[1] James W. Hardin and Joseph Hilbe. Generalized Linear Models and Extensions. College Station, Texas: Stata Press, 2001.
[ bib ]
[2] Kathryn Prewitt and Sharon Lohr. Condition indices and bandwidth selection. 2003.
[ bib ]
[3] John M. Chambers and Trevor Hastie, editors. Statistical models in S. London: Chapman & Hall, 1991.
[ bib ]
[4] Clive Loader. Local regression and likelihood. New York: Springer-Verlag, 1999.
[ bib ]
[5] T. J. Hastie and R. J. Tibshirani. Generalized additive models. London: Chapman & Hall, 1990.
[ bib ]

Keywords: Regression; Nonparametric; Generalized linear model
[6] Robert Tibshirani and Trevor Hastie. Local likelihood estimation. Journal of the American Statistical Association, 82:559-567, 1987.
[ bib ]

Keywords: Smoothing; Generalized linear model; Nonparametric regression
[7] Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1:297-310, 1986.
[ bib ]

Keywords: Generalized linear model; Smoothing; Nonparametric regression; Partial residual; Nonlinear
[8] Trevor Hastie and Robert Tibshirani. Generalized additive models: Some applications. Journal of the American Statistical Association, 82:371-386, 1987.
[ bib ]

Keywords: Generalized linear model; Nonparametric regression; Logistic regression
[9] Trevor Hastie and Clive Loader. Local regression: Automatic kernel carpentry. Statistical Science, 8:120-129, 1993.
[ bib ]

Keywords: Loess; Smoothing
[10] P. J. Green. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives (with discussion). Journal of the Royal Statistical Society, Series B, Methodological, 46:149-192, 1984.
[ bib ]

Keywords: Scoring; Generalized linear model; Regression; Residual
[11] William S. Cleveland and Susan J. Devlin. Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83:596-610, 1988.
[ bib ]

Keywords: Smoothing; Loess
[12] William S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74:829-836, 1979.
[ bib ]

Keywords: Graphics; Nonparametric regression
[13] J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society, Series A, General, 135:370-384, 1972.
[ bib ]

Keywords: Probit analysis; Analysis of variance; Contingency table; Exponential family; Quantal response; Weighted least squares
[14] P. McCullagh and J. A. Nelder. Generalized linear models (Second edition). London: Chapman & Hall, 1989.
[ bib ]
[15] Andreas Buja, Trevor Hastie, and Robert Tibshirani. Linear smoothers and additive models. The Annals of Statistics, 17:453-510, 1989.
[ bib ]

Keywords: Nonparametric; Regression; Kernel estimator
[16] Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the American Statistical Association, 76:817-823, 1981.
[ bib ]

Keywords: Nonparametric regression; Smoothing
[17] Jerome H. Friedman, Werner Stuetzle, and Anne Schroeder. Projection pursuit density estimation. Journal of the American Statistical Association, 79:599-608, 1984.
[ bib ]

Keywords: Nonparametric
[18] Leo Breiman and Jerome H. Friedman. Estimating optimal transformations for multiple regression. In Computer Science and Statistics: Proceedings of the 16th Symposium on the Interface, pages 121-134, 1985.
[ bib ]

Keywords: Nonparametric
[19] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. New York: Springer-Verlag, 2001.
[ bib ]
[20] Charles J. Stone. Optimal global rates of convergence for nonparametric regression. The Annals of Statistics, 10:1040-1053, 1982.
[ bib ]
[21] Charles J. Stone. Optimal rates of convergence for nonparametric estimators. The Annals of Statistics, 8:1348-1360, 1980.
[ bib ]

Keywords: Regression; Density estimation
[22] Charles J. Stone. Consistent nonparametric regression. The Annals of Statistics, 5:595-620, 1977.
[ bib ]

Keywords: Conditional quantities; prediction; Multiple classification; Bayes risk; Approximate Bayes rules; Nearest neighbor
[23] Jianqing Fan. Design-adaptive nonparametric regression. Journal of the American Statistical Association, 87:998-1004, 1992.
[ bib ]

Keywords: Smoothing
[24] Jianqing Fan and Ir¨¨ne Gijbels. Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20:2008-2036, 1992.
[ bib ]
[25] Jianqing Fan. Local linear regression smoothers and their minimax efficiencies. The Annals of Statistics, 21:196-216, 1993.
[ bib ]

Keywords: Nonparametric regression
[26] Jianqing Fan and Ir¨¨ne Gijbels. Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation. Journal of the Royal Statistical Society, Series B, Methodological, 57:371-394, 1995.
[ bib ]

Keywords: Regression; Weighted least squares
[27] Byeong U. Park and J. S. Marron. Comparison of data-driven bandwidth selectors. Journal of the American Statistical Association, 85:66-72, 1990.
[ bib ]

Keywords: Density estimation; Kernel estimator
[28] Peter Hall, Simon J. Sheather, M. C. Jones, and J. S. Marron. On optimal data-based bandwidth selection in kernel density estimation. Biometrika, 78:263-269, 1991.
[ bib ]

Keywords: Smoothing
[29] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, Methodological, 53:683-690, 1991.
[ bib ]
[30] D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares regression (Corr: 96V91 p1380). Journal of the American Statistical Association, 90:1257-1270, 1995.
[ bib ]

Keywords: Kernel estimator; Variance estimation
[31] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91:401-407, 1996.
[ bib ]

Keywords: Review Paper; Kernel estimation; Nonparametric estimation; Smoothing; Bandwidth selection; Kernel density estimation; Nonparametric curve estimation; Smoothing parameter selection
[32] Julia E. Kelsall and Peter J. Diggle. Spatial variation in risk of disease: A nonparametric binary regression approach. Applied Statistics, 47:559-573, 1998.
[ bib ]

Keywords: Cross-validation; Epidemiology; Kernel smoothing
[33] Julia E. Kelsall and Peter J. Diggle. Correction to ``Spatial variation in risk of disease: A nonparametric binary regression approach'' (1998V47 p559-573). Applied Statistics, 51(3):373-373, 2002.
[ bib ]
[34] D. Ruppert and M. P. Wand. Multivariate locally weighted least squares regression. The Annals of Statistics, 22:1346-1370, 1994.
[ bib ]

Keywords: Kernel estimator; Nonparametric regression
[35] Theo Gasser, Alois Kneip, and Walter Köhler. A flexible and fast method for automatic smoothing. Journal of the American Statistical Association, 86:643-652, 1991.
[ bib ]

Keywords: Bandwidth; Kernel estimator
[36] Burkhardt Seifert and Theo Gasser. Finite-sample variance of local polynomials: Analysis and solutions. Journal of the American Statistical Association, 91:267-275, 1996.
[ bib ]

Keywords: Theory and Methods; Nonparametric estimation; Nonparametric regression; Ridge regression; Smoothing; Weight function
[37] E. A. Nadaraya. On estimating regression. Theory of Probability and its Applications, 9:141-142, 1964.
[ bib ]

Keywords: Asymptotics
[38] Geoffrey S. Watson. Smooth regression analysis. Sankhya Ser., 26:359-372, 1964.
[ bib ]

Keywords:
[39] Theo Gasser and Hans-Georg Müller. Estimating regression functions and their derivatives by the kernel method. Scandinavian Journal of Statistics, 11:171-185, 1984.
[ bib ]

Keywords: Nonparametric regression

This file has been generated by bibtex2html 1.61