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Abstract. We classify closed, simply-connected, non-negatively curved 6-manifolds of almost

maximal symmetry rank up to equivariant diffeomorphism.

1. Introduction

For the class of closed, simply-connected Riemannian manifolds there are no known obstructions
that allow us to distinguish between positive and non-negative sectional curvature, in spite of the
fact that the number of known examples of manifolds of non-negative sectional curvature is vastly
larger than those known to admit a metric of positive sectional curvature.

The introduction of symmetries, however, allows us to distinguish between such classes. An im-
portant first case to understand is that of maximal symmetry rank, where symrk(Mn) = rk(Isom(Mn)).
For manifolds of strictly positive sectional curvature, a classification up to equivariant diffeomor-
phism was obtained by Grove and Searle [12]. They showed that for such manifolds, the maximal
symmetry rank is equal to b(n + 1)/2c. For closed, simply-connected manifolds of non-negative
sectional curvature, the maximal symmetry rank is conjectured to be b2n/3c (see Galaz-Garćıa and
Searle [9] and Escher and Searle [6]). A classification for the latter has been obtained, but only in
dimensions less than or equal to nine (see [9] and Galaz-Garćıa and Kerin [8], for dimensions less
than or equal to 6 and [6] for dimensions 7 through 9) and the upper bound for the symmetry rank
has been verified for dimensions less than or equal to 12 (see [9] and [6]).

A natural next step is the case of almost maximal symmetry rank. In positive curvature, a
homeomorphism classification was obtained by Rong [31], in dimension 5, and Fang and Rong [7],
for dimensions greater than or equal to 8, using work of Wilking [36]. In non-negative curvature,
a homeomorphism classification was obtained independently by Kleiner [17] and Searle and Yang
[32], in dimension 4. This classification was later improved to equivariant diffeomorphism by Grove
and Wilking [13]. A diffeomorphism classification in dimension 5 was obtained by Galaz-Garćıa and
Searle [10].

In this article we consider closed, simply-connected Riemannian 6-manifolds admitting a met-
ric of non-negative sectional curvature and an effective, isometric torus action of almost maximal
symmetry rank and prove the following classification theorem.

Theorem A. Let T 3 act isometrically and effectively on M6, a closed, simply-connected, non-
negatively curved Riemannian manifold. Then M6 is equivariantly diffeomorphic to S3 × S3 or a
torus manifold.

Closed, orientable manifolds of dimension 2n admitting a smooth Tn action with non-empty
fixed point set, are called torus manifolds. Non-negatively curved torus manifolds were classified
up to equivariant diffeomorphism by Wiemeler [35] (see Theorem 2.13). In dimension 6, they are
equivariantly diffeomorphic to S6, CP 3 = S7/T 1, or the quotient by (1), a free linear circle action
on S3 × S4, (2), a free linear T 2-action on S3 × S5 or (3), a free linear T 3-action on S3 × S3 × S3.
In the process of classifying bi-quotients of dimension 6, De Vito [5] has given a classification of
these manifolds up to diffeomorphism. It is worth noting that Kuroki [18], using torus graphs, has
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obtained an Orlik-Raymond type classification of 6-dimensional torus manifolds with vanishing odd
degree cohomology without curvature restrictions.
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2. Preliminaries

In this section we will gather basic results and facts about transformation groups, the topolog-
ical classification of six dimensional manifolds, cohomogeneity two torus actions and G-invariant
manifolds of non-negative curvature.

2.1. Transformation Groups. Let G be a compact Lie group acting on a smooth manifold M .
We denote by Gx = { g ∈ G : gx = x } the isotropy group at x ∈ M and by G(x) = { gx : g ∈
G } ' G/Gx the orbit of x. Orbits are called principal, exceptional or singular, depending on the
relative size of their isotropy subgroups; that is, principal orbits correspond to those orbits with
the smallest possible isotropy subgroup, an orbit is called exceptional when its isotropy subgroup is
a finite extension of the principal isotropy subgroup and singular when its isotropy subgroup is of
strictly larger dimension than that of the principal isotropy subgroup.

The ineffective kernel of the action is the subgroup K = ∩x∈MGx. We say that G acts effectively
on M if K is trivial. The action is called almost effective if K is finite.

We will sometimes denote the fixed point set MG = {x ∈M : gx = x, g ∈ G } of the G-action by
Fix(M ;G). One measurement for the size of a transformation group G×M →M is the dimension
of its orbit space M/G, also called the cohomogeneity of the action. This dimension is clearly
constrained by the dimension of the fixed point set MG of G in M . In fact, dim(M/G) ≥ dim(MG)+
1 for any non-trivial action with fixed points. In light of this, the fixed-point cohomogeneity of an
action, denoted by cohomfix(M ;G), is defined by

cohomfix(M ;G) = dim(M/G)− dim(MG)− 1 ≥ 0.

A manifold with fixed-point cohomogeneity 0 is also called a G-fixed point homogeneous manifold.

2.2. Topological Classification of 6-manifolds. Note that throughout the paper we will use the
convention that all homology groups have integer coefficients, unless otherwise specified.

The topological classification of simply-connected, closed, oriented 6-manifolds has been com-
pleted in a sequence of articles by C.T.C. Wall [34], P. Jupp [15], and A. Žubr [37, 38, 39]. We
will focus on the classification of closed, simply-connected, oriented 6-manifolds with torsion free
homology. The classification theorem below is due to C. T. C. Wall in the case of smooth spin
manifolds, [34], and in the final form due to P. Jupp [15]. We first describe the basic invariants used
to classify 6-dimensional, closed, simply-connected, oriented, smooth manifolds, M , with torsion
free homology [15].

Theorem 2.1. [15] Let M be a 6-dimensional, closed, simply-connected, oriented, smooth manifold
with torsion free homology. The basic invariants used to classify M are as enumerated below.

(1) H := H2(M), a finitely generated free abelian group;
(2) b := b3(M) = rkZ(H3(M)) ∈ 2Z since H3(M) admits a non-degenerate symplectic form;
(3) F := FM : H2(M) ⊗H2(M) ⊗H2(M) −→ Z a symmetric trilinear form given by the cup

product evaluated on the orientation class;
(4) p := p1(M) ∈ H4(M), the first Pontrjagin class;
(5) w := w2(M) ∈ H2(M ;Z2), the second Stiefel-Whitney class.

We now use Poincaré duality to identify H4(M) with HomZ(H2(M);Z) so that p1(M) can be
interpreted as a linear form on H2(M) and we let x · y · z denote FM (x⊗ y⊗ z) for x, y, z ∈ H2(M).
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Definition 2.2. (Admissibility)
The system of invariants (H, b, w, F, p) is called admissible if and only if for every ω ∈ H and

T ∈ H∗ := HomZ(H;Z) with ρ2(ω) = w and ρ2(T ) = 0 where ρ2 : Z −→ Z2 is reduction modulo 2,
the following congruence holds:

ω3 ≡ (p+ 24T )ω mod 48.

Definition 2.3. (Equivalence) Two systems (H, b, w, F, p) and (H ′, b′, w′, F ′, p′) are called equiv-
alent if and only if b = b′ and there exists an isomorphism α : H −→ H ′ such that α(w) =
w′, α∗(F ′) = F, α∗(p′) = p.

We are now ready to state the classification result:

Theorem 2.4. [15] The assignment

M 7→ (
b

2
, H2(M), w2(M), FM , p1(M))

induces a 1-1 correspondence between oriented diffeomorphism classes of simply-connected, closed,
oriented, 6-dimensional, smooth manifolds with torsion free homology, and equivalence classes of
admissible systems of invariants.

Note that A. Žubr generalized Wall’s theorem in a different direction: he proved a classification
theorem for simply-connected, smooth spin manifolds with not necessarily torsion free homology
[37], and then in [38, 39] also obtained Jupp’s theorem and proved that algebraic isomorphisms of
systems of invariants can always be realized by orientation preserving diffeomorphisms.

Observe that the first invariant b
2 is completely independent of the other invariants which implies

that the following splitting theorem holds.

Corollary 2.5. [34] Every simply-connected, closed, oriented, 6-dimensional, smooth manifold M
admits a splitting M = M0 ]

b
2 (S3 × S3) as a connected sum of a core M0 with b = b3(M0) = 0 and

b
2 copies of S3 × S3.

The following corollary is an immediate consequence.

Corollary 2.6. Let M be a simply-connected, closed, oriented, 6-dimensional, smooth manifold
with

Hi(M
6) ∼= Hi(S

3 × S3) for all i.

Then M6 is diffeomorphic to S3 × S3.

2.3. Cohomogeneity two torus actions. In order to prove Theorem A, we will also need to
understand cohomogeneity two torus actions on smooth manifolds. In [25], Orlik and Raymond ob-
tain an equivariant classification theorem for cohomogeneity two torus actions on smooth manifolds
that states that two such manifolds are equivariantly diffeomorphic if and only if their respective
weighted orbit spaces are weight-preserving diffeomorphic.

The following theorem classifies the weighted orbit spaces of almost free, cohomogeneity two torus
actions on smooth manifolds with S2 as quotient space. Moreover, by Theorems 12.3 and 12.15 of
Conner and Raymond [3], Mk+2 admits a fibration by a 3-manifold, M3, over T k−1 and there is
an almost free T 1 action on M3, with Mk+2/T k = M3/T 1. We also identify the corresponding
3-manifolds in the following theorem, as this information will be useful in what follows. One then
classifies the Mk+2 up to (weak) equivariant diffeomorphism via their weighted orbit spaces (see
Theorem 1.4, the theorem in Section 2.4 and Remark 2.5 in [25] for the weighted orbit spaces and
the proof of Theorem 4 in [24] and Section 12 of [3] for the homology results).

Recall that if T k acts smoothly, effectively and almost freely on Mk+2, with Mk+2/T k = S2,
then there are a finite number of isolated orbits with finite isotropy and the isotropy subgroups
must be cyclic. The possible weighted orbit spaces are then determined completely by the number
of isolated exceptional orbits and are described by an ordered pair (n, {αi}), where n corresponds
to the number of isolated exceptional orbits and each αj ∈ {αi} corresponds to the order of the
corresponding isotropy subgroup.
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Theorem 2.7. [25] Let T k act smoothly, effectively and almost freely on Mk+2, a smooth (k + 2)-
dimensional manifold, with Mk+2/T k = S2. Then the possible weighted orbits spaces and the
corresponding fiber M3 of the fibration M3 ↪→Mk+2 → T k−1 are:

(1) (0, ∅) (hence Mk+2 = T k × S2) and M3 is S2 × S1;
(2) (1, {α1}) and M3 is a lens space;
(3) (2, {α1, α2}) and M3 is a lens space;
(4) (3, {α1, α2, α3}), and 1/α1 + 1/α2 + 1/α3 > 1 and M3 is S3/Γ, where Γ is one of D∗, T ∗,

O∗, or I∗;

In Cases (1) through (3), the fundamental group is abelian and in Case (4), the fundamental group
is non-abelian and has elements of finite order.

2.4. G-manifolds with non-negative curvature. We now recall some general results about G-
manifolds with non-negative curvature which we will use throughout. Recall that fixed point ho-
mogeneous manifolds of positive curvature were classified in [12]. More recently Spindeler [33]
proved the following theorem which characterizes non-negatively curved G-fixed point homogeneous
manifolds.

Theorem 2.8. [33] Assume that G acts fixed point homogeneously on a complete non-negatively
curved Riemannian manifold M . Let F be a fixed point component of maximal dimension. Then
there exists a smooth submanifold N of M , without boundary, such that M is diffeomorphic to the
normal disk bundles D(F ) and D(N) of F and N glued together along their common boundaries;

M = D(F ) ∪∂ D(N).

Further, N is G-invariant and contains all singularities of M up to F .

Let IsomF (M) be the subgroup of the isometry group of M that leaves F invariant. The following
lemma will also be important:

Lemma 2.9. [33] Let M be a non-negatively curved fixed point homogeneous G-manifold, with M , F
and N as in Theorem 2.8 and H = IsomF (M). Then there exists an H-equivariant diffeomorphism
b : ∂D(N)→ ∂D(F ) and M is H-equivariantly diffeomorphic to D(F ) ∪∂ D(N).

Since fixed point homogeneous manifolds with either positive or non-negative lower curvature
bounds decompose as unions of disk bundles, the following lemma from [6] will be useful.

Lemma 2.10. [6] Let M be a manifold with rk(H1(M)) = k, k ∈ Z+. If M admits a disk bundle
decomposition

M = D(N1) ∪E D(N2),

where N1, N2 are smooth submanifolds of M and N1 is orientable and of codimension two, then
both rk(H1(N1)) and rk(H1(N2)) are less than or equal to k + 1.

Moreover, we have the following theorem which allows us to identify the fundamental group of
E in the disk bundle decomposition.

Theorem 2.11. Let Mn be a simply-connected manifold that decomposes as the union of two disk
bundles as follows:

Mn = Dk(N1) ∪E Dl(N2).

Then the following hold:

(1) If k = l = 2 and π2(Ni) = 0 for i = 1, 2 and π1(N1) is not a finite cyclic group, then
π1(E) ∼= Z2.

(2) If k ≥ 3, then π1(E) ∼= π1(N1).

Proof. Case (1): Assume that k = l = 2. Then E is a circle bundle over N1 and also over N2, where
π2(N1) = π2(N2) = 0 . Hence we obtain the following short exact sequences from the long exact
sequences in homotopy:
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0 −→ π1(S1
j )

ij∗−→ π1(E)
f∗
j−→ π1(Nj) −→ 0 , for j ∈ {1, 2}

Now let U1 = i∗1(π1(S1
1)) and U2 = i∗2(π1(S1

2)). Then π1(N1) = π1(E)/U1 and π1(N2) =
π1(E)/U2, so we get the following commutative diagram:

π1(E)
f∗
2 //

f∗
1

��

π1(N2)

��
π1(N1) // π1(E)/U1U2

(∗)

Here the lower map is given by

π1(N1) = π1(E)/U1 −→ π1(E)/U1U2 ,

and the same is true for π1(N2). Now by Seifert Van-Kampen (universal property), there exists a
morphism h : π1(M) −→ π1(E)/U1U2 making the following diagram commute:

π1(E)
f∗
2 //

f∗
1

��

π1(N2)

��

��
π1(N1)

11

// π1(M)

h

&&
π1(E)/U1U2

Since all the maps in (∗) are surjective, h must be surjective. But since π1(M) = 0, this implies
that π1(E) ∼= U1U2. Note that both U1 and U2 are normal in π1(E). If in addition U1 ∩ U2 = {1},
then π1(E) ∼= U1 × U2

∼= Z2 and the theorem follows. If U1 ∩ U2 6= {1}, then π1(N1) ∼= U1U2/U1
∼=

U2/U1 ∩ U2. But U1 ∩ U2 is a normal subgroup of U2
∼= Z, hence U1 ∩ U2

∼= nZ for some n ∈ Z. It
follows that π1(N1) ∼= U2/U1 ∪ U2

∼= Z/nZ which is a contradiction to the hypothesis that π1(N1)
is not finite cyclic. Hence U1 ∩ U2 = {1} and π1(E) ∼= U1 × U2

∼= Z2.
Case (2): Assume now that k ≥ 3. Then E is a Sk−1 bundle over N1 and hence by the long exact

sequence in homotopy π1(E) ∼= π1(N1).
�

An important subclass of manifolds admitting an effective torus action are the so-called torus
manifolds.

Definition 2.12 (Torus Manifold). A torus manifold M is a 2n-dimensional closed, connected,
orientable, smooth manifold with an effective smooth action of an n-dimensional torus T such that
MT 6= ∅.

Note that torus manifolds satisfy the following properties. The action of Tn on M2n is an example
of a maximal torus action, where we define a maximal T k action to be one where the dimension of
the smallest orbit is 2k − n (see Ishida [14]).

The following important theorem from [35] gives a classification up to equivariant diffeomorphism
of non-negatively curved torus manifolds.

Theorem 2.13. [35] Let M be a simply-connected, non-negatively curved torus manifold. Then M
is equivariantly diffeomorphic to a quotient of a free linear torus action of

(2.3) N =
∏
i<r

S2ni ×
∏
i≥r

S2ni−1, ni ≥ 2.
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We now recall Theorem 5.1 from [6], which will be important for the proof of Theorem A.

Theorem 2.14. [6] Let T k act isometrically, effectively and almost maximally on Mn, a simply-
connected, closed, non-negatively curved Riemannian n-manifold with k ≥ b(n + 1)/2c. Then the
action is maximal.

3. Proof of Theorem A

In this section we present the proof of Theorem A. We first recall the following lemma from [10].

Lemma 3.1. [10] Let Tn act on Mn+3, a closed, simply-connected smooth manifold. Then Tn

cannot act freely or almost freely; that is, some circle subgroup has non-trivial fixed point set.

Note that by Lemma 3.1, a T 3-action on a closed, simply-connected M6 must have circle isotropy.
Therefore, we may break the proof of Theorem A into three cases, depending on the rank of the
largest isotropy subgroup, which will be either 1, 2 or 3. Observe that Theorem 2.14 tells us that
if the action has either T 2 or T 3 isotropy, then in fact it has T 3 isotropy and must therefore be a
torus manifold. Theorem 2.13 then gives us an equivariant diffeomorphism classification of these
manifolds. Thus, we have proven Part (1) of the following theorem.

Theorem 3.2. Let M6 be a closed, simply-connected, non-negatively curved Riemannian 6-manifold
admitting an isometric, effective T 3-action. Then the action has singular isotropy of rank 1, 2 or 3
and the following hold.

(1) If the rank of the largest singular isotropy subgroup is greater than or equal to 2, then M6

is equivariantly diffeomorphic to a torus manifold.
(2) If the rank of the largest singular isotropy subgroup is equal to 1, then M6 is equivariantly

diffeomorphic to S3 × S3.

It remains to prove Part (2) of Theorem 3.2. We have two cases to consider: Case (1), where
the circle acts fixed point homogeneously and the induced T 2-action on the codimension two fixed
point set is free or almost free and Case (2), where there are isolated T 2 orbits. The remainder of
this section will be devoted to the proof of these two cases.

3.1. Proof of Case 1 of Part 2 of Theorem 3.2. We consider Case (1), where some circle acts
fixed point homogeneously and the induced T 2 action on the codimension two fixed point set is
either free or almost free. We will prove the following theorem.

Theorem 3.3. Let T 3 act isometrically and effectively on M6, a closed, simply-connected, non-
negatively curved Riemannian manifold. Suppose that the action is S1-fixed point homogeneous
and that the largest isotropy subgroup of the T 3-action is of rank one. Then M is equivariantly
diffeomorphic to S3 × S3.

The strategy for the proof of Theorem 3.3 will be to show that M6 decomposes as a union of
two disk bundles, each a 2-disk bundle over a 4-manifold. One can then show, using classification
work of [25], that M6 has the homology groups of S3 × S3 and by Corollary 2.6, we then obtain
a diffeomorphism classification. In order to show the equivariant diffeomorphism, we will need to
prove that the 4-manifolds are equivariantly diffeomorphic to S1 × S3 and use Lemma 2.9.

We begin by establishing some notation. Let F be the fixed point set of the circle action on M6

and let N be as in Theorem 2.8 such that M6 is given as

M = D(F ) ∪E D(N),

where E is the common boundary of the two disk bundles. Observe that F is a closed, orientable,
non-negatively curved 4-dimensional submanifold of M6, admitting an isometric T 2 action. Among
other things, we will show in Proposition 3.6 that under these hypotheses, N is also 4-dimensional.

Remark 3.4. For the remainder of this subsection, we will always assume that there is a T 3

isometric and effective action on M6, a closed, simply-connected, non-negatively curved Riemannian
manifold, such that the action is S1-fixed point homogeneous and the largest isotropy subgroup of the
T 3-action is of rank one. As such, we will omit the statement of these hypotheses in what follows.
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Recall that the rank of a finitely generated abelian group corresponds to the number of Z factors
in the group.

Definition 3.5. We define the abelian rank of a finitely presented group, G, to be the rank of the
largest finitely generated abelian subgroup of G and denote it by rkab(G).

The following proposition shows that the topology of F and N is restricted when M6 is S1-fixed
point homogeneous.

Proposition 3.6. Let M ′ denote either F or N . Then the following are true:

(1) rk(H1(M ′)) = 1;
(2) rkab(π1(M ′)) ≥ 1;
(3) χ(M ′) = 0; and
(4) M ′ is orientable.
(5) dim(M ′) = 4.

Proof. We will first prove the proposition holds for M ′ = F . If we assume that χ(F ) 6= 0, then
the induced T 2 action on F would have non-empty fixed point set and thus there is a point in M6

fixed by T 3, contrary to our hypothesis that the isotropy subgroups have rank at most 1. Thus,
χ(F ) = 0.

It follows from Lemma 2.10 that rk(H1(F )) ≤ 1. Suppose then that rk(H1(F )) = 0, to obtain a
contradiction. F is orientable, since it is a fixed point set of a circle action and M6 is orientable.
Therefore χ(F ) is strictly positive, a contradiction. Thus rk(H1(F )) = 1.

Since F is totally geodesic, it has non-negative curvature. Applying the Splitting Theorem of
Cheeger and Gromoll [2], we obtain two exact sequences involving π1(F ) and π1(F )/Γ, where Γ is a
finite, normal subgroup of π1(F ). The first tells us that π1(F ) surjects onto π1(F )/Γ and the second
tells us that rkab(π1(F )/Γ) ≥ 1 and so rkab(π1(F )) ≥ 1. Thus the proposition holds for M ′ = F .

We will now show that the proposition holds for M ′ = N . We will first show that dim(N) = 4.
Since M6 decomposes as a union of disk bundles over F and N , respectively, and M6 is simply-
connected, from the Mayer Vietoris sequence of the triple (M,F,N), we have the following long
exact sequence:

(3.1) · · · → H1(E)→ H1(F )⊕H1(N)→ 0.

Now assume N is not 4-dimensional. Since N is the base of a sphere (and not a circle) bundle with
total space E, applying the Gysin sequence yields H1(E) ∼= H1(N). This combined with the fact
that Part (1) of the proposition holds for F gives a contradiction to the fact that the map in Display
(3.1) is onto. Hence N is 4-dimensional.

Note that by Lemma 2.9, N is T 3-invariant. We have two cases to consider: Case (1), N is not
fixed by any circle subgroup of T 3 and Case (2), N is fixed by some circle subgroup of T 3. Note
that Case (2) is immediate from the proof of the proposition for F .

It remains to consider Case (1), that is where N is not fixed by any circle subgroup. Then,
since it is invariant under the T 3 action, it follows that it is a cohomogeneity one submanifold
and hence diffeomorphic to S1 × N3 (see Pak [26] and Parker [27]). Recall by Lemma 2.10 that
rk(H1(N)) ≤ 1, so by the Künneth formula, it follows that H1(N3) is finite. Hence N3 is one of
S3 or Lp,q (see Mostert [19] and Neumann [20]). In particular, N is an orientable submanifold with
rk(H1(N)) = rkab(π1(N)) = 1 and χ(N) = 0. �

The next proposition will allow us to narrow down the possibilities for the fundamental groups
of F and N . We will assume for this proposition that N is also the fixed point set of some circle
action, since in the other case, we already know its fundamental group.

Proposition 3.7. Let M4 be F or N and further assume that N is the fixed point set of some circle
action. Then

π1(M4) ∼= Z or Z⊕ Zp or Z n Γ ,

where Γ is one of the binary dihedral, tetrahedral, octahedral or icosahedral groups.
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Proof. By Theorems 12.3 and 12.15 of [3], M4 is the total space of a fibration with fiber M3 and
base S1. Then by the homology spectral sequence for fibrations with non-simply-connected base
space, we get the following exact sequence:

H2(M) −→ H2(S1) −→ H0(S1;H1(M3)) −→ H1(M4) −→ H1(S1) −→ 0

By the Universal Coefficient theorem

H0(S1;H1(M3)) ∼= H0(S1)⊗H1(M3) ∼= Z⊗H1(M3) ∼= H1(M3).

Now rk(H1(M4)) = 1 by Proposition 3.6 and hence H1(M4) = Z ⊕ T1(M4), where Ti(M
4) is the

torsion subgroup of Hi(M
4). Hence the exact sequence becomes

0 −→ H1(M3) −→ Z⊕ T1(M4) −→ Z −→ 0

But this implies that H1(M3) is finite. Thus only cases 2, 3 and 4 of Proposition 2.7 occur. For
cases 2 and 3, since the fundamental group is abelian, π1(M4) is either Z or Z⊕ Zp.

In Case 4, π1(M3) is finite and non-abelian. Since π2(S1) = 0, the long exact sequence in
homotopy of M3 ↪→ M4 → S1 is short exact at π1. This short exact sequence splits and hence
π1(M4) = Z n Γ, where Γ is one of the binary dihedral, tetrahedral, octahedral or icosahedral
groups.

�

We are now able to compute the homology groups of N and F .

Proposition 3.8. Let M4 denote either F or N . Then H1(M4) = Z and hence Hi(M
4) ∼= Hi(S

1×
S3) for all i.

Proof. It follows from Proposition 3.7 that H1(M4) = Z ⊕ T1(M4), where T1(M4) is cyclic or
Z2⊕Z2. Since both N and F are closed, orientable 4-manifolds, using Poincaré duality, the Universal
Coefficient theorem and the fact that χ(N) = χ(F ) = 0, it follows that β2 = 0. Hence we obtain:

(1) H1(M4) = Z⊕ T1(M4),
(2) H2(M4) = T1(M4),
(3) Hi(M

4) = Z for i ∈ {0, 3, 4},
Without loss of generality, we will assume that T1(F 4) is non-trivial. It follows from the Gysin

sequence associated to the circle bundle with total space E and base F 4 that H4(E) ∼= Z2⊕ T3(E).
By duality, we have that H1(E) = Z2, H2(E) = Zβ2(E) ⊕ T1(E) and H3(E) = Zβ3(E) ⊕ T2(E),
noting that β2 = β3. Moreover, we can conclude that |T1(E)| ≤ |T1(M4)|.

Using this information about the cohomology groups of E, we consider the two possibilities for
T1(E): either it is trivial, or it is not. For the first possibility, we immediately obtain a contradiction
to the exactness of the Mayer-Vietoris sequence in Display 3.1, as T1(F 4) is assumed to be non-
trivial. For the second possibility, we first consider the case where T1(N4) is trivial. However,
it follows directly from the Gysin sequence of the associated circle bundle, S1 ↪→ E → N4, that
T1(E) is then trivial and thus this case does not occur. So, we are left with one last case: both
T1(N) and T1(F ) are non-trivial. Recall that |T1(E)| ≤ |T1(M4)| and we once again obtain a
contradiction to the exactness of the Mayer-Vietoris sequence in Display 3.1. Hence T1(M4) = 0
and Hi(M

4) ∼= Hi(S
1 × S3) for all i, as desired.

�

We can now determine the fundamental group of M4.

Lemma 3.9. Let M4 denote either F or N . Then π1(M4) ∼= Z.

Proof. Since H1(M4) = Z, it then follows by combining Propositions 3.6 and 3.7, and Proposition
3.3 in Gonçalves and Guaschi [11] that π1(M4) can only be Z or Z n I∗.

We first assume π1(M4) ∼= Z n I∗ to derive a contradiction. It follows by Theorem 2.11 that
π1(E) ∼= Z2. By the long exact sequence in homotopy of the fibration S1 ↪→ E → M4, we obtain
the short exact sequence

0 −→ Z −→ Z2 −→ Z n I∗ −→ 0,
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which is not possible. Hence π1(M4) ∼= Z. �

We can now prove the following proposition, which tells us that M6 has the same homology
groups as S3 × S3.

Proposition 3.10. The homology groups of M6 are isomorphic to those of S3 × S3, that is,

Hi(M
6) ∼= Hi(S

3 × S3) for all i.

Proof. Consider the Mayer Vietoris sequence of the disk bundle decomposition for M6. Using
Poincaré Duality and the Universal Coefficient Theorem, one immediately concludes that H2(M6) ∼=
H4(M6) = 0 and that H3(M6) has no torsion. So the only unknown homology group is H3(M6).
Using the Gysin sequence, we see that rk(H3(E)) ≤ 1. Further, using the Universal Coefficient
Theorem, it follows that H3(E) has no torsion, thus H3(E) is either trivial or Z, and that H3(E) ∼=
Hom(H2(E);Z). We then have the following exact sequence from the Mayer Vietoris sequence:

0→ H3(E)→ Z2 → H3(M6)→ H2(E)→ 0.

Now, considering the two possibilities for H3(E), we find that in both cases H3(M6) = Z2.
�

Combining the result of Proposition 3.10 with the fact that ω2 = 0, it follows by Corollary 2.6
that M6 is diffeomorphic to S3 × S3.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. By Lemma 3.9 and the classification work of [25], it follows that both N
and F are T 2-equivariantly diffeomorphic to S1 × S3. Recall that circle bundles over a base B are
classified by their Euler class e ∈ H2(B). Since E is a circle bundle over S1 × S3, it is therefore
a trivial bundle and hence E = T 2 × S3. By the classification work of [25], it follows that E is
T 3-equivariantly diffeomorphic to T 2 × S3.

We now have by Lemma 2.9 that M6 is T 3-equivariantly diffeomorphic to

D2(S1 × S3) ∪T 2×S3 D2(S1 × S3).

Since a T 3 effective, isometric action on S3 × S3 that has only rank 1 isotropy and is S1-fixed
point homogeneous decomposes exactly as above, we have thus shown that M6 is T 3-equivariantly
diffeomorphic to S3 × S3. �

3.2. Proof of Case 2 of Part 2 of Theorem 3.2. We now consider the case where there is
only isolated circle isotropy, that is where the rank of the isotropy subgroups is at most one and
the action is not S1-fixed point homogeneous. The goal of this subsection is to prove the following
theorem.

Theorem 3.11. Let T 3 act on M6, a 6-dimensional, closed, simply-connected, non-negatively
curved Riemannian manifold. Suppose that the action admits only isolated circle isotropy. Then
M6 is equivariantly diffeomorphic to S3 × S3.

The argument is a straightforward generalization of the finite isotropy case for isometric T 2

actions on closed, simply-connected, non-negatively curved 5-manifolds with only isolated circle
orbits that appears in [10]. We include it here for the sake of completeness.

First recall from Corollary 4.7 of Chapter IV of Bredon [1], that the quotient space, M∗, of a
cohomogeneity three G-action on a compact, simply-connected manifold with connected orbits is
a simply-connected 3-manifold with or without boundary. Note that when there is only isolated
circle isotropy for a cohomogeneity three torus action, the quotient space will not have boundary
and thus, by the resolution of the Poincaré conjecture (see Perelman [28, 29, 30]), we have that
M∗ = S3.

We first recall Proposition 4.5 from [10], which gives us a lower bound for the number of isolated
singular orbits of the action.



10 ESCHER AND SEARLE

A B C

D E

Figure 3.1. Possible weighted graphs when there is finite cyclic isotropy.

Proposition 3.12. [10] Let Tn act on Mn+3, a simply-connected, smooth manifold. Suppose that
M∗ is homeomorphic to S3 and that there are exactly two orbit types: principal orbits Tn and
isolated singular orbits Tn−1. Then there are at least n+ 1 isolated singular orbits Tn−1.

The non-negative curvature hypothesis gives us an upper bound on the number of isolated T 2

orbits. The following lemma from [13] is crucial:

Lemma 3.13. [13] A three dimensional non-negatively curved Alexandrov space X3 has at most
four points for which the space of directions is not larger than S2(1/2).

Proposition 4.8 in [10] shows that if there is finite isotropy, it must be Z2 ⊕Z2 or Zk and that in
the latter case, those exceptional orbits are not isolated. Combining Proposition 3.12 and Lemma
3.13 it follows that there are exactly 4 isolated T 2 orbits. This result combined with the proof of
Proposition 5.8 in [10] then tells us that Z2 ⊕ Z2 isotropy cannot occur.

We may summarize our results as follows.

Proposition 3.14. Let T 3 act isometrically and effectively on M6, a 6-dimensional, closed, simply-
connected Riemannian manifold as in Theorem 3.11. Suppose that M6/T 3 = M∗ = S3. Then
there are exactly 4 isolated T 2 orbits and if there is finite isotropy, then it must be cyclic and the
corresponding orbits are not isolated.

We consider first the case where there is no finite isotropy. We have the following result.

Proposition 3.15. Let T 3 act isometrically and effectively on M6, a 6-dimensional, closed, simply-
connected Riemannian manifold. Suppose that M6/T 3 = M∗ = S3. If there is no finite isotropy,
then M6 is diffeomorphic to S3 × S3.

Proof. The proof of Proposition 3.12 shows that π2(M6) = 0. By the Hurewicz isomorphism, it
follows that M6 only has homology in dimension 3 and by the Universal Coefficients there is no
torsion. Since the fixed point set of the T 3-action is empty by hypothesis, it follows that χ(M6)=0.
This tells us that b3(M6) = 2 and thus M6 has the homology groups of S3 × S3, so by Corollary
2.6, it follows that M6 is diffeomorphic to S3 × S3. �

We now consider the case where the T 3-action on M6 has non-trivial finite isotropy. There are
just five admissible graphs corresponding to this case (see Figure 3.1).

In the special case where the singular set in the orbit space contains a circle we have the following
result which follows directly from work of [13] and its generalization in [10].

Theorem 3.16. Let M6 be a closed, simply-connected, non-negatively curved 6-manifold with an
isometric T 3 action and orbit space M∗ ' S3. If the singular set in the orbit space M∗ contains a
circle K1, then the following hold:

(1) The circle K1 is the only circle in the singular set in M∗.
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Figure 3.2. How to complete a weighted graph with edges corresponding to prin-
cipal orbits to obtain a circle: the solid edge corresponds to orbits with finite cyclic
isotropy, while the dotted edges correspond to principal orbits.

(2) K1 comprises all of the singular set, i.e., M∗ \K1 is smooth.
(3) The circle K1 is unknotted in M∗.

We will now show in all cases where we have a circle that we may decompose the manifold as a
union of disk bundles, where at least one of the disk bundles is over one arc of the circle.

Proposition 3.17. Let T 3 act on M6 isometrically and effectively and suppose that M∗ = S3

and there is finite isotropy. Suppose further that the singular set in S3 corresponds to graph E in
figure 3.1. Then we may decompose M6 as a union of disk bundles over two disjoint 4-dimensional
submanifolds fixed by finite isotropy (although not necessarily the same group).

The proof of this proposition is exactly the same as in [10] (see the proofs of Proposition 6.9
and Proposition 6.7(2)). For graphs (A) through (D), we may complete the weighted graph by
joining disjoint isolated circle orbits or arcs via edges corresponding to shortest geodesics consisting
of regular points in the orbit space. In this way we obtain a graph that is an unknotted circle
(see figure 3.2) and now for all the possible graphs we may decompose M6 as the union of two
disk bundles over the 4-dimensional manifolds that correspond to opposite arcs of the circle. These
4-dimensional manifolds are invariant under the T 3 action and via the classification of torus actions
of cohomogeneity one (see [27, 26]), it follows that they are T 1 ×M3, where M3 is an orientable,
cohomogeneity one manifold equal to one of S3, Lp,q, S

2 × S1 by [19] and [20]. By Lemma 2.10, it
follows that the 4-dimensional manifold may be one of S1 × S3 or S1 × Lp,q.

As in Case (1) of Part 2 of Theorem 3.2, analyzing the Mayer-Vietoris sequence of the decom-
position it is immediate that the 4-dimensional manifolds corresponding to opposite arcs for all the
graphs must be S1 × S3 and M6 has the homology groups of S3 × S3. Applying Corollary 2.6, it
follows that M6 is diffeomorphic to S3 × S3.

It remains to show that the classification is up to equivariant diffeomorphism in both cases. The
argument in the proof of Proposition 3.16 (see [13] and [10]) uses the construction of a vector field
V ∗ on M∗. We construct V ∗ so that the flow lines emanating from each point of one edge will meet
at a point of the other edge to form a 2-sphere, unless the points are vertices of the rectangle, in
which case there is only one flow line. Moreover, there is an S1 action on M∗ = S3 preserving these
spheres with orbit space a 2-dimensional rectangle. This action clearly lifts to an action on M whose
orbits near the two 4-dimensional submanifolds are the normal circles in a tubular neighborhood.
It follows that this lift commutes with the given isometric T 3-action on M6. Thus the T 3-action on
M6 extends to a smooth T 4-action.

The following theorem will allow us to apply Theorem 2.5 in Oh [21] which states the following.
If the matrix of the circle isotropy subgroups of a T 4 action on M6 has determinant ±1, then M6

is equivariantly diffeomorphic to S3 × S3. Hence Theorem 3.18 will complete the proof of Case (2)
Theorem 3.2.

Theorem 3.18. Let Tn−k act effectively on Mn such that Mn/Tn−k = Dk, k ≥ 2. Further
assume that all singular isotropy is connected, all singular orbits correspond to boundary points and
that there are no exceptional orbits. Then Mn is simply-connected if and only if there are (n − k)
distinct circle isotropy groups whose matrix has determinant ±1.
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Proof. First assume that Mn is simply connected. Corollary 2.9 in [6], which generalizes a result in
[16], says that with the above hypotheses the isotropy subgroups of the Tn−k action generate Tn−k,
and there are at least n− k distinct circle isotropy subgroups. Let ∆ be the matrix of the (n− k)
distinct circle isotropy groups. It is shown that the n − k isotropy subgroups of the Tn−k action
generate Tn−k if and only det(∆) = ±1 in Lemma 1.4 in [23].

The converse is proven for k = 2 in Corollary 1.2 in Oh [22]. We can generalize the result to

k ≥ 2 by observing that the proof only requires that the regular part of the manifold be D̊k×Tn−k.
Hence we see that if det(∆) = ±1, then Mn is simply-connected.

�

Remark 3.19. Note that Theorem 3.18 is optimal, since for k = 1 there are cohomogeneity one T 1

actions on RP 2 as well as cohomogeneity one T 2 actions on L(p, 1) such that det(∆) = ±1.
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