′. It follows that

G/K+ is homeomorphic to G/K ′. Thus, the cohomology of G/K+ is the same

as that of G/K ′, which was shown in [11, Lemma 13.6b] to be:

Hk(G/K+) ∼=



Z k = 0

Z4 k = 2

Z⊕ Z2 k = 3

Z2 k = 5

0 otherwise.

Let L := L(p−,q−),(p+,q+) be a member of the subfamily of L with p+ even.

Using Sequence 1, Poincaré duality and the universal coefficient theorem, we

find that H0(L) = H2(L) = H7(L) ∼= Z and H5(L) = Z⊕Z2. Similarly, H3(L)

and H4(L) are, respectively, the kernel and cokernel of the homomorphism π∗ =

π∗− − π∗+ from H3(G/K−)⊕H3(G/K+) to H3(G/H) in Sequence 1. Applying

Lemma 2.1 with t = 2 and κ = 4, H4(L) is cyclic of order r = |det(π∗|Z⊕Z)|. In

16



this case, there is a diagram:

H3(G) ∼= Z⊕ Z H3(G/K◦−)⊕H3(G/K◦+) ∼= Z⊕ Z
τ∗ = τ∗−−τ

∗
+oo

H3(G/H) ∼= Z⊕ Z

η∗

OO

H3(G/K−)⊕H3(G/K+) ∼= Z⊕ (Z⊕ Z2).
π∗ =π∗−−π

∗
+oo

µ∗ =µ∗−×µ
∗
+

OO

Comparing this to Diagram 4, we see that the homomorphisms η∗, τ∗ and µ∗−

are the same. By [11, Lemma 13.6], the homomorphism µ∗+ is multiplication by

±4 on the free part of H3(G/K+), while the Z2 summand is clearly in the kernel.

We conclude that r = |p2
+q

2
−−p2

−q
2
+|. Since p+ is even while q± and p− are odd,

r is always odd, so H4(L) is finite. Also, r = |(p+q−+p−q+)(p+q−−p−q+)| 6= 1

since the parameters p± and q± are non-zero. This can be confirmed by checking

the four possible cases for the equation r = |(a + b)(a − b)| = 1 where a and b

are integers. Hence, H4(L) is a non-trivial finite cyclic group of odd order; and

by Poincaré duality and the universal coefficient theorem, H3(L) ∼= Z2. Thus,

the cohomology groups of L are:

Hk(L) ∼=



Z k = 0, 2, 7

Z2 k = 3

Zr k = 4

Z⊕ Z2 k = 5

0 otherwise.

3.2. Cohomology groups of the family M.

The topology of the family M is described in [11, Theorem 13.1]. A mem-

ber M of this family has non-trivial cohomology groups H0(M) = H7(M) ∼=

Z and H4(M) ∼= Zr a finite group of order r = 1
8 |p

2
−q

2
+ − p2

+q
2
−| whenever

p2
+q

2
− − p2

−q
2
+ 6= 0. Otherwise, the non-trivial cohomology groups are H0(M) =

H3(M) = H4(M) = H7(M) ∼= Z. Note these manifolds do not admit Kreck-

Stolz invariants.
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3.3. Cohomology groups of the family N.

The cohomology groups of a member N := N(p−,q−),(p+,q+) of this family, as

computed in [11, Theorem 13.5], are:

Hk(N) ∼=


Z k = 0, 2, 5, 7

Zr k = 4

0 otherwise

where the order of the cyclic group H4(N) is r = |p2
−q

2
+ − p2

+q
2
−|. Since p+ is

required to be even while p−, q− and q+ are odd, r must be odd and (as was the

case of the family L for p+ even) cannot equal one. Thus, H4(N) is a non-trivial

finite cyclic group of odd order.

3.4. Cohomology groups of the family O.

Recall that this family is described by the groups:

H = Zm ⊆ K− = {(eipθ, eiqθ)}, K+ = ∆S3 ·H ⊆ G = S3 × S3

where ∆S3 is the diagonal embedding. The integers p and q are relatively

prime, and either m = 1 (in which case H is the trivial group, and there are no

restrictions on the parameters), or m = 2 (in which case H = 〈(1,−1)〉 ∼= Z2

and p is required to be even). This family naturally splits into two subfamilies,

depending on the value of m. In both cases, the non-principal orbit G/K− is

homeomorphic to S3 × S2; the difference lies in the other non-principal orbit

G/K+, and the principal orbit G/H.

Case 1. First, suppose m = 1. Then G/K+ = S3 × S3/∆S3 is homeomorphic

to S3 under the map sending the coset [(q1, q2)] to q1q2
−1. The principal orbit

is G/H = S3 × S3. For a member O := O(p,q:1) of this subfamily, recall that

H0(O) ∼= H7(O) ∼= Z. Using Sequence 1 and Lemma 2.1 (with t = 2 and κ = 4),

one easily sees that the cohomology groups are:

Hk(O) ∼=



Z k = 0, 2, 5, 7

kerπ∗ k = 3

Zr k = 4

0 otherwise
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where again r = |det(π∗)| for π∗ the homomorphism from the rank two free

abelian group H3(G/K−) ⊕ H3(G/K+) to the rank two free abelian group

H3(G/H). In order for H3(O) to be trivial, the determinant of π∗ must be

non-zero.

As a preliminary step to finding this determinant, let v be a generator of

H3(S3). Fix a basis u1, u2 of H3(G/H) = H3(S3 × S3) which corresponds

to the images of v ⊗ 1 and 1 ⊗ v under the Künneth isomorphism; that is,

ui = p∗i (v) where pi is the projection of the ith factor of S3 × S3 onto S3

(i = 1, 2). Up to sign, this is the basis used in [13, Proposition 3.3] to show

that imπ∗− = 〈(−q2, p2)〉. We now find imπ∗+ ≤ H3(S3 × S3) with respect to

the basis u1, u2.

Let S3 ∆
↪−→ S3 × S3 π+−−→ G/K+ ≈ (S3 × S3)/∆S3 ≈ S3 be the principal

S3-bundle with fiber inclusion ∆ the diagonal embedding of S3 in S3 × S3.

The composition π+ ◦∆ is constant, and so is a degree zero map; the induced

homomorphism ∆∗ ◦ π∗+ from H3(S3) to itself is the trivial homomorphism.

Therefore, the image of π∗+ is contained in the kernel of ∆∗. If σ ∈ C3(S3) is a

singular 3-chain, then for i = 1, 2:

∆∗(ui)(σ) = ui(∆(σ)) = p∗i (v)((σ, σ)) = v(σ).

So the kernel of ∆∗ is the subgroup of H3(S3 × S3) generated by u1 − u2, and

there is an integer n such that imπ∗+ = 〈n(u1 − u2)〉.

Next, consider the Serre spectral sequence (E, d) of the Borel fibration

S3 × S3 π+−−→ G/K+
ρ−→ HP∞ (here, ρ is the classifying map of the previous

S3-bundle). The differential E0,3
4
∼= H3(S3 × S3) d4−→ E4,0

4
∼= H4(HP∞) can be

identified with the transgression ([16, Theorem 6.83]). By examining the defini-

tion of the transgression (as in [16, p.186]), we see in this particular instance that

kerd4 = imπ∗+ = 〈n(u1−u2)〉. Based on the convergence of the spectral sequence

to H∗(G/K+) ∼= H∗(S3), we observe that H3(S3 × S3)/kerd4 must be isomor-

phic to H4(HP∞) ∼= Z. Using the basis u1, u1 − u2 for H3(S3 × S3) ∼= Z ⊕ Z,

we conclude that |n| = 1; so the image of π∗+ in H3(S3 × S3) with respect to

the basis u1, u2 is the subgroup 〈(1,−1)〉.
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From the above, the absolute value of the determinant of π∗ = π∗− − π∗+ is

|p2 − q2|. Since neither p nor q may be zero, |p2 − q2| = |(p+ q)(p− q)| 6= 1, so

H4(O) is non-trivial. Since p and q are relatively prime, det(π∗) can equal zero

only if |p| = |q| = 1. So as long as |p| and |q| are not both equal to one, H3(O)

is trivial and H4(O) is a non-trivial finite cyclic group. If either p or q is even,

the order of H4(O) is odd.

Case 2. Let m = 2. In this case, G/K+ = (S3 × S3)/(∆S3 · 〈(1,−1)〉) is

homeomorphic to RP 3 under the map sending the coset [(q1, q2)] to the coset

[q1q2
−1]. The principal orbit G/H = S3 × S3/〈(1,−1)〉 is homeomorphic to

S3 × RP 3 under the map [q1, q2] 7→ (q1, [q2]). Once again, Sequence 1 and

Lemma 2.1 (with t = 2 and κ = 4) are sufficient tools for determining the

cohomology groups of a member O := O(p,q:2) of this subfamily. As in the

previous case, they are:

Hk(O) ∼=



Z k = 0, 2, 5, 7

kerπ∗ k = 3

Zr k = 4

0 otherwise

for r the absolute value of the determinant of the homomorphism π∗ from the

rank two free abelian groupH3(G/K−)⊕H3(G/K+) to the rank two free abelian

group H3(G/H), and H3(O) ∼= kerπ∗ is trivial when the determinant of π∗ is

not zero.

To calculate |det(π∗)|, we refer again to Diagram 4. As before, µ− is the

identity map. Now, however, µ+ is the projection of the universal cover of

RP 3 by S3, which has covering degree two; so |det(µ∗)| = 2. The composition

S3×S3 η−→ G/H
≈−→ S3×RP 3 is the universal cover, and an argument analogous

to the first argument involving Diagram 5 (used for members of the family L

with p+ odd) shows that |det(η∗)| = 2.

The absolute value of the determinant of τ∗ has already been computed; the

homomorphism π∗ that determined the order of the fourth cohomology group in

the previous subfamily {O(p,q:1)} is the same as the current homomorphism τ∗.
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Thus, the absolute value of the determinant of the current homomorphism π∗

is |det(π∗)| = |det(η∗)−1||det(τ∗)||det(µ∗)| = |p2 − q2|. Recall that p is even for

members of this subfamily, so H4(O) is finite cyclic of odd order r = |p2 − q2|

and H3(O) = 0.

4. Cohomology rings.

In this section, we show that if a manifold M is a member of the subfamily

of L where p+ is odd and p2
+q

2
−− p2

−q
2
+ 6= 0, or any member of the family N, or

a member of the subfamily of O with |p| and |q| not both equal to one, then the

cohomology ring H∗(M) is generated by classes x ∈ H2(M) and y ∈ H5(M).

This will complete the proof of Theorem 1.1. Corollary 1.3 is immediate. Corol-

lary 1.4 follows from the analysis (carried out in Section 3) of the order of the

fourth cohomology groups, as expressed in terms of the parameters of the princi-

pal orbits. Using the same parametrized expressions for the orders of the fourth

cohomology groups, one sees that infinitely many orders are realizable, which

verifies Corollary 1.5

This section also presents an almost complete description of the cohomology

ring structure of the remaining manifolds, members of the subfamily of L with

p+ is even. We show for any such manifold M , if classes x and y generate

H2(M) and the free part of H5(M) respectively, then the class x2 generates

H4(M) and xy generates H7(M). This will complete the proof of Theorem 1.2.

All manifolds considered in this section are simply connected, and hence ori-

entable. They also have non-principal orbits G/K− which are closed, orientable

submanifolds of codimension two. So the normal disk bundles over G/K− are

orientable bundles with fiber D2. Thus, we have at our disposal Sequence 2 and

(provided the conditions are met) Lemma 2.2, setting t = 2 in both. In the fol-

lowing, we will assume that the class x generates H2(M), the class y generates

the free part of H5(M), and 1± is the multiplicative unit of H∗(G/K±).

4.1. Cohomology rings of the family L.

Case 1. Let L := L(p−,q−),(p+,q+) be a member of the subfamily of L for which

p+ is odd and p2
+q

2
−−p2

−q
2
+ 6= 0. In this case, Lemma 2.2 cannot be called on to
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show that the square of the generator x of H2(L) generates H4(L), as Condition

3 fails. Fortunately, there is an alternate method of showing x2 generates H4(L).

Setting t = 2, k = 2 and B± = G/K± in Sequence 2 for the pair (L,G/K+)

gives a short exact sequence:

0→ H0(G/K−) ∼= Z J−→ H2(L) ∼= Z · x
i∗+−→ H2(G/K+) ∼= Z2 → 0

and we see that J(1−) = ±2x. Setting k = 4 in Sequence 2, exactness together

with the triviality of H4(G/K+) implies J(γ) generates H4(L).

Recalling that J is an H∗(L)-module homomorphism:

2J(γ) = J(2γ) = J(i∗−(x)) = J(1−) ^ x = ±2x2.

Since J(γ) generates the finite cyclic group H4(L), the subgroup generated by

2x2 = ±2J(γ) is an index two subgroup. We show that x2 is not an element

of 〈2x2〉, from which it follows x2 generates H4(L). Because this argument will

require both integral and Z2 cohomology, we temporarily resort to explicitly

indicating coefficients.

The short exact sequence of abelian groups:

0→ Z h−→ Z g−→ Z2 → 0

where h is multiplication by two and g is the natural projection, gives rise to

the long exact cohomology sequence:

· · · → Hk(L; Z)
h#−−→ Hk(L; Z)

g#−−→ Hk(L; Z2)
β−→ Hk+1(L; Z)→ · · ·

where β is the Bockstein operator, and h# and g# are coefficient homomor-

phisms. Because J(γ) generates H4(L; Z), and by definition h#(J(γ)) = 2J(γ),

exactness of the sequence implies 〈2x2〉 = 〈2J(γ)〉 is the kernel of g#. Hence, if

g#(x2) can be shown to be non-trivial in H4(L; Z2), it will follow that x2 is not

in 〈2x2〉.

Since H3(L; Z) is trivial, exactness implies that the homomorphism g# from

H2(L; Z) to H2(L; Z2) is surjective. Thus g# sends the generator x of H2(L; Z)
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to the generator w of H2(L; Z2). Checking the definitions of the induced homo-

morphism g# and the cup product reveals that g#(x2) = w2.

The Z2-cohomology of L and the non-principal orbits G/K± are:

Hk(L; Z2) ∼=

 Z2 k = 0, 2, 3, 4, 5, 7

0 otherwise

Hk(G/K−; Z2) ∼=

 Z2 k = 0, 2, 3, 5

0 otherwise

Hk(G/K+; Z2) ∼=

 Z2 k = 0, 1, 2, 3, 4, 5

0 otherwise.

Applying Sequence 2 with Z2-coefficients to the pair (L,G/K−) (recall that

orientability of G/K+ is not required for Z2 coefficients) reveals that J is an

isomorphism from H0(G/K+; Z2) to H2(L; Z2). Under this isomorphism, if 1

is the unit of the cohomology ring H∗(G/K+; Z2), then J(1) = w. Applying

Sequence 2 to the pair (L,G/K+) shows the homomorphism i∗+ from H2(L; Z2)

to H2(G/K+; Z2) to be an isomorphism, so i∗+(w) generates H2(G/K+; Z2).

Returning to the sequence of the pair (L,G/K−), we see that H2(G/K+; Z2) is

isomorphic to H4(L; Z2) under J ; hence, J(i∗+(w)) generates H4(L; Z2). Since

J is an H∗(L; Z2)-module homomorphism:

J(i∗+(w)) = J(1^ i∗+(w)) = J(1) ^ w = w2.

Thus, w2 = g#(x2) generates H4(L; Z2). In particular, g#(x2) is non-trivial,

which is what we needed to show in order to conclude that x2 generatesH4(L; Z).

As Z2 coefficients will no longer be needed, we return to the convention of as-

suming integral cohomology and no longer specify coefficients.

We now show that all of the conditions of Lemma 2.2 hold when κ = 7,

from which it follows that the class xy generates H7(L). Recall that t = 2, and

observe that all conditions on the cohomology groups are met. Since H1(G/K−)

is trivial, i∗+ from H2(L) to H2(G/K+) is a surjection.
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We check the remaining three conditions. Since H7(G/K+) is trivial, i∗+

from H7(L) to H7(G/K+) is the zero homomorphism, and Condition 1 holds.

Condition 2 also holds, with H5(G/K−) ∼= Z ·ν. The group H2(G/K+) is finite

cyclic of order two, and H7(L) is infinite cyclic; so to verify Condition 3, we

need to show that i∗+(y) = ±2ν.

Take k = 5 in Diagram 3. Triviality ofH4(G/K−) implies thatH5(L,G/K−)

injects into the infinite cyclic group H5(L), while triviality of H4(G/H) im-

plies that H5(D(G/K+), G/H) injects into the finite cyclic group H5(G/K+).

Because the groups H5(L,G/K−) and H5(D(G/K+), G/H) are isomorphic,

the existence of these two simultaneous injections implies that H5(L,G/K−)

and H5(D(G/K+), G/H) must both be trivial. This yields two short exact

sequences:

0→ H5(L) ∼= Z · y
i∗−−→ H5(G/K−) ∼= Z · ν δ−−−→ H5(L,G/K−)→ 0

0→ H5(G/K+) ∼= Z2
i∗−→ H5(G/H) ∼= Z4

δ−→ H5(D(G/K+), G/H)→ 0

where the groups H5(L,G/K−) and H5(G/K+, G/H) are isomorphic. From the

second sequence, we conclude H6(D(G/K+), G/H) ∼= Z2. It is then apparent

by the first sequence that i∗− is multiplication by two; so i∗−(y) = ±2ν, Condition

3 holds, and by Lemma 2.2, xy generates H7(L).

Case 2. Suppose L := L(p−,q−),(p+,q+) is a member of the subfamily of L with

p+ even. Let x generate H2(L) ∼= Z and y the free part of H5(L) ∼= Z ⊕ Z2;

we show that x2 generates H4(L) and xy generates H7(L). Whether or not the

classes x and y, together with a class ξ generating H3(L) ∼= Z2, form a complete

set of generators for the ring H∗(L) is unknown at this time.

Setting t = 2, we confirm that the conditions of Lemma 2.2 hold when

κ = 4, 7. The conditions on H2(L) and H2(G/K+), as well as Conditions 1

and 2, are easily checked. Sequence 2 can be used to verify that the inclusion-

induced homomorphism from H2(L) ∼= Z to H2(G/K+) ∼= Z4 is a surjection,

and those from Hκ(L) to Hκ(G/K+) (for κ = 4, 7) are multiplication by zero.

It remains to check Condition 3.

When κ = 4, H4(L) is finite cyclic. We show i∗−(x) generates H2(G/K−)
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when x generates H2(L). Consider Diagram 3. The second relative cohomology

groups, which are isomorphic, inject into both a free group and a finite group

and so must be trivial. Because H3(L) ∼= Z2 is in the kernel of i∗−, the third

relative group H3(L,G/K−) surjects onto H3(L). By exactness of the top row,

H3(L,G/K−)/im δ is isomorphic to Z2 and im δ is finite cyclic. We conclude

that H3(L,G/K−) is a non-trivial finite group.

Triviality of H2(D(G/K+), G/H) implies that H2(G/K+) ∼= Z4 injects into

H2(G/H) ∼= Z4; so H2(G/K+) and H2(G/H) are isomorphic. It follows from

the isomorphism of the third relative cohomology groups, together with exact-

ness in the bottom row, that H3(L,G/K−) injects into H3(G/K+) ∼= Z ⊕ Z2.

So H3(L,G/K−) is isomorphic to Z2, and the surjection of H3(L,G/K−) onto

H3(L) is an isomorphism. Then, by exactness of the top row, the inclusion-

induced homomorphism i∗− from H2(L) ∼= Z · x to H2(G/K−) must also be an

isomorphism, and i∗−(x) generates H2(G/K−). This satisfies Condition 3 in the

case κ = 4.

If κ = 7, H7(L) is infinite cyclic. We show that, for y a generator of the

free part of H5(L), i∗−(y) is four times a generator of H5(G/K−) ∼= Z. Again

turning to Diagram 3, we see that the fifth relative cohomology groups, which

are isomorphic, inject into both H5(L) ∼= Z·y⊕Z2 and H5(G/K+) ∼= Z2. Hence,

they are either trivial or cyclic of order two. Since the Z2 summand of H5(L) is

in the kernel of the homomorphism i∗− from H5(L) to H5(G/K−), we conclude

that the fifth relative cohomology groups are isomorphic to Z2. Then exactness

of the bottom row together with the isomorphism of the relative groups gives

an isomorphism between H6(L,G/K−) and H5(G/H) ∼= Z4. Restricting i∗− to

the free part of H5(L) gives rise to a short exact sequence:

0→ Z · y
i∗−|Z−−−→ H5(G/K−) ∼= Z δ−−−→ Z4 → 0.

Hence, i∗−(y) is four times a generator of H5(G/K−), satisfying Condition 3 in

the case κ = 7, and by Lemma 2.2 it follows that x2 generates H4(L) and xy

generates H7(L).

This completes the proof of Theorem 1.2. �
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4.2. Cohomology rings of the family N.

We continue with the proof of Theorem 1.1.

Let N := N(p−,q−),(p+,q+) be a member of the family N. The cohomology

groups of the orbits (as computed in [11, Lemma 13.6]) are:

Hk(G/K−) ∼=



Z k = 0, 3, 5

Z⊕ Z2 k = 2

Z2 k = 4

0 otherwise

Hk(G/K+) ∼=



Z k = 0

Z4 k = 2

Z⊕ Z2 k = 3

Z2 k = 5

0 otherwise

Hk(G/H) ∼=



Z k = 0, 6

Z2 ⊕ Z4 k = 2, 5

Z⊕ Z⊕ Z2 k = 3

Z2 k = 4

0 otherwise

The classes x and y respectively generate the infinite cyclic groups H2(N)

and H5(N). To show that x2 generates H4(N) and xy generates H7(N), we

turn to Lemma 2.2 (recall that t = 2). For κ = 4 and 7, all of the conditions

on the cohomology groups are satisfied, including Condition 2. In particular,

H2(G/K+) is finite cyclic of order n = 4. Taking k = 2 in Sequence 2, one

sees that the inclusion-induced homomorphism from H2(N) to H2(G/K+) is

a surjection, and also that the inclusion-induced homomorphisms from Hκ(N)

to Hκ(G/K+), κ = 4 and 7, are the zero homomorphisms (Condition 1). It

remains only to check that the requirements of Condition 3 are satisfied.

For κ = 4, the group H4(N) is finite cyclic. Suppose the image of x under

the inclusion-induced homomorphism i∗− is the element (s, β) in H2(G/K−) ∼=

Z⊕Z2. In order for Condition 3 to hold, s must be relatively prime to the order

of H4(N). We claim this is true; that, in fact, |s| = 1. To see this, consider

Diagram 3. Setting k = 2, we see that the second relative cohomology groups,
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which are isomorphic, inject into both the infinite cyclic group H2(N) and the

finite cyclic group H2(G/K+); so they must be trivial. Because H3(N) is triv-

ial, the homomorphism δ− from H2(G/K−) to H3(N,G/K−) is a surjection.

Commutativity of the diagram together with the isomorphism of the third rela-

tive groups forces the homomorphism δ from H2(G/H) to H3(D(G/K+), G/H)

to be surjective as well. This gives two short exact sequences:

0→ H2(N) ∼= Z · x
i∗−−→ H2(G/K−) ∼= Z⊕ Z2

δ−−−→ H3(N,G/K−)→ 0

0→ H2(G/K+) ∼= Z4
i∗→ H2(G/H) ∼= Z2 ⊕ Z4

δ→ H3(D(G/K+), G/H)→ 0

where the relative cohomology groups are isomorphic. From the second sequence

we see that the order of the relative groups is the order of H2(G/H) divided by

the order of H2(G/K+); hence, the relative groups are isomorphic to Z2.

Consider the first sequence. Because i∗− is injective and i∗−(x) = (s, β), s can-

not be zero. By exactness, H3(N,G/K−) ∼= Z2 is isomorphic toH2(G/K−)/im i∗−.

If β = [0], the group H2(G/K−)/〈(s, β)〉 is clearly isomorphic to Zs ⊕ Z2. If

instead β = [1], the surjective homomorphism from H2(G/K−) ∼= Z ⊕ Z2 to

Z2s, defined by (1, [0]) 7→ [1] and (0, [1]) 7→ [s], has kernel 〈(s, [1])〉; hence,

H2(G/K−)/〈(s, [1])〉 is isomorphic to Z2s. In both cases, H2(G/K−)/im i∗− is

a finite group with 2|s| elements. Because we know H2(G/K−)/im i∗− is iso-

morphic to Z2, we conclude |s| = 1. Thus, s is relatively prime to the order of

H4(N), Condition 3 is satisfied and Lemma 2.2 holds for κ = 4. We have shown

x2 generates H4(N).

We now show that Condition 3 of Lemma 2.2 holds for κ = 7, from which it

follows xy generates H7(N). Because H7(N) is infinite cyclic and H2(G/K+)

is finite cyclic of order n = 4, Condition 3 requires the image of the generator

y of H5(N) under i∗− to be (up to sign) four times a generator of the infinite

cyclic group H5(G/K−).

To show this is true, set k = 5 in Diagram 3. The sixth relative cohomology

groups are isomorphic, and by exactness of the bottom row are isomorphic to

the quotient of H5(G/H) by i∗(H5(G/K+)). So the orders of the sixth relative

groups are equal to the order of H5(G/H) ∼= Z2 ⊕ Z4 divided by the order of
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i∗(H5(G/K+)). Since H5(G/K+) ∼= Z2, this is either four or eight. Observe

that these relative groups cannot contain elements of order eight, since they are

isomorphic to a quotient of Z2⊕Z4; therefore, if they are eight element groups,

they cannot be cyclic. But the infinite cyclic group H5(G/K−) surjects onto the

relative cohomology groups, so we conclude they are cyclic of order four. It then

follows from exactness of the top row that the homomorphism i∗− from H5(N)

to H5(G/K−) is multiplication by four. Hence, by Lemma 2.2, xy generates

H7(N).

4.3. Cohomology rings of the family O.

Let O := O(p,q:m) be a member of this family with |p| and |q| not both equal

to one. The cases m = 1 and m = 2 need to be considered separately, due

to differences in the orbits G/H and G/K+. However, calculations are greatly

simplified by the fact that both non-principal orbits are orientable. This means

Sequence 2 holds for both of the pairs (O,G/K±). Also, despite the different

orbits, arguments for each of the cases m = 1, 2 are similar; we sketch the

general method.

For κ = 4, 7, all conditions of Lemma 2.2 applying to the cohomology groups

(including Condition 2) are met. As before, t = 2. Sequence 2 applied to the

pair (O,G/K+) can be used to show that H2(O) surjects onto H2(G/K+).

This same sequence can be used to show that the homomorphisms i∗+ from

Hκ(O) to Hκ(G/K+) for κ = 4 and 7 are trivial homomorphisms; consequently

Condition 1 holds. Finally, applying Sequence 2 to the pair (O,G/K−), one sees

that under the homomorphism i∗−, the image of a generator of Hκ−2(O) meets

the requirements of Condition 3. Thus, by Lemma 2.2, H∗(O) is generated by

x ∈ H2(O) and y ∈ H5(O).

This completes the proof of Theorem 1.1. �

We conclude with a table summarizing the cohomological data for compact,

simply connected, seven dimensional, primitive cohomogeneity one manifolds:

28



Family L := {L(p−,q−),(p+,q+)}

Parameter restrictions p+ odd & p2
+q

2
− − p2

−q
2
+ 6= 0

Cohomology groups Hk(L; Z) ∼=


Z k = 0, 2, 5, 7

Zr, r 6= 1, 0 k = 4

0 otherwise

Order of H4(L; Z) r = 1
4 |p

2
+q

2
− − p2

−q
2
+|

Ring generators x ∈ H2(L; Z) and y ∈ H5(L; Z)

Notes r is always even.

Kreck-Stolz invariants exits.

Family L := {L(p−,q−),(p+,q+)}

Parameter restrictions p+ even

Cohomology groups Hk(L; Z) ∼=



Z k = 0, 2, 7

Z2 k = 3

Zr, r 6= 0, 1 k = 4

Z⊕ Z2 k = 5

0 otherwise

Order of H4(L; Z) r = |p2
+q

2
− − p2

−q
2
+|

Ring generators Let H2(L; Z) = Z · x, H5(L; Z) = Z · y ⊕ Z2;

(partial list) then x2 generates H4(L; Z), and

xy generates H7(L; Z).

Notes r is always odd.
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Family M := {M(p−,q−),(p+,q+)}

Restrictions p2
+q

2
− − p2

−q
2
+ 6= 0

Cohomology groups Hk(M ; Z) ∼=


Z k = 0, 7

Zr, r 6= 0, 1 k = 4

0 otherwise

Order of H4(M ; Z) r = 1
8 |p

2
+q

2
− − p2

−q
2
+|

Ring generators y ∈ H4(M ; Z) and z ∈ H7(M ; Z)

Notes Computed in [11]; same cohomology

ring as an S3-bundle over S4.

Family N := {N(p−,q−),(p+,q+)}

Parameter restrictions None.

Cohomology groups Hk(N ; Z) ∼=


Z k = 0, 2, 5, 7

Zr, r 6= 0, 1 k = 4

0 otherwise

Order of H4(N ; Z) r = |p2
+q

2
− − p2

−q
2
+|

Ring generators x ∈ H2(N ; Z) and y ∈ H5(N ; Z)

Notes Groups computed in [11].

r is always odd.

Kreck-Stolz invariants exist.

Family O := {O(p,q:m)}

Parameter restrictions either |p| 6= 1 or |q| 6= 1

Cohomology groups Hk(O; Z) ∼=


Z k = 0, 2, 5, 7

Zr, r 6= 0, 1 k = 4

0 otherwise

Order of H4(O; Z) r = |p2 − q2|

Ring generators x ∈ H2(O; Z) and y ∈ H5(O; Z)

Notes r is odd whenever either p or q is even.

Kreck-Stolz invariants exist.
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Table 2: Cohomological data for compact, simply connected, seven dimensional,

primitive cohomogeneity one manifolds.
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